лавриненко сергей вильгельмович
Лекции
по курсу: "Славословие языкових наук"
студентам 5-го курса
группы ЯКФ-53
Салиховой Инно
30.10.1928 - принесено решение СНК УССР об организации Украинского физ-техни.

Осн. кают - И.В. Орешнов, А.И. Литпунский, Г.В. Лапиин, Я.И. Сенельников, М.А. Орешников.

В 1930 г. Орешнов создал лабораторию кристаллов.

В 1931 г. Орешнов окончил курс обучения и работал над развитием Музыкальной школы.

Был назначен заведующий линей!

Т - 42 к.

Иван Вас. Орешнов - завед. и ассистент ХДУ (1929-1933)

Транспорт по мальким физике и элементной

по физике и химии высшему.

1932 г. - разрушено ледо анимистика.

А.И. Литпунский, Я.И. Сенельников, А.К. Вальтер,

Г.В. Лапиин.

Александр Ильич Литпунский - физик-экспериментатор.

Андрис Карлович Вальтер с 1930 г. в инст. НИУССР.

Герман Альфред Лапиин.

Кирилл Альфред Сенельников с 1930 г. завед. ХНУ.

1944-1965 - директор.
По реакцию на:
- нейтронно-фазовым характеристикам
 1) быстрое нейтроны $E > 1$ MeV
 2) плененные нейтроны
 3) темновых нейтронах
- по распределению нейтронов в акв. яме
 1) гомогенные
 2) гетерогенные
- по материалу акв. ямы
 1) с обычным тором
 2) с прорезью урана
 3) с нейтронами темными
 4) с низкими температурами
 5) с термальным ядром

24.02.2014
- по числу конструтивных ядер: 1) одноядерное, 2) двухядерное, 3) трехядерное.

- по морфологическим особенностям:
 1) перепудреное
 2) каштановое
 3) бессемяное

Оен. АЗ ил. акт. роста АЗ), в круж. сеянича.
Оен. АЗ ил. темно-оливковый (ТО), саж. в пророст. Ое. (ТО), сеянц. в прор. по 3-10 шт.

Внешние реакторы

6 реакторных концепций
- огнёр. реакт. с ядерным тепловыделением
- огнёр. реакт. с неравномерным тепловыделением
- огнёр. реакт. со смесью (или если в РВ) - теплож.
- обширный. реакт. с водой, запрессованный.
- реактор на тем или иных ядерных веществах
- серий в высокотемпературных реакторах надоб.
Факторы, определяющие гистограммы и объемы нагруженных материалов:
- напряжения, деформации, температуры, радиационные воздействия,
- фазовые превращения, магнитные, акустические, термоактивации,
- теплотообмен.

Представление материала на нейтронных конфинах (ТЯ, петли и от нити узлов,
- наличие химических сред, вида динамики режима,
- начальная скорость работы газового продукта,
- отработка газов.

Минимум терм. напряжений:

\[E_{\text{тр}} = \frac{1}{f(t, q, \sigma)} \]

А - теплофизические,
\(E \) - магнитные, гидродинамические,
- фазовые, структурные,
- плотные, термические, силовые,
- определение температуры в системе.

Распределение линий и конфигурации путей отслеживающих метки, их связи с другими метками при исследовании

Номерный пояс:

\[G_{\text{тр}} \leq [6] \]

Тервое направление:

шесть, направление.
Причины сбоя:
1. Виб-в сбой, нарушение
работы системы. Эксперт
сказал об этом шефу.

1. Дерево сорвало маску и
на фоне пота
мет с тяжёлым дыханием.

2. Усталость шоферов,
даже самых элитных.

3. Птица атаковала кор по
всей длине.

4. Огромный атака кора в кусты.
1) Мет с якостёр. Реалежит работа менен.

Технико жонан хаят – окулусу, скаялун.
Фосилипс – айды, политик хаях, ракет
ост, ык, ин, марер в кркак.

Валерий, менен оршна
1) Информация колония (чланы)
2) Наименование член
3) Список имен, список сок в кркак и нормалу демал.

4) Семей, балал, балал.
5) Наименование балал.
6) Список сок в кркак.
7) Наименование балал.
8) Список сок в кркак.
9) Балал.
10) Технический акк целью.
Свободная смесь или раковины. Сплавы: Ti, Fe, Ni, Cr, Nb, V, Mo, W, Zr.

3.03.2013

Фаз с неограниченным раствором, A в B.

Критерий нюбекурышев

\[\lambda_{нг} = \frac{a b}{v d} \]

Максимального объема, сплава с \(\lambda_{нг} \).

Скорость кристаллизации

\[\tau = \frac{6b}{\sigma a} \]

\(\tau \rightarrow \infty \) при температурах, выше которых

Найбольшая \(\tau \) в под слоях сплава и раствор.
Критерий склонения к переработанию:

\[\varepsilon_n = \frac{ab}{bc} \]

Критерий эффективности переработки:

\[\eta_0 = \frac{cd}{c'd'} \]

Изменение реакции:

[Diagram]

Реакция:

[Diagram]

Сила, действующая на систему:

\[F_{\text{test}} \]

\[F_{\text{load}} \]

\[T_1 \]

\[T_{\text{test}} \]

График изменения деформации:

\[\text{Deformation} \]

\[\text{Diagram} \]
\[U_e = \frac{2}{3} \left(\frac{E}{(1+2V)^2} \right) e^2 \]

Торние 10 - 16 - 40

\[C = 10 \cdot e^3 \]

Торние 60 - сфера в косце

\[U_e = \frac{6B^2}{4\pi K} \ln \frac{1}{a} + \frac{6B^2}{10} \]

6 - левер Бернара

x = сонет

1) Котриг - процесс россыпь глажио сера и состояния атмосферы

Одна - процесс при температуре 10 и ниже, микрофлак и выше

2) Котриг - процесс глажио червец и состояния атмосферы

Торние 60 - сфера в косце

(0.2 - 0.35) Глубина микрофлака
Собирая, панель равномерно распределить. Волокнистая панель аналитически пано де.

Вершина рисуна от системы Мет

В т. ч. температура, - диффузия, сечения, образование, их связи.

G Mpa

G1 G2 G3

1 10 10^2 10^3 10^4 10^5 T, C

Фактор кратности от изменения напряжения

1) Нагревание - Н. С
2) Диффузия образование эвтектики - Fe, Mo, V, Cr, S
3) Аустенито-ферритная эвтектика - Re, Cr, Mn, Co, Ni

Испытательная нагрузка:
1) Изотоп 2) волокно упрочнение и зерно, Мет балансирует коэффициент пропорции
Цирконий + 7

\[Z, \quad A = 40 \quad m = 91,22 \quad у. в. е. = 6.87 \]

Группа 5 перикла
- бесцветный, мет субт. срт. светло белое, золотисто-желтый цвет

- \[\text{Гармония} \]

\[2\text{H}_2 \quad \text{с ГТР реакция} \]

\[\text{Гармония} \quad \text{Ж} \]

\[90 \quad 2\text{H}_2 \quad 51,5\% \quad (0,1) \]

\[90,2 \quad 11,2\% \quad (1,5) \]

\[90 \quad 17,1\% \quad (0,25) \]

\[94 \quad 17,4\% \quad (0,08) \]

\[96 \quad 8,7\% \quad (0,1) \]

17.07.1982

Известная на учёные 86-10, 93-95,97

В 1925 - Ван Аарсел и Дебар получили мет
Занятие. Место по растрахованному
минер. минер. кор вы (2. 0,57)
Кремн. №, 24, Ca, Sn, Pb, C
Вещи связ. минералов:
Циркон - 2H\text{SiO}_4 = 67,2\% \text{H}_2\text{O} + 32,8\% \text{Si}_2\text{O}_5
Бафелит - пол. вител. 2\text{H}_2\text{O}
Нодали - (Na, Ca, Fe) \text{SiO}_2;
\text{Si}_2\text{O}_7 (\text{OH}, \text{Cl}) \text{солери с H}_2\text{O, HCl,}
\text{H}_2\text{O}
и \text{CH}_4, 5-9\% \text{H}_2\text{SO}_4
Во всех прир. реакции с солери. 114 (1-39)
Циркон, минерал, минер. прим. боке
(тракторов) и солери. кремни, спир.
ряд. мин. чере
~10\% упаковано перераб. под 2\text{H}_2\text{O}
~5\% - не вел и сделал
2\text{H}_2\text{O} минер. минер. прим. боке
(тракторов) и солери. кремни, спир.
Вар. точной солери. и чере солери. минер.}
В мет. 2\text{H}_2\text{O} \text{мол. в гд. реакторах на T1106}
2\text{H}_2\text{O} упаковано в 34\% солери.
51% - спир. 15% - солери. кремни,
25% - алкал. 7\% - фосфорит. 2\% - золи
оксила. 2-4\% - крем., 1-3\% - спир.
мет 2

Ранние проявления: Ареал, Тебедун нах, Чапар Авану и др.
Место поселения - Калина, Керамик, Шапакир, Кеер".
1) Первые поселения - Керами Мет
2) Авдее 9/12 в стиле, невский с мерц.
3) Объект № 1, фраг.
4) Коррозия, остатки

Метод получения 72

- в виде жидк.
1) пропитаны и в присутствии Na, Ca, Mg
2) вставляют хлорит, Na, Ca
3) восстановите формад, Ca или Mg
4) разложено, натрий, хлорид, или
5) восстановите формад, Ca или Mg
6) растворимые, фосфор, Na, Mg
7) восстановите, обожжен Fe. Сили карбон
8) термическую обработку и разбор
9) Останки, большие Fe
10) Термический анализ растворение
Механическое восстановление (Метод Галле)

FeCl₂ (0,1 моль) + 2 Mg (0,1 моль) → Fe (сольв.) + 2MgCl₂ (1 моль)
Преобразование
1) насыщение FeCl₂
2) восстановление паров FeCl₂ раствором Mg

В качестве подвижных носителей используют Mg, Fe или Sn.

Восстановителем служит Fe₂, получаемое

2FeCl₂ + 2Ca = 2Fe + 2CaCl₂

Температура реакции восстановления не должна превышать 700°C.

Вращение и регенерация: реакция сульфидного типа в вакууме.

Также используем пропускание Fe с молибденовыми катодами,
катализируя реакцию удалением газов. Механизм

Направленная расплавленная сталь Fe

2NaCl + k 2Fe = 2Fe + 4NaCl + 2KF + 2F₂ (гасим)
очень жарко
принцип получения виниловых пластинок
используется перекристаллизация
используется индукционный нагрев
используется рабочая температура 800-850 °C

после использования нагревательного элемента для нагрева до 950 °C, покрытие
на нержавеющей стали с помощью газовых горелок
Абсолютно вяжет на всех эффектах

0°C 1 = 865°C → метгемемиин 2-фаза с
774 ккал. α = 0.3216 c = 0.51 кг/мм
> T = 863°C → концентрация 3-фаза с
α = 0.3609 кг/мм
Температура перехода 780°C ● температура макрокристаллизации 780°C
\[\frac{R(300K)}{R(4.2K)} = 1340 \]
на рисунке видно внизу формулу 2

На предыдущей странице написано:

Число упакованных вещества неизвестно. Попытка приблизительного расчета. Количество вещ. Кислород, ванадий, никель.

Необосновано:
Неужели нет уравнения при \(T = 30-50^\circ C \)
и при \(T = 425-600^\circ C \) в виде уравнения при \(T = 750-800^\circ C \) в смеси водорода при 500-550.

Ставлю по оси 2m

\(\text{2m} - 50\% \) обладает высоким сверхпроводящим.

\(\text{2m} + \text{AlN} \) обладает хорошим диэлектрическим и тепловым изоляционным.

\(\text{2m} + 16\% \text{Al} \) (УФ-16) обладает высокой прочностью и устойчивостью к воздействию.
1. Водород, по-видимому, гелий, аргон, криптон,
метан, неон, гелий, ксено.
2. Металлы, неметаллы. Рассмотреть:
(Cr, Co, Cu, Fe, Mn, Mo, Nb, Ni, Nb, Ag, Pt, Th, Ti, W, U, V).
3. Водород не входит в состав элементов, неотъемлемых от углеводородов.
(О, Н, Н, О, S, C).

Биология учитель и слуш. Дневник школы.

4. Численные отношения
H, N, O, С, Ti, H, C, Na, Mg, Cl, Si, P, S, Fe, Mo, Sn, La, Ge, Ca, Y, Br, Tl

5. Спайки строения ядра: I группа,
Si, Sb, Bi, Po, At.

6. H, C, W - легирующие
Идеи успех, спокойствие, прилив свободы.

7. Жирное копание, стойка.
Несбыточные мысли.

8. Натрий, сильный метал, несажем.

9. Анализ, анализ, анализ градус.

10. Микро- и макро- элементы.
<table>
<thead>
<tr>
<th>Марка стали</th>
<th>Nb</th>
<th>Sn</th>
<th>Fe</th>
<th>Cr</th>
<th>Ni</th>
</tr>
</thead>
<tbody>
<tr>
<td>Z-110</td>
<td>0,9-1,0</td>
<td></td>
<td>0,008-0,012</td>
<td>0,008-0,012</td>
<td>0</td>
</tr>
<tr>
<td>Z-125</td>
<td>2,3-2,6</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Z-635</td>
<td>0,9-1,10</td>
<td>1,10-1,30</td>
<td>0,3-0,4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Zel-2</td>
<td>1,2-1,5</td>
<td>0,18</td>
<td>0,09</td>
<td>0,07</td>
<td>0,05-0,13</td>
</tr>
<tr>
<td>Zel-4</td>
<td>1,2-1,7</td>
<td>0,18-0,24</td>
<td>0,07-0,13</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Zeklo</td>
<td>0,9-1,13</td>
<td>0,9-1,2</td>
<td>0,01</td>
<td>0,09-0,13</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Марка стали</th>
<th>Nb</th>
<th>Sn</th>
<th>Fe</th>
<th>Cr</th>
<th>Ni</th>
</tr>
</thead>
<tbody>
<tr>
<td>M-5</td>
<td>0,8-1,2</td>
<td></td>
<td>0,015-0,06</td>
<td></td>
<td>0,09-0,13</td>
</tr>
<tr>
<td>MBA</td>
<td>0,05</td>
<td>0,8</td>
<td>0,2</td>
<td>0,1</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Тип реактора</th>
<th>Агр.</th>
<th>ТАМ-66</th>
<th>Заанамская гидр.</th>
</tr>
</thead>
<tbody>
<tr>
<td>CANRU (закрм.)</td>
<td>Zel-4</td>
<td>Zel-2</td>
<td>Zel-2 (обесп.)</td>
</tr>
<tr>
<td>SGHWR</td>
<td>Zel-2</td>
<td>Zel-2</td>
<td>Zel-2</td>
</tr>
<tr>
<td>BWR</td>
<td>Zel-2</td>
<td>Zel-2</td>
<td>Zel-2</td>
</tr>
<tr>
<td>PWR</td>
<td>Zel-2</td>
<td>Zel-2</td>
<td>Zel-2</td>
</tr>
</tbody>
</table>

Замечание 1: Zel-2; Zel-4; Zel-2

Замечание 2: Zel-2; Zel-2; Zel-2

Замечание 3: Zel-2; Zel-2; Zel-2

Замечание 4: Zel-2; Zel-2; Zel-2

Замечание 5: Zel-2; Zel-2; Zel-2

Замечание 6: Zel-2; Zel-2; Zel-2

Замечание 7: Zel-2; Zel-2; Zel-2

Замечание 8: Zel-2; Zel-2; Zel-2

Замечание 9: Zel-2; Zel-2; Zel-2

Замечание 10: Zel-2; Zel-2; Zel-2

Замечание 11: Zel-2; Zel-2; Zel-2

Замечание 12: Zel-2; Zel-2; Zel-2

Замечание 13: Zel-2; Zel-2; Zel-2

Замечание 14: Zel-2; Zel-2; Zel-2

Замечание 15: Zel-2; Zel-2; Zel-2

Замечание 16: Zel-2; Zel-2; Zel-2

Замечание 17: Zel-2; Zel-2; Zel-2

Замечание 18: Zel-2; Zel-2; Zel-2

Замечание 19: Zel-2; Zel-2; Zel-2

Замечание 20: Zel-2; Zel-2; Zel-2

Замечание 21: Zel-2; Zel-2; Zel-2

Замечание 22: Zel-2; Zel-2; Zel-2

Замечание 23: Zel-2; Zel-2; Zel-2

Замечание 24: Zel-2; Zel-2; Zel-2

Замечание 25: Zel-2; Zel-2; Zel-2

Замечание 26: Zel-2; Zel-2; Zel-2

Замечание 27: Zel-2; Zel-2; Zel-2

Замечание 28: Zel-2; Zel-2; Zel-2

Замечание 29: Zel-2; Zel-2; Zel-2

Замечание 30: Zel-2; Zel-2; Zel-2

Замечание 31: Zel-2; Zel-2; Zel-2

Замечание 32: Zel-2; Zel-2; Zel-2

Замечание 33: Zel-2; Zel-2; Zel-2

Замечание 34: Zel-2; Zel-2; Zel-2

Замечание 35: Zel-2; Zel-2; Zel-2

Замечание 36: Zel-2; Zel-2; Zel-2

Замечание 37: Zel-2; Zel-2; Zel-2

Замечание 38: Zel-2; Zel-2; Zel-2

Замечание 39: Zel-2; Zel-2; Zel-2

Замечание 40: Zel-2; Zel-2; Zel-2

Замечание 41: Zel-2; Zel-2; Zel-2

Замечание 42: Zel-2; Zel-2; Zel-2

Замечание 43: Zel-2; Zel-2; Zel-2

Замечание 44: Zel-2; Zel-2; Zel-2

Замечание 45: Zel-2; Zel-2; Zel-2

Замечание 46: Zel-2; Zel-2; Zel-2

Замечание 47: Zel-2; Zel-2; Zel-2

Замечание 48: Zel-2; Zel-2; Zel-2

Замечание 49: Zel-2; Zel-2; Zel-2

Замечание 50: Zel-2; Zel-2; Zel-2
BBF - 2110
2635 охлаждение, сушка

PSMK - 2110
7125 (труба ВыК, трубы давление)

ПУР - 2zl-4 (оси, НК)
2zl-5 (оси, НК)
МС (оси)
MBA (оси)

BWR 2zl-2 (оси, НК) - канальная труба

CANTU - 2zl-4
2zl-2.5% B6 (трубы давление)

Постарение

Упрочнительные сплавы

Недостаточность

Усталостная усталость

Процесс

Радиационный рост

Проблемы

Угол, длины, пропарки, охлаждение нескольких запасных деталей
24.03.2014

Классификация дисперсоупрочнённых сталей 4 группы сплавов

- Дисперсионупрочнённые

I. Группа дисперсионупрочнённых (соответствия или дисперсионупрочнённых вердиктов)

Характеристика: Ni, Mo, Cr, Fe, Ti, Al

Керн

- 11-12 C: 0,5-1,5
- 0,5 ≤ S ≤ 0,8
- Mn: 0,95 ≤ 0,95

Абсолютно:

- 11-12 C: 0,5-1,2
- 1,5 ≤ S ≤ 0,8
- Mn: 0,95 ≤ 0,95
- Nb: 0,5; У: 0,8