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PHYSICS OF RADIO-FREQUENCY PLASMAS

Low-temperature radio-frequency (RF) plasmas are essential in various sectors
of advanced technology, from micro-engineering to spacecraft propulsion sys-
tems and efficient sources of light. The subject lies at the complex interfaces
between physics, chemistry and engineering. Focusing mostly on physics, this
book will interest graduate students and researchers in applied physics and electrical
engineering.

The book incorporates a cutting-edge perspective on RF plasmas. It also cov-
ers basic plasma physics, including transport in bounded plasmas and electrical
diagnostics. Its pedagogic style engages readers, helping them to develop phys-
ical arguments and mathematical analyses. Worked examples apply the theories
covered to realistic scenarios, and over 100 in-text questions let readers put their
newly acquired knowledge to use and gain confidence in applying physics to real
laboratory situations.
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Low-Temperature Plasmas group of the ‘Laboratoire de Physique des Plasmas’ at
Ecole Polytechnique. His expertise is in plasma physics and plasma processing.
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1

Introduction

1.1 Plasmas

A plasma is an ionized gas containing freely and randomly moving electrons
and ions. It is usually very nearly electrically neutral, i.e., the negatively charged
particle density equals the positively charged particle density to within a fraction
of a per cent. The freedom of the electric charges to move in response to electric
fields couples the charged particles so that they respond collectively to external
fields; at low frequencies a plasma acts as a conductor but at sufficiently high
frequencies its response is more characteristic of a dielectric medium. When only
weakly ionized (the most common situation for industrial applications) a plasma
also contains neutral species such as atoms, molecules and free radicals. Most of
this book is about weakly ionized plasmas that have been generated at low pressure
using radio-frequency (RF) power sources.

Plasma is by far the most common condition of visible matter in the universe,
both by mass and by volume. The stars are made of plasma and much of the space
between the stars is occupied by plasma. There are big differences between these
plasmas: the cores of stars are very hot and very dense whereas plasmas in the
interstellar medium are cold and tenuous. Similar contrasts also apply to artificially
produced plasmas on Earth: there are hot dense plasmas and colder less dense
plasmas. In the former class are the fully ionized media encountered in research
into controlled thermonuclear fusion for power generation, where the challenge is to
confine a plasma that is hot enough and dense enough, for long enough so that light
nuclei will fuse, liberating huge amounts of energy. The other class – the colder,
weakly ionized plasmas also called low-temperature plasmas – includes those used
in various industrial applications from lighting to semiconductor processing. Low-
temperature plasmas are readily produced by electrical discharges through gases
using sources ranging from DC to microwave frequencies (GHz). The gas pressure
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2 Introduction

is typically between a fraction of one pascal and a few times atmospheric pressure
(105 Pa).

When working in a DC mode and with emitting electrodes, atmospheric pressure
discharges tend to operate in a high current regime. The current is carried in a
narrow channel in which there is a plasma with its charged and neutral constituents
in near-thermal equilibrium (all species comprising the medium having roughly the
same temperature of about 10 000 K). Familiar examples can be seen in the giant
sparks of lightning and in the arcs of electrical torches for welding and cutting.
Arcs are not suitable for the treatment of soft surfaces because the neutral gas is
too hot. However, severe gas heating can be avoided in atmospheric discharges if
the conditions that allow thermal equilibrium are inhibited, leading to a general
class of so-called ‘non-thermal plasmas’, in which electrons are markedly hotter
than the ions and the gas atoms. One way to do this is with an RF-excited dielectric
barrier discharge (DBD), in which electrodes are covered by a dielectric material
so that charge build-up on the surface automatically extinguishes the discharge
before the formation of an arc. These discharges operate with short repetitive
pulses, often in a filamentary mode. Each filament carries a very weak current, but
the local electron density and temperature are sufficient to dissociate and ionize
a small but significant fraction of the gas. The neutral gas remains cold and the
medium does not have time to reach thermal equilibrium during a current pulse.
DBDs are growing in importance for low-cost industrial applications such as the
sterilization of clinical materials and the removal of volatile organic compounds
from air. In some circumstances some gases exhibit a more diffuse mode of DBD.
A related class of discharge confines the plasma in a space that is too small for a
thermal equilibrium to be established. At atmospheric pressure these are termed
micro-discharges as the characteristic dimensions are sub-millimetre.

Low-temperature, non-thermal equilibrium plasmas are more easily generated
on larger scales at lower pressure. The system is then composed of a vacuum
chamber, typically several centimetres across, a throughput of feedstock gas and
electrodes (or antennas) to inject electrical power. At low pressure, the discharge
operates in the so-called glow regime, in which the plasma occupies the chamber
volume as opposed to the filamentary modes generally observed at atmospheric
pressure. Most of the volume is occupied by quasi-neutral plasma that is separated
from the chamber walls and other surfaces by a narrow region of positive space
charge. These boundary layers, or ‘sheaths’, typically extend over a distance of
less than a centimetre. They form as a consequence of the difference between the
mobility of electrons and positive ions. The potential structure in the plasma tends
to confine electrons and to expel positive ions into the sheaths.

The absence of thermal equilibrium in low-pressure plasmas is important for their
commercial applications since the electrical energy is preferentially transferred to
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electrons that are heated to tens of thousands of kelvin, while heavy particles remain
nearly at room temperature. A distribution of electrons that has a temperature of
10 000 K contains a significant fraction that have enough energy to dissociate
molecules of the feedstock gas into reactive species (atoms, free radicals and ions).
The plasma thus converts electrical energy into chemical and internal energy that
can be directed, for instance, into surface modification. Sheaths are also of major
importance since they in turn locally convert electric field energy derived from
the power supply into the directed kinetic energy of ions reaching the surfaces.
Electric fields in the sheaths tend to accelerate ions perpendicular to the surfaces.
The energy of ions bombarding any particular surface is a major parameter of
process control that can readily be raised to thousands of times the energy that
binds atoms together in small molecules and extended solids. These non-thermal
phenomena account for the rich variety of plasma processing technology, from the
surface activation of polymers to the implantation of ions in semiconductors.

Plasma processing technology is used in many manufacturing industries, espe-
cially in the surface treatment of components for the automotive, aerospace and
biomedical sectors. Plasma technologies offer advantages in terms of environmen-
tal impact, through reduced use of toxic liquids, and in terms of engineering scale,
through their compatibility with nanoscale fabrication. The biggest impact has
certainly been in microelectronics, for which very large-scale integrated (VLSI)
circuits could not be fabricated without plasma-based technologies. In the following
sections some industrial applications of low-pressure radio frequency-plasmas will
be described, setting the context for the more detailed analyses of later chapters.

1.2 Plasma processing for microelectronics

Integrated circuits (ICs) consist of several layers of carefully engineered thin films
of semiconductors, dielectrics and conductors, fashioned in situ and interconnected
by a very complex architecture of conducting tracks (see Figure 1.1). The thin films
are deposited by means of plasma processes and are etched by reactive plasmas
in order to form patterns of the order of a few tens of nanometres, i.e., a hundred
times smaller than a human hair.

The basic element in the design of a large-scale integrated circuit is the metal-
oxide-semiconductor field effect transistor (MOSFET) – see Figure 1.2. Most
commonly the transistor is made in a layer of high-quality silicon grown onto a
substrate of single-crystal, silicon semiconductor. The device regulates the flow of
current from a ‘source’ region to a ‘drain’ region via a channel that is controlled
by a gate electrode. The gate electrode is isolated from the channel by means of
a few nanometres of dielectric, usually silicon dioxide. The MOSFET can operate
as a very efficient switch for current flowing between the source and drain. The
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Figure 1.1 Multilevel metal dielectric interconnects in VLSI circuits.
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Figure 1.2 The structure of a silicon IC in the region of a MOSFET in which
a gate electrode controls the formation of a channnel of n-type silicon between
source and drain regions.

switch is activated by biasing the gate. The gate size is the critical dimension in
determining the level of integration and the speed of the device. In the technol-
ogy known as CMOS (complementary metal-oxide semiconductor), the building
blocks of memory and logic circuitry are based on devices that incorporate a
MOSFET that has an n-type channel with one that has a p-type channel. CMOS
technology is a dominant semiconductor technology for microprocessors, memo-
ries and application-specific integrated circuits. The main advantage of CMOS is
its relatively low power dissipation.
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A common description of the evolution of microelectronics technology is based
on what is known as Moore’s law. The prediction made by Gordon Moore in 1965
was that the number of transistors on the most complex integrated circuit chip
would roughly double every two years. It has proved to be a remarkably good
guide to the development of the IC market – a development that has been enabled
by plasma-based processes.

1.2.1 Plasma etching

The principles of plasma etching are the following. In a first step, the substrate
that bears the material which is to be etched is covered by a thin (<1 μm) layer
of ‘photoresist’. The photoresist is then patterned by exposure to UV through a
contact mask, which creates a high contrast in the solubility of photoresist between
areas that are exposed and areas that are shaded. The shadow pattern of the mask is
next developed into the photoresist by means of wet chemistry to obtain open areas
in the resist layer. The patterned wafer is then transferred to a plasma reactor. In
the case of silicon-based materials the process gas is usually composed of one or
more types of halogen-containing molecules (e.g. CF4, SF6, Cl2 or HBr). The gas
is introduced into the reactor where, on the formation of a plasma, it is dissociated
by electron impact to form reactive species. In the case of SF6, for instance, there
are reactions with electrons (e−) such as

e− + SF6 → SF5 + F + e−,

e− + SF6 → SF4 + 2F + e−,

e− + SF6 → SF2 + F2 + 2F + e−,

etc.

The F atoms in the gas phase (g) are an effective silicon etchant, reacting with a
surface (solid phase, s) to form a volatile etch product that may be pumped away:

4F(g) + Si(s) → SiF4(g).

In the absence of bombarding ions and crystallographic effects, the etching will
proceed equally in all directions, i.e., isotropically, since the etchant atoms arrive
without any specific directional influence, as shown in Figure 1.3(a). Isotropic
profiles are also obtained in wet etching and are not suitable for the high aspect
ratio etching required for dense integration (the aspect ratio is the ratio of the width
of a feature to its depth).

In 1979, using a combination of atom and ion beams, Coburn and Winters [1]
demonstrated that energetic ions arriving at a surface increase the effectiveness
of etching with neutral atoms by more than an order of magnitude. This synergy
is easily exploited in plasma reactors because plasmas naturally provide active
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Figure 1.3 (a) Isotropic chemical etching; (b) anisotropic reactive ion etching.

neutral radicals as well as energetic ions that have been accelerated in the sheaths.
Furthermore, owing to the sheaths, the ions have trajectories perpendicular to the
surface, and they are found to increase considerably the etch rate perpendicular to
the surface but to have little influence on the side-wall etching. Therefore, etching
in the presence of ion bombardment tends to be anisotropic. The deliberate use of
energetic ions to enhance the rate of etch reactions is known as reactive ion etching.

Q Suggest two factors that would link increased plasma density to higher
(anisotropic) etch rates.

A The increased electron density will tend to increase the supply of radicals
and therefore is likely to lead to a higher etch rate; the increased flux of ions
to the surface will also tend to enhance the anisotropic etching.

Although ions can usefully introduce anisotropy to the etching, it is usually
not sufficient to achieve the very high level of profile control required in CMOS
technology. Polymerizing chemistries have therefore been introduced to add an
etch-inhibiting coating to certain surfaces. When CF4 is used as the feedstock gas
the free radicals formed in the plasma, for instance CF and CF2, tend to contribute
to the growth of a polymeric film on the side walls of a feature, providing a so-called
passivation layer. This layer does not form on the plasma-facing areas because it
is continuously disrupted by the arrival of energetic ions, from a perpendicular
direction. Fluorocarbon gases like CHF3, CF4, C2F6, C4F8 are known to be poly-
merizing and are routinely used to etch dielectric materials in microelectronics. In
order to control the degree of polymerization, oxygen is often added to the gas to
promote the formation of CO2 on the surface, thereby competing with film growth.
Polymerization is also a very efficient way to control the selectivity of a process,
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i.e., the ability to etch a specific material without affecting the underlying layer
made of another material. A classic example is the capability of CF4/O2 plasmas to
change the relative etch rates of Si and SiO2 and hence the selectivity. An oxygen-
rich mixture will etch pure Si faster than SiO2 while an oxygen-lean mixture will
etch SiO2 faster than pure Si. Fluorocarbon plasmas have received a great deal of
attention because a large number of the process steps in the manufacture of silicon
ICs involve the differential etching of silicon and silicon dioxide [2–4].

Other halogen-based etching schemes are also important: one of the critical steps
in CMOS is the etching of the gate stack, which is usually achieved in Cl2/HBr/O2

plasmas. Passivation this time involves the formation of silicon-based films of
SiOxCly [5]. Unwelcome process drifts have been linked to the deposition of these
passivation layers on the reactor walls [6].

Plasma etching is also a key enabling technology in optoelectronics and pho-
tonics. For instance, the high aspect ratio, deep ridge InP-based heterostructure
that is a vital building block in photonic device fabrication is readily manufactured
by plasma processing. For this purpose, an etching process is required that can
produce narrow, single-mode, ridge waveguides with smooth side-walls, free from
undercuts or notches to minimize the optical scattering losses [7].

For removing large quantities of material in so-called ‘deep etching’ (on the
order of tens of micrometres deep), plasma etching is again useful [8]. This is
used in the fabrication of micro-electro-mechanical systems (MEMS), based on
miniature gears, pivots, linkages, cantilevers, fluid channels and other components
etched into silicon substrates; for harsh environments silicon carbide is preferred.
Deep etching of these materials calls for high-density plasma sources to keep
processing times within bounds. An example of the deep etching of silicon carbide
is shown in Figure 1.4, where a helicon plasma was used (see Section 1.4) to form
a dense plasma in a mixture of SF6 and O2 [9–11].

1.2.2 Plasma deposition

Plasma-enhanced chemical vapour deposition (PECVD) allows the deposition of
a variety of thin films at lower temperatures than those utilized in classical CVD
reactors. For example, whereas ordinary CVD of high-quality silicon dioxide films
requires temperatures in the range of 650–850◦C, similar quality films can be
deposited at 300–350◦C via a plasma-enhanced process. Again, the advantage of
using plasmas comes from the fact that they are able to fragment molecules into
reactive radicals, even at room temperature. For deposition, radicals that condense
on the substrate are required to contribute to film growth (in contrast to etching
where the chemistry is chosen so that radicals react with the surface to form volatile
products).
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Figure 1.4 Deep micrometre-scale structure etched in SiC using a SF6/O2 helicon
plasma.

Apart from microelectronics, one of the most important applications of PECVD
is the fabrication of flat-panel displays [12]. Liquid crystal displays (LCDs) in
particular have emerged as favourites for laptops and flat-panel monitors. When
combined with a transistor switch at each pixel, the so-called active matrix dis-
play (AMLCD) readily achieves high resolution (several million pixels), large size,
full colour and TV-compatible response times. An AMLCD is made of two glass
sheets between which is a thin layer of liquid crystal. On one glass sheet is an
array of thin film transistors (TFTs). Each TFT switches the voltage on a small
indium tin oxide (ITO) transparent electrode that defines a pixel. The other sheet
is covered by colour filters and a common electrode. The TFT array is manufac-
tured by a series of plasma-based process steps that alternate thin-film deposition
with patterning. A major challenge for the design of plasma systems that will
form the TFTs is to do with maintaining control of the uniformity of the plasma
over the entire area of the display – the larger the better so far as the market is
concerned. Related issues of scalability will be discussed in more detail in later
chapters.

Plasmas are also used in the physical deposition process known as sputtering
that is commonly used for depositing metal layers on semiconductor circuits. In
sputter deposition systems a low-pressure plasma provides ions (typically Ar+)
that are accelerated onto a metallic target that is negatively biased. The ions are
given a kilovolt or so of energy by the acceleration so that when they collide with
the target, atoms of the target are dislodged, or ‘sputtered’, forming a plume of
ejected material. Sputtering is a purely physical, unpatterned, etching process. A
substrate placed near a sputtering target is effectively sprayed with atoms from the
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Figure 1.5 Schematic of a DC magnetron. Target material is sputtered most
intensely from adjacent plasma created by the spiralling ring of electrons whose
drift around the ring constitutes the Hall current.

target, building up a few tens of nanometres in a matter of minutes. A common
configuration for sputtering uses a so-called magnetron arrangement, where a
magnetic field is arranged parallel to the target surface so that electrons spiral
round the field creating a locally intensified and efficient ionization of the gas. This
is illustrated in Figure 1.5. A high-density plasma forms in a ring adjacent to the
target, which is in turn more aggressively eroded in this region than elsewhere,
owing to the intense ion bombardment. The forces on the electrons from the
combination of the magnetic field and the electric field in the plasma push the
spiralling electrons around the ring of intensified plasma, driving what is known as
a ‘Hall current’. The geometry of electric and magnetic fields also occurs in one of
the plasma thrusters discussed in the next section, for which the Hall current is a key
feature.

1.3 Plasma propulsion

A rocket-propelled spacecraft in free flight receives its acceleration from expelling
mass (the propellant). Its equation of motion is derived from a force equation
that balances the rates of change of momentum of the spacecraft and the ejected
matter:

mv̇ = −ṁvg, (1.1)
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where m is the total mass of the spacecraft (including unspent fuel) at a given
time, v̇ is the magnitude of its acceleration, vg is the magnitude of the exhaust
velocity of the propellant (relative to the spacecraft) and ṁ is the rate of change
of the spacecraft’s total mass due to mass expulsion (ṁ < 0). The challenge for
space propulsion is to achieve the highest possible exhaust velocities and to fully
ionize the propellant in order to make best use of it. This can clearly be seen
after integration of (1.1) between any initial mass m0 and some final mass mf , for
constant exhaust speed, which gives

�v = vg ln
m0

mf
, (1.2)

showing that for a given reduction in mass, the change in the spacecraft speed during
a given period of acceleration is proportional to vg. The propulsion community
usually uses two quantities to characterize a thruster: the thrust T = ṁvg and the
specific impulse Is = vg/g, where g is the acceleration due to the Earth’s gravity
at sea level.

1.3.1 Conventional plasma thrusters

Electric propulsion techniques [13] may be separated into three categories: (i)
electrothermal propulsion, in which the propellant is electrically heated and then
expanded thermodynamically through a nozzle; (ii) electrostatic propulsion, in
which ionized propellant particles are accelerated by an electric field; (iii) electro-
magnetic propulsion, in which current driven through a propellant plasma interacts
with an internal or external magnetic field to provide a stream-wide body force.
Here is a short description of the most common systems.

Resistojets and arcjets

These belong to the first category. In a resistojet the gas is heated via the chamber
wall or a heater coil whereas in an arcjet the gas is heated by an electric arc. The
propellant gas is then accelerated downstream through a nozzle. These thrusters
have limited specific impulse (less than 1000 s) and face technological challenges
owing to the high temperatures required.

Electrostatic ion thrusters

Positive ions are created in a plasma (DC, RF or microwave, usually magne-
tized) and accelerated out through a DC-biased grid. In order to maintain an
overall charge balance, the ion beam must be neutralized downstream, via a
thermionic filament or some other source of electrons. Electrostatic thrusters
have been successfully demonstrated and they can provide very high specific
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Figure 1.6 Schematic of a Hall effect thruster.

impulse. However, erosion of the accelerating grids by energetic ions limits the
lifetime.

Hall effect thrusters

In a Hall effect thruster [14], electrons emitted from an external cathode enter
an annular channel where they are partially confined in the opening by a radial
component of magnetic field as they slowly diffuse in a region of nearly axial
electric field, towards the anode at the closed end of the channel; see Figure 1.6.
The electrons spiral around the magnetic field because of the Lorentz force that
acts on charged particles crossing a magnetic field. Under the combined influ-
ence of the perpendicular electric and magnetic fields there is a net drift of elec-
trons around the annular channel forming the so-called Hall current which is
perpendicular to the electric and magnetic fields. These confined electrons ion-
ize the gas (typically xenon) to create positive ions that are in turn accelerated
out of the open end of the channel by the axial field that sustains the discharge
between anode and cathode. The acceleration region is filled with magnetized,
quasi-neutral plasma and some of the electrons emitted by the external cath-
ode serve to neutralize the ion beam as it escapes downstream. Improvements
in performance are primarily aimed at reducing erosion rates, and lowering beam
divergence.
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Q Identify the source and structure of the magnetic field in the Hall thruster
illustrated in Figure 1.6.

A The field is produced by sets of coils outside the channel which create a
magnetic field that crosses the open end of the channel, passing round the
back of the closed end.

Magnetoplasmadynamic and pulsed plasma thrusters

The magnetoplasmadynamic thruster (MPDT) has a coaxial geometry with a cylin-
drical anode and a central cathode rod. The gas is ionized by an electric discharge
between the tip of the cathode and the surrounding anode. The current flowing in
the electrodes produces an azimuthal magnetic field that interacts with the current
in the discharge plasma. Note that in this case there are no separate magnetic field
coils.

The moving charges that form the discharge current, both ions and electrons, are
forced out of the mouth of the device by the Lorentz force. Since neutral plasma
is expelled, a separate neutralizer is not required. However, the power required to
reach high efficiency is very high (100 kW), so MPDTs are only considered as an
option for high-power propulsion.

The magnetic field of the discharge current in the electrodes is also used in a
pulsed plasma thruster. Here a spring-loaded slab of PTFE is pushed into part of the
space formed by planar electrodes, between which a high-voltage pulsed discharge
is triggered. The propellant may include material ablated from the PTFE; it is then
ionized by the discharge itself and accelerated, as in the MPDT, by the combined
action of the electric and magnetic fields.

1.3.2 Newer concepts

New plasma thruster concepts are being studied, such as the variable specific
impulse plasma rocket developed by NASA [15], the double-layer thruster devel-
oped by the Australian National University [16], and an electronegative plasma
thruster developed by the Ecole Polytechnique in France [17].

All these concepts use a high-density plasma source for the ionization stage based
on the so-called helicon source. Helicon waves are electromagnetic disturbances
that propagate in a magnetized plasma. It turns out that energy can be transferred
efficiently from these waves into the plasma electrons, creating a strong source of
ionization. The Plasma Research Laboratory at the Australian National University
has been one of the prime developers of this kind of source. Chapter 8 will focus
on the details of the helicon source operation.
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Variable-impulse thruster

The variable specific impulse magnetoplasma rocket motor takes the plasma gen-
erated by a helicon source and then energizes the ions by exciting more electro-
magnetic waves that resonate with the gyration of ions around the magnetic field
lines. Further downstream the magnetic field lines diverge, effectively forming a
magnetic nozzle in which ion gyromotion is transferred into axial motion, creat-
ing an escaping plume of plasma and directional thrust. A characteristic of this
arrangement is that the gas inflow and the resonant heating together determine the
behaviour of the motor, allowing a high degree of control of the specific impulse.

Double-layer thruster

Even without additional energy input, a magnetized plasma can be configured
to produce thrust. Solenoids create an expanding magnetic field that is roughly
uniform at a few tens of millitesla in the source tube, decreasing to a fraction of a
millitesla a few centimetres away from the source. The high-density plasma formed
in this way is prevented from leaving the source by a non-linear structure known as
a current-free electric double layer that arises spontaneously in the plasma near the
exit of the source tube. This structure is in fact two adjacent layers of space charge,
one positive, the other negative, that can be thought of as a thin standing shock
wave across which there exists an electric potential jump. The resulting electric
field accelerates ions from the source plasma to high exhaust velocities, creating
thrust. The double layer is purely the result of plasma expansion so no accelerating
grids are required. Also, it turns out that there is an equal flux of electrons and
positive ions from the thruster, so there is no need for a neutralizer.

Dual-ion thruster

In a classical electrostatic (ion) thruster, the thrust is provided by the positively
charged particles, while the negatively charged particles, namely the electrons, are
not used for thrust. The electrons are used for ionization in the plasma production
region, and neutralization downstream. The LPP at Ecole Polytechnique (France)
have proposed a new concept named PEGASES, in which an electronegative gas
is used as the propellant. Positive and negative ion beams are produced simultane-
ously, obviating the need for a neutralizer. The main plasma is produced in a long
cylinder in which a longitudinal magnetic field confines the electrons but not the
ions (typically tens of milliteslas). A helicon source provides a very high-density
plasma core, of several centimetres in radius, creating a column of fully ionized
plasma. In an electronegative gas, it has been shown that this configuration pro-
duces a stratified plasma with an electropositive core (a plasma with a significant
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Table 1.1 Frequency ranges for plasma sources

Type Range

DC or low-frequency f < 1 MHz
radio-frequency 1 < f < 500 MHz, commonly 13.56 MHz
microwave 0.5 < f < 10 GHz, commonly 2.45 GHz

fraction of electrons), and an ion–ion (electron-free) plasma at the periphery. Ions
are extracted radially from the ion–ion plasma, via sets of accelerating grids,
biased positively, to extract the negative ions, and negatively to extract the positive
ions.

1.4 Radio-frequency plasmas: E, H and W-modes

Plasma reactors used for etching and/or PECVD are often driven at frequencies
lying between 1 MHz and 200 MHz, that is within the radio-frequency (RF) domain.
In particular, 13.56 MHz and its harmonics are popular choices, having been set
aside for industrial and medical applications – most other parts of the spectrum
are allocated to telecommunications. The helicon sources used for space plasma
propulsion are also driven in the RF domain, usually at 13.56 MHz. Processing plas-
mas can also be generated by DC and low-frequency discharges, or by microwaves.
Table 1.1 gives a frequency classification for the various types of common reactor.

The RF range is of particular interest as at the lower end all except the most
massive ions in gas discharge plasmas are able to follow the instantaneous RF
fields and at the higher end, all ions are inertially constrained, responding only to
the time-averaged fields. Throughout the RF range, electrons are able to respond
instantaneously to fields.

In the microwave region there is a convenient ‘cyclotron’ resonance for electrons
moving in relatively modest magnetic fields. The natural frequency with which
electrons gyrate in a field of 86.6 mT is 2.45 GHz, so this makes an attractive
combination of an easily achieved flux density with an inexpensive power source
(thanks to domestic microwave ovens).

RF electromagnetic fields can be generated in many ways, for instance by
applying an RF voltage across two parallel electrodes or by circulating RF currents
in coils or antennas, either immersed in the plasma or separated from it by a
dielectric window. The electromagnetic fields will couple to the electrons in the
plasma and transfer energy to them to sustain the plasma. The efficiency with
which power is coupled from the power supply into the charged particles and the
plasma uniformity both strongly depend on the design of the RF excitation. The
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Figure 1.7 Schematic of reactors (a) capacitively coupled and (b) inductively
coupled.

two classical RF reactors used in industry are the capacitively coupled plasmas
(CCP) reactor, a schematic of which is shown in Figure 1.7(a), and the inductively
(or transformer) coupled plasmas (ICP, TCP) reactor shown in Figure 1.7(b).

The CCP reactor developed in the 1970s comprises two parallel electrodes,
separated by a gap of a few centimetres, immersed in a vacuum chamber. The
electrodes are driven by an RF power source of typically ∼1 kW and at a typical
frequency of 13.56 MHz; the plasma density in a CCP is typically around 1015–
1016 m−3.

The substrate to be etched is usually placed on the powered electrode. Gentler
conditions tend to prevail at the ground electrode. In such reactors, the RF power
level applied to the electrodes controls simultaneously the ion flux to the substrate
and the energy with which the ions arrive there. The lack of independent control
of ion flux and ion energy is a severe limitation of single-frequency CCPs. To
overcome this limitation, dual-frequency systems have been introduced, for which
the applied RF waveform is the sum of two independently controllable components.
This arrangement has proved useful for certain etching steps in microelectronic
fabrication. CCP reactors will be discussed in Chapters 5 and 6.

ICP systems also often use two RF power supplies. The first drives a coil, usually
external to the plasma and separated from it by a dielectric window. The RF current
flowing in the coil launches an evanescent disturbance that decays over a distance
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of a few centimetres into the plasma. This induces RF current in the plasma and
transfers energy to electrons; i.e., it controls the plasma density. The coupling
efficiency is markedly higher than in the single-frequency CCPs, enabling higher
plasma densities to be achieved, of the order of 1016–1018 m−3. The second power
supply is used to bias the substrate holder and thereby to control the ion energy.
ICPs are routinely used to etch metals and silicon in microelectronic fabrication.
They are also used for III–V semiconductor etching for photonics, and for deep
etching in MEMS technology. ICPs are discussed in Chapter 7.

These two different reactor families, CCPs and ICPs, are usually associated with
two regimes, the so-called E (electrostatic) mode for capacitive coupling and the
so-called H (electromagnetic) mode for inductive coupling. Inductive reactors with
an external coil generally start in the E-mode and undergo an E–H transition when
the plasma density reaches a critical level as power to the coil is increased [18].

Q Figure 1.7 suggests that inductive discharges are sustained by RF current in a
coil, so how is it that the plasma initially forms in the electrostatic (E) mode?

A In order for RF current to be driven through the coil there must be an RF
voltage across it and this voltage produces an additional electrostatic electric
field – indeed this field is associated with the RF voltage on the coil and would
exist even if the coil windings were broken so that the current was zero. The
E-mode forms a low-density plasma – the H-mode does not take over until
the plasma density achieves sufficient conductivity for the electromagnetic
mechanism to predominate.

The E–H transition is unstable when electronegative gases (attaching gases
which lead to negative ion production in the plasma) are used [19,20]. Studies have
also shown that CCPs may also experience mode transitions (from E to H) if they
are driven at high frequency because of an induced field parallel to the electrode
[21, 22]. Both of these phenomena will be discussed in later chapters.

Finally, there is a third regime that couples energy from the RF fields to the
plasma, labelled W for wave. For electron densities higher than those found in
typical CCP and ICP discharges, disturbances at radio frequencies do not propagate
in the absence of a static magnetic field. For RF-wave-sustained plasmas there has
to be a background (steady) magnetic field. An antenna is used to launch a type
of propagating disturbance called a helicon wave which propagates away from
the antenna into the plasma bulk where the wave energy is absorbed by electrons.
The coupling of energy in the W-mode achieves densities above 1019 m−3 and in
larger volumes than can be achieved by an H-mode ICP. Helicon reactors have
therefore been used for plasma processing applications demanding high ion fluxes,
for example in the context of deep etching of hard materials [11]. They also seem
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Figure 1.8 Cylindrical columns of plasma excited by external currents. Left: the
plasma is sustained with currents driven by the RF electric field induced in the
plasma in response to external RF current – the field strength diminishes with
distance from the external coil. Right: the external antenna sets the current path
such that helicon waves are launched, propagating axially – the plasma is sustained
by energy absorbed from these waves.

very promising as the ionization stage of plasma thrusters because of their ability
to produce highly ionized plasmas. Figure 1.8 illustrates the difference between
inductive and helicon wave excitation.

1.5 What lies ahead

This opening chapter has introduced various situations where RF power sources
are used to create low-pressure, non-equilibrium plasmas for specific technological
applications. There are many more examples than those given here, even within
the low-pressure domain; at higher pressure yet more can be found. However, there
is already more than enough background to provide the context for the detailed
physics-based analysis that is the primary concern of this book.

The next chapter will rehearse some basic plasma physics, starting with a particle
description and culminating in a view of plasmas that treats them as interacting
fluids of electrons, ions and neutral gas. In the chapters that follow, the fluid
equations are analysed in growing levels of sophistication to describe plasmas
that are created and sustained within boundaries and at low pressure. This regime
characterizes the technological plasmas described above. Electrical models will
be developed to allow comparative analyses of RF plasmas into which power is
coupled via electrostatic, induction and wave mechanisms.
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Plasma dynamics and equilibrium

One way to model the dynamics of the plasma contained in a reactor would be to
calculate rigorously the trajectory of each of the charged particles using Newton’s
laws. This is not feasible for many reasons: (i) the number of charged particles is
too large given the typical densities (1016−1018 m−3) and the reactor volume (a
few litres); (ii) charged particles move in response to the electromagnetic (Lorentz)
force associated with electromagnetic fields, which in this case are generated by the
presence and motion of all the other charged particles – that is, by local space charge
and currents; the problem is non-linear and should be solved self-consistently; (iii)
particles experience collisions that modify their velocities and energies on very
short time scales.

Q (i) How many ions are there in a cubic millimetre (V = 10−9 m3) of plasma
of charged particle density n = 1016 m−3?
(ii) How far will an electron travel in t = 0.1 μs when accelerated in vacuum
from rest by an electric field of E = 102 V m−1?
(iii) In a typical low-pressure, electrical discharge plasma a large fraction
of electrons have speeds around v = 106 m s−1 and collide with gas atoms
typically every λ ∼ 10−1 m, depending on the pressure; what is the average
time between successive collisions?

A (i) N = n × V = 107.
(ii) s = 1

2 (eE/m) t2 ≈ 10−1 m.
(iii) τ = λ/v ∼ 10−7 s.

The first level of simplification of the above problem is achieved in particle-in-
cell (PIC) computer simulations. The basic idea behind the PIC method is indeed to
solve Newton’s law and the electromagnetic fields simultaneously, including colli-
sions between particles. However, the difference between a simulated plasma and
a real plasma lies in the representation of the charges, the fields and the space-time
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in which the phenomena occur. In a PIC simulation a large number of neighbour-
ing charged particles are represented by a ‘super-particle’; it is always multiply
charged and has the same charge-to-mass ratio as that of the actual particles. The
large number of charges in a plasma are thus replaced by a much smaller number
of these super-particles. Time and space are discretized and the calculations of
electromagnetic fields and super-particle motions are done iteratively until a steady
state is reached. PIC simulations are useful to understand subtle kinetic phenom-
ena, but the computational time required is often too long to model the general
macroscopic behaviour using purely numerical schemes.

From an analytical point of view, there are two approaches to the modelling
of the plasma dynamics: one based on kinetic theory and the other based on fluid
theory. The first is a microscopic approach and relies on statistical physics. Velocity
(or energy) distribution functions are introduced, f (r, v, t), and the evolution of
these distributions is solved using conservation laws. Kinetic theory is useful to
model non-linear wave–particle interactions and collisionless phenomena such as
stochastic heating. Knowledge of the velocity distribution function is also impor-
tant in detailed calculations of transport and reaction coefficients. However, kinetic
calculations are too complicated to describe the macroscopic behaviour of a plasma
reactor. Most of the fundamental properties described in this text do not require
a kinetic treatment and will be addressed by a macroscopic fluid theory (hydro-
dynamics). For this, macroscopic quantities such as the fluid density n, the fluid
velocity, u, etc. are obtained from integrations over velocity of the distribution
function f (r, v, t).

In the following the basic ideas of kinetic theory will be introduced along with
definitions of distribution functions, thermal equilibrium distributions, and various
averages over these distributions. Some basic concepts of collisions and reactions
will also be presented. The fluid equations will then be introduced – the exact
derivation of these equations, starting from kinetic equations, is beyond the scope
of this text (details can be found in many plasma physics textbooks such as [23]).
The fluid equations will then be combined to obtain particle and energy balance
equations that are the building blocks of the physics described in this book. Finally,
the fluid equations will be linearized to examine the propagation of electromagnetic
and electrostatic perturbations.

2.1 The microscopic perspective

2.1.1 Distribution functions and Boltzmann equation

The kinetic theory of gases is a useful starting point from which to appreciate the
microscopic view of plasmas. Consider N particles with a random distribution of
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positions (r) and velocities (v). The velocity distribution function f (r, v, t) defines
the number of particles being at a given time t inside the six-dimensional elementary
volume of phase space dxdydz × dvxdvydvz. It is sometimes convenient to express
this elementary volume in a more compact notation, namely d3r d3v. The number
of particles dN in the volume d3rd3v in the neighbourhood of the position r, with
velocity around v, is thus

dN = f (r, v, t) d3r d3v. (2.1)

Having defined the velocity distribution function, one can then calculate macro-
scopic quantities by averaging over the velocity coordinates. These macroscopic
quantities are determined by taking the velocity moments of the distribution func-
tion. They are the basic variables of the fluid theory presented in Section 2.2. The
first of these is the particle density defined as

n(r, t) =
∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞
f (r, v, t) d3v. (2.2)

The average value of any quantity in a distribution of particles is found in
statistical mechanics by integrating over the distribution weighted by that quantity,
divided by the total number of particles in the distribution. It is usual to denote this
process by angled brackets so for example the mean velocity, also called the drift
velocity, is

< v(r,t)) > =
∫ ∞
−∞

∫ ∞
−∞

∫ ∞
−∞ vf (r, v, t) d3v∫ ∞

−∞
∫ ∞
−∞

∫ ∞
−∞ f (r, v, t) d3v

;

the drift velocity is often given the more concise notation u(r, t). The total particle
flux can therefore be defined as

�(r, t) = n(r, t)u(r, t) =
∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞
vf (r, v, t) d3v. (2.3)

Similarly, the total kinetic energy density in the distribution is given by

w = n(r, t) <
1

2
mv2 > = 1

2
m

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞
v2f (r, v, t) d3v, (2.4)

where m is the particle mass. It turns out that the kinetic energy density can
be divided into two components, one associated with the random motion of the
particles and the other associated with the net drift:

w = 3

2
p(r, t) + n(r, t)

1

2
m u(r, t)2; (2.5)
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the first term is identified with the internal energy density, so p(r, t) is the isotropic
pressure, and the second term is due to the net flow of momentum. When the drift
velocity is zero, that is for symmetrical distribution functions, the net momentum
flow is zero and the kinetic energy density is just proportional to the pressure.

Distribution functions obey a conservation equation that has the form of a conti-
nuity equation. Particles enter and leave an elementary volume and can be produced
by ionizating collisions, or destroyed by recombination, within this volume. The
equation governing the evolution of the distribution is called the Boltzmann equa-
tion, and is given by (see for example [2])

∂f

∂t
+ v · ∇rf + F

m
· ∇vf = ∂f

∂t

∣∣∣∣
c

, (2.6)

where the force acting on charged particles is F = q [E + v × B], with q the particle
charge, and E and B the local electric and magnetic fields, respectively. The right-
hand side of Eq. (2.6) is a symbolic representation of collision processes and in
practice it can be difficult to set up a model for what this symbol represents (e.g.,
see [2]). The velocity moments of this equation allow one to construct the fluid
equations, described in Section 2.2.

2.1.2 Thermal equilibrium distributions

Equation (2.6) effectively follows the continuous evolution of the distribution func-
tion in response to the electromagnetic forces acting on the charged particles and to
the various relaxation processes including many types of collisions. Nevertheless,
within a plasma, the distribution function of electrons in particular is often near
a thermal equilibrium distribution called the Maxwellian distribution (also known
as a Maxwell–Boltzmann distribution). The Maxwellian distribution conveniently
relates a characteristic electron temperature to the average energy of electrons and
to the mean speed of electrons. However, in the calculation of ionization or excita-
tion coefficients, it is sometimes important to take account of the deviation of the
actual distribution of electron energies from a Maxwellian.

In the remainder of this section the spatial and temporal dependence of the
distribution function will not be written explicitly, so f (r, v, t) → f (v).

Q Distinguish between v, v and vx.
A v is the velocity vector, v = (v2

x + v2
y + v2

z )1/2 is the magnitude of the velocity
vector (also called the speed) and vx is the x-component of the velocity vector
(effectively the speed in the x-direction).
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Figure 2.1 A one-dimensional Maxwellian velocity distribution normalized so
that the area under the curve is unity: f0(vx) = (m/2πkT )1/2 exp

(−mv2
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)
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The Maxwellian three-dimensional velocity distribution is given by

f (v) = n
( m

2πkT

)3/2
exp

⎛⎝−
m

(
v2

x + v2
y + v2

z

)
2kT

⎞⎠ , (2.7)

where n is the particle number density defined in Eq. (2.2). The distribution function
f (v) is proportional to the number of particles with velocities between v and v + dv.
Figure 2.1 shows the one-dimensional version, the component velocity distribution,
that is obtained by integrating over vy and vz:

f (vx) = n
( m

2πkT

)1/2
exp

(
−mv2

x

2kT

)
.

Using Eqs (2.3) and (2.4), one can evaluate important averaged (mean) quantities.
First note that the net particle flux, Eq. (2.3), in any particular direction must be
zero, because the distribution is symmetrical and thus the drift velocity is zero. One
can still evaluate a characteristic speed by averaging |v| = v over the distribution:

< v > =
( m

2πkT

)3/2
∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞

(
v2

x + v2
y + v2

z

)1/2

× exp

⎛⎝−
m

(
v2

x + v2
y + v2

z

)
2kT

⎞⎠ dvxdvydvz. (2.8)
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Q What does the condition of thermal equilibrium require of the mean of a
distribution of particle velocities?

A The mean velocity must be zero otherwise there would be a net flow and
therefore internal processes would not be in equilibrium.

Since the Maxwellian velocity distribution is isotropic (the same in all direc-
tions), the distribution can also be expressed entirely in terms of the scalar speed
rather than the velocity vector, v, and its components, vx, vy, vz. This simplifies the
integral in Eq. (2.8).

The speed distribution fs(v) gives the proportion of particles with speeds between
v and v + dv:

fs(v) = n
( m

2πkT

)3/2
4πv2 exp

(
−mv2

2kT

)
, (2.9)

where the factor of 4π represents an integration over all the angles in which particle
trajectories may point. The density is now recovered by integrating over all possible
speeds,

n =
∫ ∞

0
fs(v) dv.

The mean speed of a particle is then defined by

< v > =
( m

2πkT

)3/2
4π

∫ ∞

0
v3 exp

(
−mv2

2kT

)
dv. (2.10)

This average (or mean) speed, < v >, is also often given the symbols v or c; the
former will be used here. Evaluating the integral in Eq. (2.10) gives

v =
(

8kT

πm

)1/2

. (2.11)

Q According to Figure 2.2, what is the most probable speed for a particle in a
Maxwellian distribution?

A The figure has a peak that corresponds with the most probable speed at
v (m/2kT )1/2 = 1. This corresponds with v = (2kT /m)1/2, which is clearly
not the same as the mean speed v which is about 13% larger.

Electrons have a small mass and, in gas discharge plasmas, a high temperature.
Using the typical value of T ≈ 30 000 K leads to ve ≈ 106 m s−1. This is much
larger than the typical drift speeds observed in the plasma. By contrast, ions are
heavy particles and are close to room temperature, typically T ≈ 500 K, so that for
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Figure 2.2 A Maxwellian speed distribution normalized so that the area under the
curve is unity: fs(v) = (4/

√
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)
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argon ions vi ≈ 500 m s−1. In Chapter 3 it will be shown that ions leave the plasma
with drift speeds significantly larger than vi. Therefore, except in the very central
region of the plasma, ions are far from thermal equilibrium.

In a similar way, the isotropic distribution of particle speeds can be recast as a
distribution in energy space with fe(ε) being the number of particles with kinetic
energy between ε and ε + dε:

fe(ε) = 2n√
π

(
1

kT

)3/2

ε1/2 exp
(
− ε

kT

)
. (2.12)

Q What is the most probable energy for a particle in a Maxwellian distribution
(Figure 2.3)?

A The most probable energy corresponds with the peak at ε = kT /2.

The kinetic energy density can be found from the velocity distribution by mul-
tiplying the energy distribution by ε = mv2/2 and integrating over all energies:

w = 2n√
π

(
1

kT

)3/2 ∫ ∞

0
ε3/2 exp

(
− ε

kT

)
dε = 3

2
nkT . (2.13)

Since w ≡ n < ε >, the average kinetic energy of a particle is 3kT /2. The distri-
bution is isotropic and any particle is free to move in three independent directions,
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Figure 2.3 A Maxwellian energy distribution normalized so that the area under
the curve is unity: fe(ε) = (2/
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suggesting that the average energy corresponds with kT /2 in each of the three
translational degrees of freedom.

Q How can the mean kinetic energy per particle of a Maxwellian distribu-
tion be obtained, considering only energy associated with its motion in the
x-direction?

A Multiply the velocity distribution by mv2
x/2 and integrate over all velocities

to get the total kinetic energy associated with the x components of motion
and then divide by n to get the average energy per particle:

<
mv2

x

2
> =

( m

2πkT

)3/2
∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞

mv2
x

2

× exp

(
−m(v2

x + v2
y + v2

z )

2kT

)
dvxdvydvz.

The integrals are standard ones and the result confirms the suggestion that
each degree of freedom has a mean thermal energy of kT /2 associated with
it. Note that the characteristic temperature T of a Maxwellian distribution
gives a measure of thermal energy.
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Although the random thermal flux of particles is zero for a Maxwellian distri-
bution, it is useful to have a local measure of the flux crossing any particular plane
at any time as a consequence of the thermal motion of particles. For the particles
crossing the x−y plane in the positive z-direction, this is determined by an integral
over all x and y components of velocity, but only positive z components:

�random = n
( m

2πkT

)3/2
∫ ∞

−∞
dvx

∫ ∞

−∞
dvy

∫ ∞

0
vz exp

(
−mv2

2kT

)
dvz. (2.14)

Evaluating this integral yields

�random = n

(
kT

2πm

)1/2

.

Using the expression for the random speed in Eq. (2.11), this can also be written

�random = nv

4
. (2.15)

Given the very large difference between the electron average speed and the ion
average speed, the thermal flux of electrons heading towards the plasma boundaries
is very large compared to the thermal flux of ions leaving the plasma. Ions and
electrons are created at the same rate within the plasma volume and the main loss
mechanism is often recombination at the walls. So, to maintain the flux balance at
the wall in the steady state, as will be seen later, the potential in the plasma must
be higher than the potential at the wall. In effect, close to the wall the potential
falls by �φ with respect to the plasma. In that case only electrons with sufficient
perpendicular velocity, vz >

√
2e�φ/m, can reach the wall. The particle flux

leaving the plasma is the same as that reaching the wall; that is,

�wall = n
( m

2πkT

)3/2
∫ ∞

−∞
dvx

∫ ∞

−∞
dvy

∫ ∞
√

2e�φ/m

vz exp

(
−mv2

2kT

)
dvz.

(2.16)

Evaluating the integral Eq. (2.16) yields

�wall = nv

4
exp

(
−e�φ

kT

)
. (2.17)

The energy flux leaving the plasma can also be calculated in a similar manner:

Q = n
( m

2πkT

)3/2 m

2

∫ ∞

−∞
dvx

∫ ∞

−∞
dvy

∫ ∞
√

2e�φ/m

v2vz exp

(
−mv2

2kT

)
dvz.

(2.18)
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This can be shown to give

Q =
[
nv

4
exp

(
−e�φ

kT

)]
(2kT + e�φ) . (2.19)

The energy flux leaving the plasma is not equal to the energy flux reaching the
wall because some of the energy is deposited in the electrostatic field at the plasma
boundary. The amount of energy flux reaching the wall is only

Qw =
[
nv

4
exp

(
−e�φ

kT

)]
2kT . (2.20)

The term in square brackets is just the number of particles lost to the wall per
square metre per second. The average kinetic energy carried out by each particle
that escapes therefore is 2kT .

Q The SI unit for energy is the joule (J); in atomic, molecular and plasma physics
an alternative energy unit, the electron volt (eV), is formed by dividing the
quantity in joules by the magnitude of the electronic charge, e, so that 1 eV ≡
1.602 × 10−19 J. What is the equivalent temperature in eV of a distribution
with kT = 3.2 × 10−19 J?

A The temperature is said to be “2 eV” because kT /e = (3.2 × 10−19/e) V ≈
2 V.

Exercise 2.1: Electron energy flux to a wall For a Maxwellian electron
population of 1016 m−3 with mean energy 2 eV, calculate the rate of energy
transfer to a wall that is at −10 V with respect to the plasma.

2.1.3 Collisions and reactions

The different types of particle in a plasma (electrons, ions, atoms, free radicals,
molecules) interact in the volume via collision processes that occur on very short
time scales. These collisions can be elastic (without loss of total kinetic energy) or
inelastic (with transfer between the kinetic energy and the internal energy of the
colliding particles).

In the simple situation of weakly ionized plasmas in noble gases, the most
frequent collisions involving charged particles are elastic encounters with neutral
atoms.

Collisions between charged particles (electron–electron, electron–ion and ion–
ion) are not frequent and direct electron–ion recombination is usually negligible
in the volume of low and medium-density plasmas at low pressure. Consequently,
the charged particles tend to be generated in the plasma volume by ionization
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and lost at the vessel walls (and other surfaces). In most of this book the process
of ionization by electron impact will be supposed to be a single-step process. In
practice in some instances multi-step ionization occurs, but this is a rare process
unless there are intermediate longer-lived (metastable) states that can act as energy
reservoirs pending the arrival of subsequent electrons.

Q It is usually the case that in low-pressure, electrical discharges through noble
gases, binary, elastic encounters between charged and neutral particles far
outnumber other kinds of charged particle interaction. Explain why this
should be so.

A First, plasmas in these circumstances are weakly ionized, so the neutral par-
ticles provide the most likely target for any charged particle. Second, the
commonest interactions are binary collisions (i.e., involving two particles)
because the chances of three or more particles simultaneously encountering
each other are much lower. Finally, all particles in a distribution can partici-
pate in elastic collisions, whereas the inelastic processes like ionization and
excitation require the total initial kinetic energy to exceed some minimum
(threshold) value. This usually excludes the majority of those present.

Etching or deposition systems use plasmas formed in molecular gases. The
situation is now even more complicated, with chemical reactions between atoms,
free radicals and molecules also playing a large role. These additional species
interact in the volume and at surfaces. As a result, the charged-particle dynamics are
somewhat modified. Electrons can be attached to molecules in the gas phase, which
is another path of electron loss, and positive ions may recombine in the plasma
volume with negative ions – both of these frustrate the simplifying assumption of
volume production and wall loss.

The complete mathematical description of collisions is complex [2, 24] and is
certainly beyond the scope of this book. The aim here is to develop the simplest
models through which general insight can be gained, rather than to cover every
eventuality. To this end, in the next section fundamental quantities such as cross-
sections, mean free paths and collision frequencies will be defined. As an example,
the different collisions processes that may be important in plasma etching with
molecular gases will be reviewed.

Cross-section, mean free path and collision frequency

The simplest descriptions of binary collisions, whether electron–atom, atom–atom
or ion–atom, suppose the situation to be that of a hard-sphere projectile interacting
with a hard-sphere target. Consider a slab of gas, dx thick and of area A, containing
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ng identical gas atoms per unit volume. Suppose that the slab is bombarded by a
uniform beam of small projectiles, with particle flux �. Each of the ngAdx gas atoms
in the slab presents a cross-sectional target area which will be given the symbol σ .
The cross-section is proportional to the probability of a collision – collisions are
twice as likely if the cross-section of the targets is doubled. In collision physics
those particles that hit the targets are said to have been scattered out of the beam.
On passing through the slab, the uniform flux of projectiles will be diminished in
proportion to the total area of the targets.

Considering the proportion of the beam scattered by collisions with targets in
the slab, the loss of flux after passing through the slab is

d�

�
= −ngAdx

σ

A
= −ngσdx. (2.21)

Integrating Eq. (2.21) shows that the beam flux decays exponentially:

� = �0 exp
(
−x

λ

)
, (2.22)

with a characteristic decay length, λ = 1/(ngσ ), which is called the mean free
path between collisions. If the particles in the beam all travel at a speed v, the
characteristic time between collisions is τ = λ/v, and the collision frequency is

ν = τ−1 = ngσv

= ngK, (2.23)

(be careful to distinguish between frequency ν and speed v) where K = σv is
the rate of interaction per atom of gas (more generally termed the rate coefficient
for collisions). Unfortunately, this very simple situation is not quite sufficiently
realistic to describe collisions even in a weakly ionized plasma.

Firstly, the effective cross-section for binary collisions is a function of the
magnitude of the impact velocity, that is the relative speed between the target
and the projectile (or equivalently, the total kinetic energy in the interaction). The
cross-sections for elastic and inelastic collisions between electron and argon atoms
are shown in Figure 2.4. Since the mass ratio between electrons and atoms is very
large, the elastic collisions transfer very little kinetic energy (in much the same way
that a football bounces off a wall). There is no threshold for this process, though
there is a strong energy dependence with a pronounced minimum (the ‘Ramsauer’
minimum) that is characteristic of the low-energy impacts in the noble gases. At
higher impact energy the elastic cross-section tends to decrease as the relative
speed (or collision energy) increases. Naı̈ve models equate the electron-impact
cross-section to the physical size of an atom, on which basis argon would have a
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Figure 2.4 Elastic and inelastic cross-sections in argon – schematic. Broken lines indicate
useful approximations. The grey tone indicates the shape of a 1 eV Maxwellian.

cross-section of about 3 × 10−20 m2, but as Figure 2.4 shows, the size perceived
by an electron appears to depend on its energy.

Q According to Figure 2.4, for a 14 eV electron, which is the more likely type
of collision: elastic or inelastic (excitation)?

A The cross-section of elastic collisions at 14 eV is around 20 times greater
than that for excitation (but below the threshold for ionization, which is at
15.6 eV), and so at this energy only 1 in 20 collisions is expected to be
inelastic.

Inelastic collisions between an electron and an atom involve the interconversion
of kinetic energy and the internal potential energy of the atom, causing either
excitation into a higher quantum state, or, if there is sufficient kinetic energy,
ionization. These collisions have a threshold which is roughly the quantum energy
required for the process, typically 10 to 20 eV for noble gases in the ground state.
The inelastic cross-sections sharply increase just after the threshold, pass through
a maximum (usually located around twice to three times the threshold energy) and
then smoothly fall at higher energy. Since both elastic and inelastic cross-sections
are strong functions of energy, and hence the magnitude of the impact velocity,
they should therefore be generally written as σ (vimpact) – in the case of electron
collisions this is usually σ (ve).

Secondly, the projectiles are not mono-energetic but are randomly distributed in
speed according to a distribution function, that to a first approximation can be taken
to be Maxwellian. Neither are the atomic targets stationary (although their thermal
motion is usually considerably less energetic than that of the electrons), so neglect-
ing their motion is an acceptable approximation for electron–atom collisions. The
calculation of the collision frequency should then be an average based upon an
integration over the presumed Maxwellian distributions, taking into account also
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the energy dependence of the cross-section. Therefore, the average frequency of
collisions of electrons can be estimated to be

ν = ng

∫ ∞

0
σ (ve) vefs(ve)dve. (2.24)

When the cross-section depends on the impact speed, as it certainly does for real
gases (see Figure 2.4), this integral must be evaluated numerically. In the energy
range of most interest for most plasmas (0.5 eV < ε < 10 eV) the argon elastic
cross-section varies almost linearly with energy but not much detail is lost if it is
assumed to remain at a steady intermediate value σ el across this range for the sake
of evaluating the integral in Eq. (2.24). Then for elastic collisions

νm = ngσ el ve, (2.25)

where ve is the mean speed (see Eq. (2.10)) and the subscript m signifies elastic,
‘momentum transfer’ collisions (between electrons and neutrals) that are responsi-
ble for randomizing any directed momentum. A rate coefficient for elastic momen-
tum transfer collision can be defined such that Kel = νm/ng ≡ σ elve.

Warning: Strictly under RF conditions the momentum transfer collision fre-
quency is different from Eq. (2.25) and includes a frequency-dependent cor-
rection [25]. Nevertheless, in this book Eq. (2.25) will be used.

Q The ion momentum is redistributed through ion–atom collisions at a fre-
quency νi – how will this compare with that for electrons νm?

A Ions are larger projectiles than electrons so while the target atoms are the
same, the probability of collisions (the cross-section) with ions is greater.
However, because m � M , ve � vi so in fact νm � νi.
Comment: In argon, ion–neutral charge exchange collisions (to be discussed
below) are as, or even more, frequent than ion–neutral elastic scattering
collisions.

When the collision is inelastic the cross-section has a threshold, e.g., ionization
or excitation. The following idealized form of the cross-section can be used to
estimate the dependence of the ionization frequency on electron energy:

σ = 0 when ε < εiz,

σ = σiz when ε > εiz;

that is a step function with threshold εiz, the ionization energy. In this case, the
integral Eq. (2.24) must be calculated with a minimum speed v = (2eεiz/m)1/2,
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and gives the following expression:

νiz = ngσizve

(
1 + eεiz

kTe

)
exp

(
−eεiz

kTe

)
(2.26)

for the average frequency of ionizing collisions.

Q Distinguish in Eq. (2.26) factors relating to electrons from factors relating to
the gas.

A νiz is the number of ionizations produced per second per electron of a popu-
lation with characteristic temperature Te, in a gas of particle density ng and
ionization energy εiz.

A rate coefficient for ionization, Kiz, can be defined as Kiz = νiz/ng. Using
Eq. (2.26), this rate coefficient has the form

Kiz(Te) = Kiz0 exp

(
−eεiz

kTe

)
; (2.27)

the pre-exponential factor

Kiz0 = σizve

(
1 + eεiz

kTe

)
(2.28)

depends on the cross-section and therefore on the gas used, but its dependence on
Te is weak compared with the exponential part of the rate coefficient. This so-called
Arrhenius form of Eq. (2.27) for Kiz(Te) can also be used for the electronic excited
states, with the generic form

Kexc(Te) = Kexc0 exp

(
−eεexc

kTe

)
, (2.29)

where εexc is the energy of the excited quantum state under consideration.
In this book argon is used as a typical, electropositive, atomic gas, with the

simplified set of properties given in Table 2.1. This set has been chosen as the best
fit of the numerical integration of the argon cross-sections over a Maxwellian dis-
tribution (note that the real ionization threshold for argon is 15.6 eV, not 17.44 eV)
[2]. The ion–neutral mean free path can conveniently be expressed as

λi/mm = 4.2

P/ Pa
. (2.30)

Exercise 2.2: Comparative frequencies and mean free paths For argon
at 10 Pa, 300 K, and Maxwellian populations with temperatures Te = 2 eV
and Ti = 0.05 eV, calculate: (i) the electron–neutral collision frequencies of
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Table 2.1 Simplified data set used for argon gas in the global models presented in
this book

Ionization Kiz0/m−3 s−1 5.0 × 10−14 εiz/eV 17.44
Excitation Kexc0/m−3 s−1 0.16 × 10−18 εexc/eV 12.38
Elastic (electrons) σ el/m2 1.0 × 10−19

Elastic (ions at 0.05 eV) σ i/m2 1.0 × 10−18

- including charge exchange

ionization, excitation and momentum transfer and the ion–neutral momentum
transfer collision frequency; (ii) electron–neutral and ion–neutral mean free
paths for elastic scattering.

Energy transfer in collisions

The cross-section embodies the concept of the probability of a collision of a par-
ticular type. It does not, however, specify exactly how much energy is redistributed
between the participating particles. The mechanics of collisions, based on the simul-
taneous conservation of momentum and energy for a pair of colliding particles of
masses m and M , shows that:

(i) elastic collisions between dissimilar mass particles, m � M (electron–atom),
can transfer only a fraction, δ, of the impact energy where

δ ≤ 2m/M, (2.31)

whereas for equal mass particles (ion–atom) in a head-on collision all the
kinetic energy is transferred from one to the other;

(ii) inelastic collisions between dissimilar masses, m � M (electron–atom), can
transfer all the kinetic energy into internal energy, provided the initial energy
is above the threshold for the process, whereas equal masses can only transfer
half of the initial energy into internal energy and therefore an ion needs twice
the ionization threshold before it can cause impact ionization of an atom.

Inelastic collisions and chemical reactions in molecular gases

In molecular gases it is easily found, for instance by absorption measurements, that
infrared and microwave radiation can probe the energy levels associated respec-
tively with modes of molecular vibrations and rotations. The more commonly
populated electronic excitation levels of an atom or molecule are typically sepa-
rated by a few eV of energy, and these states can be probed by photons of equivalent
energy, corresponding with visible and ultraviolet radiation.

Inelastic collision interactions between electrons and molecules or atoms lead
to energy dissipation in the electron population and should be taken into account
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when considering the electron power balance (see Section 2.3). These collisions
often lead to dissociation, and the fragments may be neutrals or charged parti-
cles (positive or negative ions). Furthermore, the fragments may react in the gas
phase or at the surface (reactor walls or substrate), sometimes leading to etching
or deposition. The complex plasma chemistry resulting from all these interac-
tions is beyond the scope of this book (for details on collisions and reactions,
see [2, 24]).

In the following, a reduced set of collisions processes is presented to describe
the basic phenomena encountered in the RF plasmas discussed later in this text.
In particular, CF4, Cl2 and Ar are used as examples. In the interests of clarity,
later chapters of this book will not include the detailed effects of plasma chemistry,
whether in the volume or at a surface; it is therefore important to use this discussion
to reflect from time to time on what effect the inclusion of plasma chemistry would
have on any given situation described later on.

Dissociation into neutral fragments

The feedstock gas is dissociated by electron impact to produce neutral reactive
fragments known as radicals. These play a fundamental rôle in plasma processing
because of their chemical reactivity. They may react in the plasma volume or at the
surfaces. This is an abbreviated list of possible dissociation reactions:

e− + CF4 → CF3 + F + e−,

e− + CF4 → CF2 + 2F + e−,

e− + CF4 → CF + F2 + F + e−,

etc.

The radicals can be further dissociated to produce smaller fragments, for instance

e− + CF3 → CF2 + F + e−,

e− + CF2 → CF + F + e−,

etc.

Note that the fragments may also be in excited states – this is often indicated
by ‘*’ after the atom/molecule that is electronically excited or else giving in
brackets the molecular excited state, e.g., vibrational (v = 2). The energy changes
between levels of electronic excitation generally correspond with UV and visible
frequencies, whereas vibrational levels map onto the IR part of the electromagnetic
spectrum.

Dissociative ionization and attachment

When one of the fragments is a charged particle, the process is called dissocia-
tive ionization if the fragment is positively charged (positive ion), or dissociative
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attachment if the fragment is negatively charged (negative ion). Typical examples
for CF4 are:

e− + CF4 → CF+
3 + F + 2e−,

e− + CF4 → CF−
3 + F,

e− + CF4 → CF3 + F−,

etc.

These are quite often the important processes for charged particle production
and loss. Direct attachment of an electron to a molecule, without dissociation,
is unlikely, except for large and highly electronegative molecules (e.g., SF6). In
chlorine discharges the following processes:

e− + Cl2 → Cl+2 + 2e−,

e− + Cl2 → Cl+ + Cl + 2e−

are in competition.

Vibrational excitation

Molecules have discrete vibrational and rotational energy levels. The higher energy
levels can be populated by electron impact excitation. Taking the example of
vibrations, we have

e− + Cl2(v = 0) → Cl2(v = 1) + e−,

e− + Cl2(v = 0) → Cl2(v = 2) + e−,

e− + Cl2(v = 1) → Cl2(v = 2) + e−,

etc.

The energy difference between two vibrational levels is significantly less than
1 eV, so that a very large fraction of the electron population can experience such
inelastic collisions. The reaction rate for vibrational excitation is therefore high and
vibrational excited states may play a rôle in the discharge equilibrium. In particular,
the vibrational energy can be coupled to translational motion, leading to significant
neutral gas heating [26]. Molecules with more than two atoms have more degrees
of freedom and consequently a richer vibrational spectrum.

Chemical reactions between neutrals

The neutral fragments generated by electron impact dissociation may recombine
in the gas phase. To facilitate the simultaneous conservation of momentum and
energy the recombination process needs a third body, usually denoted M (in weakly
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dissociated plasmas the third body is the feedstock gas molecule):

CF3 + F + M → CF4 + M,

CF2 + F + M → CF3 + M,

CF + F + M → CF2 + M,

etc.

The reaction rate is proportional to the gas pressure and such recombinations
are often negligible in the low-pressure regime of etching plasmas where surface
reactions (recombination, etching, deposition) are particularly important. Note that
other processes, such as exchange reactions (CF + O → CO + F), may also need
to be considered.

Surface reactions

In the typical pressure regime of etching plasmas the chemical reactions in the gas
phase are slow and the transit time of radicals to the chamber walls is shorter than the
typical reaction time. The interaction of radicals with the surfaces is therefore of pri-
mary importance. Taking the example of chlorine, one gets the following reaction:

Cl(g) + Cl(ads) → Cl2(g)

where (g) denotes an atom or a molecule in the gas phase, and (ads) an atom
adsorbed at the surface. Other types of reactions include etching, in which a
volatile product is formed by chemical reaction at the surface:

Cl(g) + SiCl3(s) → SiCl4(g) ↑;

or deposition, in which the incoming atoms, radicals or ions become bonded into
the surface, contributing to the growth of a thin film:

SiH(g) → Si(s) ↓ + H(g) ↑ .

Charge exchange and positive–negative ion recombination

Heavy charged particles (positive ions and negative ions) also experience collisions
with neutrals or between themselves. A very important process is resonant charge
transfer, in which an ionized atom interacts with a neutral of the same species (the
resonance being one of having identical quantum structure). For example, in argon
plasmas:

Ar+fast + Arslow → Arfast + Ar+slow.

This process has a large cross-section and the corresponding mean free path is
shorter than the mean free path for elastic scattering. The charge transfer may also
be non-resonant when species are different (e.g., O + N+ → O+ + N). Another
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type of charge transfer is ion–ion recombination, for instance

CF+
3 + F− → CF∗

3 + F.

This process is often the main loss mechanism for negative ions. As will be seen
in Chapter 9, unlike positive ions, negative ions are trapped in the plasma volume
where they are ultimately destroyed in gas-phase reactions.

2.2 The macroscopic perspective

In many instances, the charged-particle motion can be adequately described by
macroscopic equations, called the fluid (or hydrodynamic) equations. By inte-
grating the Boltzmann equation Eq. (2.6) over the velocity coordinates of the
distribution functions, one obtains the fluid equations which will only depend on
position and time. The plasma is then described as a fluid defined by macroscopic
quantities, such as its density n(r, t), its velocity u(r, t), and its pressure p(r, t).

Warning: Fluid equations are valid for all forms of distribution functions
f (r, v, t) for which the integration of the Boltzmann equation Eq. (2.6) over
velocity space is valid. For simplicity, Maxwellian distributions are often used
in this book to evaluate the collision frequencies, and consequently the trans-
port coefficients and reaction rates that appear in fluid equations. Significant
departures from Maxwellian distributions will then render such values less
appropriate.

2.2.1 Fluid equations

A set of fluid equations for the constituents of a plasma is obtained by taking the
velocity moments of the Boltzmann equation Eq. (2.6). There is a hierarchy of
such equations, the first of which is a species conservation equation, obtained by
integrating Eq. (2.6) over velocity space:

∂n

∂t
+ ∇ · (nu) = S − L; (2.32)

an equation of this form is also called a continuity equation. The first term on
the LHS can easily be associated with the first one in Eq. (2.6); it describes the
changing density at a particular point in space. The second term corresponds with
the next one in Eq. (2.6), the spatial differential operating independently of the
velocity integral. This term accounts for density changes associated with flow in or
out of the local space. The force term in the Boltzmann equation does not survive
in this first integration even for charged species because it concerns values of the
distribution function at v = ±∞, where it is zero. On the RHS, S and L represent
the contribution of collisions that cause increases and decreases respectively in
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the local fluid density, being volume source and volume loss terms. In an atomic,
electropositive plasma at low pressure, the source of electrons is produced by
ionization in the volume and they are lost at the reactor walls since electron–ion
recombination is negligible. Therefore in the electron conservation equation L = 0
and, as seen in Section 2.1.3, S = nengKiz(Te) where Kiz(Te) is given by Eq. (2.27);
note that in this particular instance, a Maxwellian distribution function has been
assumed. It will be shown in Chapter 9 that S and L take different forms in the
case of electronegative plasmas.

Momentum conservation is next. An equation for this is obtained by taking
the first moment of the Boltzmann equation (which consists of multiplying the
Boltzmann equation by the momentum of a particle, mv, and then integrating over
velocity). This leads to an equation involving drift velocity u. With B = 0,

nm

[
∂u
∂t

+ (u · ∇) u
]

= nqE − ∇p − mu [nνm + S − L] , (2.33)

in which p stands for the particle pressure. This equation is equivalent to the
Navier–Stokes equation in neutral fluids and represents the equilibrium of forces
acting on the fluids, so it is also sometimes referred to as the force balance equation.
On the LHS of the equation are the acceleration and the inertial terms. On the RHS
there are three types of force, the electric driving force, the pressure gradient force
and a friction force. Note that in the last term of the RHS, the particles are assumed
to be generated and lost while moving at the drift velocity; again for electrons in a
classical electropositive plasma, S = nengKiz(Te) and L = 0. A detailed discussion
of each term of Eq. (2.33) will be given in Chapter 3.

In the case of isotropic (unmagnetized) plasmas, the pressure is a scalar and is
related to the density and temperature by a thermodynamical equation of state:

p = nkT . (2.34)

The relationships between the fluid variables (n, u, p, T ) and the electric field (E),
Eqs (2.32)–(2.34), do not define a closed set.

Q What other equation(s) could be introduced to specify the electric field?
A It is usual to turn to Maxwell’s equations in this circumstance; when B = 0,

Gauss’s law should be sufficient as it provides a relationship between E, ne

and ni. This serves to highlight that in fact it is necessary to consider at least
two fluids, one for electrons and one for ions.
Comment: When there are RF (or higher frequency) components of the elec-
tric and magnetic fields it is necessary to include all four of Maxwell’s
equations.
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Even with Maxwell’s equations the description is incomplete. There are three
different ways to close the equation set. The first is to assume that the electron and
ion temperatures are constant in space and time, with a value determined by two
final equations: these could be as simple as giving a value for Te and Ti; in the next
section, for instance, Ti is set to zero and it is shown that the electron temperature
can be effectively set by the system size and the gas pressure, based on a global
balance. Many problems, such as the transport theories developed in Chapter 3,
use this isothermal approximation for which changes in pressure are ascribed only
to changes in density:

∇p = kT ∇n. (2.35)

The second way is to consider that the variations described by the fluid equations
are so fast that the fluids are not able to exchange energy with their surroundings
within the time frame of interest. In that case, the situation is adiabatic, for which
thermodynamics supplies a relationship between pressures and densities (one for
each fluid):

∇p

p
= γ

∇n

n
, (2.36)

where γ is the ratio of the specific heat at constant pressure to that at constant vol-
ume. For one-dimensional motion, γ = 3. The adiabatic approximation typically
holds for high-frequency waves.

The third and most thorough approach is to consider the flow of heat and internal
energy in the plasma, based on another moment of the Boltzmann equation, moving
the debate further into thermodynamics and the need to make assumptions that are
even more sophisticated. The extra effort that this involves is not warranted for the
present purposes.

The macroscopic equations can be solved numerically with appropriate boundary
conditions, to obtain the density, the velocity, the temperature and the electric field
as a function of space and time in a given reactor geometry. This is the basis of
the so-called fluid simulations. However, some insight can be gained by further
simplifying these equations. There are two ways to do this. The first, examined in
Section 2.3, is to integrate the fluid equations over the space coordinates to obtain
global balance equations. This is the basis of the so-called global models that will
be used extensively in this book to understand the major scaling laws in radio-
frequency plasma reactors. The second, developed in Section 2.4, is to linearize
the fluid equations to obtain electrodynamics properties in terms of perturbations
of the steady state.
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Before proceeding, the isothermal hypothesis is further examined and the elec-
tron energy relaxation length is introduced as the typical distance over which
non-uniform electron temperatures can be expected.

2.2.2 Electron energy relaxation length

The isothermal approximation for charged particles will be used in most of this
book. In reality, the electron and ion temperatures are not always independent of the
space coordinate. It is particularly important to understand what may lead to non-
uniform electron temperature, since inelastic processes are extremely sensitive to
this parameter. The first condition for non-uniform electron temperature is that the
electric (electromagnetic) energy is deposited non-uniformly in the electron popu-
lation. This is quite often the case because a confined plasma does not necessarily
experience uniform electromagnetic fields so the plasma does not absorb the energy
uniformly (later chapters will show that electrons often absorb energy only near the
boundaries). Nevertheless, non-uniform energy deposition does not automatically
lead to non-uniform temperature, because the electron energy relaxation length
may be large compared to the system dimensions. Under these circumstances,
electrons may gain their energy in one location and subsequently share this energy
with other electrons far away from this location. The rigorous calculation of the
electron energy relaxation length requires kinetic theory that is beyond the scope of
this book (see the calculation proposed in Lieberman and Lichtenberg [2]). Godyak
[27] proposed a relatively simple expression that accounts for all electron energy
loss mechanisms in a discharge:

λε = λel

[
2m

M
+ νee

νm
+ 2

3

(
eεexc

kTe

)
νexc

νm
+ 2

3

(
eεiz

kTe

)
νiz

νm
+ 3

νiz

νm

]−1/2

, (2.37)

where λel is the mean free path for electron–neutral elastic collisions; the various
contributions are discussed next. The first term in brackets is due to electron energy
loss by elastic collisions; this leads to neutral gas heating. The second term is due
to electron energy loss by electron–electron (coulomb) collisions. These were not
treated above as they are usually not important in gas discharges. However, they
become important in high-density RF plasmas, such as helicon plasmas studied in
Chapter 8. The third and fourth terms are due to electron energy loss by inelastic
collisions (ionization and excitation). Finally, the last term accounts for the kinetic
energy loss at the boundaries. These various mechanisms for electron energy loss
will be discussed again in the next section when introducing the power balance in
global models.
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Q What system parameters will mostly control the electron energy relaxation
length?

A The terms in Eq. (2.37) all depend on gas pressure and composition since
λel = (ngσel)−1, and some terms depend also on the electron temperature.
Molecular gases have many more inelastic processes (dissociation, vibra-
tional and rotational excitations) than noble gases, so λε will be much shorter
in such gases.

Exercise 2.3: Energy relaxation length in argon For argon at 10 Pa, 300 K,
with Maxwellian electrons with temperature Te = 2 eV, calculate the energy
relaxation length when neglecting the electron–electron collisions.

Comment: At the low pressures typical of inductive and helicon discharges, λε

will be relatively large. Therefore, in many instances, although the power absorbed
by electrons is localized, the electron temperature is in fact almost independent of
the space coordinate. The regime when λε is much larger than the system size is
that of non-local electron kinetics. The first kinetic theory for the non-local regime
in DC glow discharges was proposed by Bernstein and Holstein in 1954 [28],
and revisited by Tsendin in 1974 [29]. It was later used in RF capacitive and
inductive discharges, as described in Kolobov and Godyak [30] and Kortshagen
et al. [31].

2.3 Global particle and energy balance

The fluid equations were obtained by integrating the kinetic equations over the
velocity coordinates. It is possible to further simplify the description by integrating
the fluid equations over the space coordinates. Doing so establishes balance equa-
tions that govern the time variations of global (volume-averaged) quantities. To
determine the discharge equilibrium, that is to calculate the mean electron density
and the electron temperature for given pressure and power into the reactor, one
needs to solve simultaneously two balance equations – the particle and the energy
balance equations.

2.3.1 Particle balance

To obtain the particle balance equation one must integrate the fluid species con-
servation Eq. (2.32) over space. For the sake of simplicity, consider first an elec-
tropositive plasma between two infinite plane walls (one-dimensional geometry)
placed at x = −l/2 and x = l/2; see Figure 2.5.
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Figure 2.5 A region of plasma maintained by volume ionization between parallel
walls separated by a distance l; the intensity of grey indicates plasma density
and the grey arrows indicate the magnitude and direction of wall-directed fluxes
where particles ultimately recombine. As will be discussed in the next chapter, the
boundaries between a plasma and a surface need special attention.

Q How would the spatial average of quantities like electron density be per-
formed over the space shown in Figure 2.5?

A The spatial average of density is its integral from −l/2 to +l/2, divided by l:

ne = 1

l

∫ l/2

−l/2
nedx. (2.38)

The spatial integral of Eq. (2.32) can be done, term by term, treating time and
space as independent coordinates:

∂

∂t

∫ l/2

−l/2
nedx +

∫ l/2

−l/2

∂(neue)

∂x
dx =

∫ l/2

−l/2
nengKizdx. (2.39)

The second term can be split and simplified into the fluxes at the two walls, since
the flux at the centre is zero, by symmetry:∫ l/2

−l/2

∂(neue)

∂x
dx = 2

∫ l/2

0
d� = 2�wall.

So the global particle balance is in effect

dne

dt
= nengKiz − 2�wall

l
. (2.40)

One can easily generalize this global particle balance equation to a three-
dimensional vessel of volume V and total surface area A by replacing the half
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scale length l/2 with V/A (for the slab in Figure 2.5 taking a wall section of area
Asect � l2 defines a volume lAsect with surface area ∼2Asect). In Chapter 3 simple
expressions will be derived for the flux at the wall as a function of the electron
temperature and the electron density at the reactor centre.

Q Confirm with reference to Eq. (2.27) that the particle balance Eq. (2.40)
includes a strong dependence on electron temperature and hence that in the
steady state (d/dt = 0) the electron temperature is linked to the gas pressure
and the system dimensions.

A Eq. (2.27) shows Kiz to be of Arrhenius (thermally activated) form. In the
steady state

Kiz(Te) = �wall

ne

(
1

ng

A

V

)
. (2.41)

The LHS is an exponential function of Te. On the RHS, the wall flux is
likely to be proportional to the mean electron density, so the electron density
dependence vanishes; however, the gas density ng is proportional to gas
pressure. Hence the electron temperature is linked to the gas pressure and the
system size.

In the case of an electronegative plasma, one would also need to consider attachment
and detachment processes that capture and liberate electrons in the volume.

2.3.2 Power balance

In general in electrically sustained discharges, electrical energy is almost entirely
coupled to the electrons so that consideration of the ion contribution to power
absorption is not necessary to determine the discharge parameters. A global energy
balance for an electrically sustained plasma can therefore be obtained by equating
the power absorbed by the electrons, Pabs, to the rate of energy loss associated with
the average lifecycle of electrons, Ploss, and any other loss processes.

The absorbed power term, Pabs, depends on the distribution of the electric field
and the current density and thus on the system configuration, i.e., the reactor type.
The electric field must be calculated by solving Maxwell’s equation simultaneously
with the fluid motion equations. This is a complicated problem and it will be shown
in the following chapters how it can be simplified by using an electrical equivalent
circuit model.

The rate of energy loss from the electron population, Ploss, is essentially indepen-
dent of the system configuration. There are two ways for the electrons to dissipate
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the energy: (i) by undergoing collisions with the gas, transferring energy inelasti-
cally into ionization and excitation, and elastically into the thermal energy of the
gas; (ii) by carrying kinetic energy to the boundaries. In the simple case of a noble
gas plasma, the first contribution can be expressed as

Ploss,coll = neng

[
Kiz εiz + Kexc εexc + 3m

M
Kel kTe

]
, (2.42)

where εiz and εexc are expressed in joules to give Ploss,coll in W m−3.

Q Show that the elastic contribution is based on Eqs (2.13), (2.23) and (2.31).
A The loss is proportional to the number densities of the two reactants, the

rate coefficient of the collision reaction (Kel) and the mean energy loss per
reaction. From these equations, taking the maximum energy transfer fraction
and the mean particle (electron) energy, the loss through elastic collisions is
therefore

ne × ng × Kel × 2m

M
× 3

2
kTe.

There are many other ways to lose energy in the case of molecular gases, for
instance by dissociation of the feedstock gas or vibrational excitation; in such cases
these should be included in (2.42). The second class of contribution is the kinetic
energy carried to the boundaries, and lost in the boundary electrostatic field or at
the wall. This, from Eq. (2.19), is written

Ploss,bound. = (2kTe + e�φ) �wall
A

V
, (2.43)

where A is the total surface area of the boundaries and e�φ is the voltage drop in
the boundary sheaths. The total loss power per unit volume is therefore

Ploss = Ploss,coll + Ploss,bound.. (2.44)

Taking the case of a noble gas plasma in the steady state (d/dt = 0), Eq. (2.40)
simplifies the electron power loss to

Ploss = εT(Te) �wall
A

V
(2.45)

with

εT(Te) = εiz + Kexc

Kiz
εexc + 3m

M

Kel

Kiz
kTe + 2kTe + e�φ (2.46)

expressed in joules. Together with the transport models of Chapter 3, the energy
balance links power input to a globally averaged plasma density.
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Whenever there is an imbalance between the power absorbed and the power lost,
there will be a change in the mean energy of the electron population. This can be
derived formally from the fluid equations, including one for the energy flux – the
result is

d

dt

(
3

2
nekTe

)
= Pabs − Ploss. (2.47)

The absorbed power is dependent on the nature of the plasma excitation and is
discussed further in later chapters.

2.4 The electrodynamic perspective

Warning: This section requires an appreciation of complex numbers and the
representation of trigonometric functions in terms of exponential functions
with imaginary arguments. Also, when discussing plasma waves there is often
a conflict in the use of symbols. Pay careful attention to the context of each
symbol and any subscripts and note that in this section:

� kB is used for Boltzmann’s constant but k = 2π/λ, the ‘wavenumber’ is the
magnitude of the wave vector, k.

� ε0 is the permittivity of free space and εp(ω) is a relative permittivity.
� δ is a characteristic distance over which disturbances diminish.
� nref, nreal and nimag are used to denote the refractive index and its complex

components. Do not confuse these quantities with a particle number density
n with various subscripts like 0, e, e0, i, i0 and g.

� σp, σm are conductivities NOT cross-sections.

Fluid equations may also be used to determine the plasma electrodynamics.
Plasmas can be described from the view point of conductors or dielectrics. The
particle motions that result from the action of an electric field on the charged com-
ponents of a plasma, especially steady or low frequency (fields), can be interpreted
as currents, which might be quantified by means of a conductivity. On the other
hand, the displacement of charged particles, particularly at high frequency, may
lead to a polarization, and one might therefore seek to describe the response in
terms of a permittivity. The two approaches are equivalent and the electrodynamics
of plasmas depend on the frequency domain under consideration.

Plasmas support electromagnetic waves and electrostatic waves. In the first case,
as in vacuum and in dielectric media, the waves propagate through the exchange
of energy between electric and magnetic fields, while in the second case the prop-
agation is associated with the exchange of energy between an electric field and the
thermal energy density of the charged components. The latter case is characterized
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by the fluctuating electric field being parallel to the wave vector, which points in
the direction of propagation.

The response of a plasma to the electromagnetic field is usually non-linear,
which makes the analysis complicated. However, when looking at small-amplitude
perturbations and neglecting all second-order and higher terms, it is possible to do
a linear, harmonic analysis:

ne → ne0 + ñe, where ñe � ne0

ue → ue0 + ũe, where ũe � ve

sinusoidal variations in time are expressed as Re
[
exp iωt

]
so that ∂/∂t → iω

likewise, variations in space like Re
[
exp −ikz

]
are simplified by ∂/∂z → −ik.

The simultaneous linearization of the fluid equations (particle motion) and of
Maxwell’s equations allow the determination of the plasma permittivity (or an
equivalent conductivity) and the dispersion relations of various wave modes. This
is done in many textbooks and we will not reproduce the calculation here, but
come back to it in Section 2.4.3. When the plasma is magnetized, the medium
is anisotropic and the waves behave differently depending on their direction rel-
ative to the magnetic field; we will consider this in Chapter 8. In the absence
of a magnetic field, the medium is isotropic. In the following, we give a simple
approach to determine the basic RF electromagnetic properties of an unmagnetized
plasma.

2.4.1 Plasma conductivity and plasma permittivity

Consider a small-amplitude electromagnetic wave in the radio-frequency domain,
having an electric field in the x-direction and propagating in the z-direction in an
infinite plasma. The electric field may be defined using complex numbers:

Ex = Re
[
Ẽx exp i(ωt − kz)

] = Re
[
Ẽx exp iω(t − nrefz/c)

]
, (2.48)

where nref is the refractive index to be defined by the permittivity, c is the speed
of light and k is the magnitude of the wave vector in the z-direction. Let us further
assume that:

– the ions do not respond to this high-frequency perturbation (see Chapter 4),
– the electron pressure gradient is not significant, effectively ignoring electron

thermal energy,
– there is no steady current in the plasma so the drift speed is zero (ue0 = 0).

There is an associated oscillating magnetic field pointing in the y-direction. The
two fields must be linked by Maxwell’s equations and one can use Eq. (2.48) in
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Faraday’s law followed by integration in time to specify the magnetic field. From
there the Ampère–Maxwell law links the current to the electromagnetic field. It is
sufficient here, however, to simply include Maxwell’s concept of a displacement
current arising from time-varying electric fields together with a particle current
determined from the drift term of the electron fluid equations.

Within our approximations, the electron momentum conservation equation
Eq. (2.33) linearizes to

ne0m iωũx = −ne0eẼx − ne0mνmũx. (2.49)

The magnitudes of the perturbations in velocity and electric field amplitude are
therefore related by

ũx = −e

m(iω + νm)
Ẽx. (2.50)

The net current is a combination of the displacement current arising from the
time-varying electric field and the conduction current due to the electron motion:

J̃x = iωε0Ẽx + ne0(−e)̃ux = iωε0

(
1 + ne0e

2

iωε0m(iω + νm)

)
Ẽx

= iωε0

(
1 − ω2

pe

ω(ω − iνm)

)
Ẽx, (2.51)

where ωpe ≡ (ne0e
2/mε0)1/2 defines a characteristic response frequency of elec-

trons in a plasma – the so-called electron plasma frequency (see Chapter 4).
The conduction current term can be absorbed into an effective, complex permit-

tivity for the plasma by defining

εp(ω) = 1 − ω2
pe

ω(ω − iνm)
= 1 − ω2

pe

ω2 + ν2
m

− i
νm

ω

ω2
pe

ω2 + ν2
m

. (2.52)

Tracking back through the calculation it can be seen that on the RHS the ‘1’
comes from the displacement current, whereas all other contributions relate to the
local particle motion. At low frequency one can simply neglect the displacement
term and then define a complex conductivity, which accounts only for conduction
currents:

σp = ne0e
2

m (iω + νm)
. (2.53)
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Q (i) Examine the above equations to find a condition on frequency for the use
of Eq. (2.53).
(ii) Use Eq. (2.53) to define a low-frequency conductivity, σm.

A (i) From Eq. (2.51) one can neglect the displacement term when |ω(ω −
iνm)| � ω2

pe, that is when

ω(ω2 + ν2
m)1/2 � ω2

pe.

This is typical of many low-pressure, RF plasmas.
(ii) In the very low frequency limit, one obtains the following
conductivity:

σm = ne0e
2

mνm
. (2.54)

Comment: See the warning about the collision frequency νm immediately
after Eq. (2.25).

2.4.2 Plasma skin depth

The dispersion of electromagnetic waves in a plasma is equivalent to that in
dielectrics in that one can define a refractive index n2

ref = εp. Given the complex
nature of the relative permittivity for a plasma, one can set nref = nreal + inimag,
then writing X = νm/ω and comparing with Eq. (2.52) gives:

n2
real − n2

imag = 1 − ω2
pe

ω2(1 + X2)
,

2nrealnimag = X
ω2

pe

ω2(1 + X2)
.

Ordinary dielectrics like glass have a real refractive index that is greater than
unity.

Q Infer the consequence for wave propagation of a complex refractive index by
putting nref = nreal + inimag in Eq. (2.48).

A In Eq. (2.48), when nimag > 0, waves are damped within a typical distance
δ = c/ωnimag. In the case where nreal = 0, there is no propagating wave and
the perturbation is ‘evanescent’.
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Figure 2.6 The square of the refractive index of a collisionless plasma; n2
ref < 0

implies an imaginary refractive index so that wave propagation is not possible and
perturbations are evanescent.

There are two frequency domains that can be analysed:

1. Above the plasma frequency, ω > ωpe (typically in the GHz range), up to pres-
sures of 100 Pa or so the collision frequency is usually very small compared to
the wave frequency, so that X � 1. Then,

nimag � 0, (2.55)

n2
real � 1 − ω2

pe

ω2
. (2.56)

The electromagnetic waves propagate in the plasma, which behaves as a dielec-
tric of refractive index (1 − ω2

pe/ω
2)1/2. The damping length is very long and the

wave propagates with very weak attenuation. This frequency regime typically
corresponds to microwaves with which interferometry or reflectometry can be
used to determine plasma characteristics (see Chapter 10). Figure 2.6 shows the
square of the refractive index. For ω > ωpe the refractive index has real values
that are less than unity and thus relate to waves propagating at a phase speed
greater than c, the speed of light in vacuo – there is no challenge to special
relativity though because the energy carried by these waves travels at the group
velocity, which turns out to be less than c.
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2. At lower frequency, ω < ωpe, which is typical of the radio-frequency domain, the
waves decay. Consider a pressure low enough for X � 1. Since ω2

pe/ω
2 > 1,

nreal → 0 and n2
imag ≈ ω2

pe/ω
2. The electron response to the electric field is

dominated by the inertial term in the momentum balance. The perturbations are
evanescent and diminish with a characteristic scale, the inertial (or collisionless)
skin depth given by

δ = c

ω nimag
= c

ωpe
. (2.57)

In the opposite high-pressure limit of X � 1, the response to the electric field
is dominated by the collision term that leads to low conductivity (that is high
resistivity) and one obtains n2

imag ≈ ω2
pe/(2ω2X), which leads to

δ = c

ω nimag
=

√
2c2X

ω2
pe

=
√

2

μ0 ω σm
, (2.58)

which is called the resistive (or collisional) skin depth.

In the present analysis it has been assumed that there is no steady magnetic field
and electromagnetic waves have been shown to propagate only above the plasma
frequency. It will be shown in Chapter 8 that electromagnetic waves propagate
throughout the frequency spectrum in magnetized plasma.

2.4.3 Electrostatic waves

Plasmas also allow purely electrostatic disturbances to propagate through an
exchange of energy between the electric field and the thermal energy density (nkT )
of charged particles, with perturbations in these quantities being in the direction
of the wave. The analysis will again use the linearized fluid equations for small
perturbations, further simplified by the following assumptions:

– the background electron pressure gradient is negligible, though the perturbation
to the electron thermal energy density plays a key rôle;

– the background electric field and gradients of particle drift speed are negligible,
though the perturbation to electric field plays a key rôle.

Assuming harmonic perturbations for all quantities, e.g., ñi ∝ exp [i(ωt − kz)], the
linearization of the particle conservation equations Eq. (2.32) leads to:

− ĩne(ω − kue0) + ine0kũe = 0, (2.59)

−ĩni(ω − kui0) + ini0kũi = 0. (2.60)
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The linearized momentum conservation equations Eq. (2.33) are

−imne0(ω − kue0)̃ue = −ne0qẼ − ikBTekñe − mνm (ne0ũe + ñeue0), (2.61)

−iMni0(ω − kui0)̃ui = +ni0qẼ − ikBTikñi − Mνi (ni0ũi + ñiui0). (2.62)

The linearized form of Gauss’s law is

ikẼ = q

ε0
(̃ni − ñe). (2.63)

It is convenient to define thermal velocities, ve = (kBTe/m)1/2 and vi =
(kBTi/M)1/2, and to introduce an ion frequency analogous to ωpe, namely ωpi =
(ne2/Mε0)1/2. Then doing the appropriate substitution and rearranging the set of
equations leads to[

(ω − kue0)2 − k2v2
e + iνmω − ω2

pe

]̃
ne = −ω2

peñi, (2.64)[
(ω − kui0)2 − k2v2

i + iνiω − ω2
pi

]̃
ni = −ω2

pĩne, (2.65)

which can be further manipulated to obtain the following dispersion relation for
electrostatic (longitudinal) waves:

ω2
pe

(ω − kue0)2 − k2v2
e + iνmω

+ ω2
pi

(ω − kui0)2 − k2v2
i + iνiω

= 1. (2.66)

This dispersion relation has different solutions depending on the frequency domain
under consideration. In most situations, one can neglect the drift velocities ue0,i0, or
consider the waves with respect to the moving fluids and then take ue0,i0 = 0. This
is what we do in the following. However, counter-streaming fluids may generate
instabilities (Chapter 9).

Electron plasma waves

First consider high frequencies, for which ions do not respond to the fluctuations,
ω � ωpi. Then the second term in Eq. (2.66) is negligible and the dispersion relation
reads

ω2 = ω2
pe + k2v2

e − iνmω. (2.67)

The last term describes damping, arising in this case from elastic collisions,
and may be neglected at low pressure. This relation was obtained by Bohm and
Gross [240]. At large k, the electron plasma wave propagates at constant speed, ve,
and at small k they become constant-frequency waves at ωpe (note that this disper-
sion relation has a similar form to the electromagnetic wave dispersion relation,
except that the latter propagate at the speed of light at large k). The phase speed
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ω/k is given by

vφ = ve

(
1 + 1

k2λ2
D

)1/2

. (2.68)

Ion acoustic waves

In the opposite limit of low frequencies, for which ions and electrons follow the fluc-
tuations, one can simplify the first term by noting that νmω, ω2 � k2v2

e , to obtain

ω2 = ω2
pi

(
1 + 1

k2λ2
D

)−1

+ k2v2
i − iνiω. (2.69)

This time the wave propagates at constant speed at small k and becomes a
constant-frequency wave at large k. This is more clearly seen by looking at the
phase velocity, which reads

vφ =
[
kBTi

M
+ kBTe

M

(
1

1 + k2λ2
D

)
− i

νiω

k2

]1/2

. (2.70)

At small k and for typical conditions of low-pressure plasmas, where Te � Ti and
νi ≈ 0, the phase velocity of the ion acoustic wave reduces to

vφ =
[
kBTe

M

]1/2

. (2.71)

This speed is also known as the Bohm speed and is of great importance in the physics
of low-pressure plasmas. This speed will feature in the next chapter, when consid-
ering the criterion for the formation of non-neutral regions at plasma boundaries.

2.4.4 Ohmic heating in the plasma

The RF current density and the RF electric field in a plasma are related by a complex
conductivity σp:

J̃ = σpẼ. (2.72)

It has been shown in Section 2.4.1 that when ω(ω2 + ν2
m)1/2 � ω2

pe, the displace-
ment current in the plasma can be neglected and the plasma conductivity is given
by Eq. (2.53). The argument of the complex conductivity σp gives the phase dif-
ference between the RF current density and the RF electric field for this frequency
regime:

tan θ = −ω/νm. (2.73)

The complex exponential notation introduced above for describing sinusoidally
varying quantities is useful in the analysis of linear relationships, but extra care
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is needed in circumstances that are non-linear, such as when dealing with power.
Therefore we will now go back to using the trigonometric functions directly. The
instantaneous, local, ohmic power per unit volume in a system is given by the scalar
product of current density and electric field vectors. So, for example, in a simple
1-D system such as a plasma between plane parallel electrodes, passing a current
J0 sin ωt , the ohmic power dissipation per unit volume is

Pv,ohm(x, t) = J (x, t)E(x, t) (2.74)

= J0(x) sin ωt E0(x) sin(ωt + θ ), (2.75)

which includes the phase difference between current and field.
It is often convenient to express the power as a function of the RF current density,

because the current density is conserved in a 1-D system and thus is independent of
space. If the pressure is not too low, ω � νm and so θ ≈ −ω/νm. Equation (2.75)
then gives the instantaneous power dissipation as

Pv,ohm(x, t) = J 2
0

σm(x)

(
1 − cos 2ωt

2
− ω

νm
sin ωt cos ωt

)
. (2.76)

If the current density varies sinusoidally, at a frequency well below the electron
plasma frequency, between ±J0, the time-averaged power per unit volume is

P v,ohm(x) = J 2
0

2σm(x)
. (2.77)

To compare this with a steady DC current density J0, set ωt = π/2, whereupon

Pv,ohm(x) = J 2
0

σm(x)
. (2.78)

Q Show that if there are no collisions the average power dissipation is zero.
A It can be seen from Eq. (2.73) that if there are no collisions (νm = 0), the

phase difference between the RF current and the RF electric field is π/2.
Then integrating the instantaneous power, Eq. (2.74) with φ = π/2, over one
RF period gives zero, showing that there is no net energy dissipated over one
RF cycle.

As νm/ω increases the magnitude of the phase difference decreases from π/2,
which leads to power dissipation. This power dissipation transfers energy from
the RF field into the electron population and in this book we will name this
phenomenon ‘ohmic heating’ or ‘collisional heating’. In low-pressure RF plasmas
additional heating mechanisms exist that are ‘collisionless’.
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2.4.5 Plasma impedance and equivalent circuit

The results of the previous section were obtained using the current density and the
electric field while treating the plasma as a conductor with complex conductivity.
Exactly the same result is found if instead of Eq. (2.72), we link the current density
and the electric field by a complex relative permittivity as in Eq. (2.51). In this
section, the plasma will be treated as a dielectric and the whole plasma behaviour
will be lumped into a single element carrying the total RF current.

The current through a medium is related to the voltage across it by its impedance.
Since RF plasmas are sustained by the application of voltages in order to drive
currents through a gas, it is useful to discuss the impedance of a slab of plasma in
these terms. Consider first the RF impedance, Z, of a slab of dielectric material, of
area A and thickness d:

1

Z
= iωC = iω

ε0εrA

d
, (2.79)

where εr is the relative permittivity for the material.

Q If the dielectric material is a plasma, how could that be accommodated in
Eq. (2.79)?

A If the material is a plasma its relative permittivity εr → εp, Eq. (2.52).

For a slab of plasma therefore

1

Zp
= iω

ε0εpA

d
= iωε0

(
1 − ω2

pe

ω(ω − iνm)

)
A

d
. (2.80)

Note that εp is a local quantity, so if Zp is to be a global quantity this expression
should be based on spatially averaged quantities. Equation (2.80) can be recast
into a combination of capacitance, inductance and resistance in the following
way:

1

Zp
= iωC0 + 1

iωLp + Rp
, (2.81)

where we have introduced the vacuum capacitance of the slab geometry:

C0 = ε0A

d
.

The inductance of the plasma slab, which results from the electron inertia, is

Lp = d

ω2
peε0A

= m

ne2

d

A
.
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The resistance of the plasma slab, which results from the elastic electron–neutral
collisions, is

Rp = νmLp = mνm

ne2

d

A
.

The electrical circuit equivalent to the plasma slab is therefore composed of a
capacitance in parallel with a resistance and an inductance in series. The capaci-
tance accounts for the displacement current, which as we have seen, is generally
negligible if ω � ωpe. The equivalent circuit then reduces to a resistance and an
inductance in series.

The voltage that develops across the plasma as a result of the flow of the RF
current, of complex amplitude ĨRF, is Ṽp = ZpĨRF. Since Zp is complex, there is
a phase shift between current and voltage. The temporal response is linear and
there are neither harmonics (multiples of ω) nor DC voltages generated across the
plasma. However, note that the values of these components are functions of the
plasma density, and in turn they must be functions of the amplitude of the current
(or voltage, or power) in the system. The resistance and the inductance are therefore
non-linear components: their values depend on the amplitude of the signals across
them (this is not the usual situation in electronic circuits).

2.5 Review of Chapter 2

This chapter has covered a range of basic topics relating to plasma dynamics and
equilibrium. The microscopic view of plasmas considers the constituent particles in
terms of their respective time-dependent, velocity distributions in a six-dimensional
phase space. Moments of the velocity distribution provide macroscopic variables
such as density, fluid speed and energy. When the distribution is Maxwellian, the
mean thermal speed and the mean thermal energy of a particle are

v =
(

8kT

πm

)1/2

and ε = 3

2
kT .

A further result from the kinetic model is that within a Maxwellian distribution,
although the net drift of particles is zero, the random thermal flux in any particular
direction is

�random = nv

4
.

In many discharge plasmas the charged particles are heavily outnumbered by
the neutral gas species, so that by far the most frequent collisions of the charged
particles are with gas atoms rather than with other charged particles. The most
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frequent collisions are elastic. Collision processes are described in terms of a mean
gas-dependent cross-section (σ ) or a mean free path (λ) or a collision frequency
(ν). For particles with a mean speed v in a gas of number density ng,

λ = 1

ngσ
and ν = ngσ v.

Excitation and ionization collisions require a minimum, or threshold, energy (εth)
to initiate the interaction. These processes then appear to be thermally activated at
a rate K ≡ < σv > that can be expressed in the form

K = K0 exp(−eεth/kT ).

In molecular gases the interactions of charged particles include dissociation of
molecules into charged and uncharged radicals.

Integrations over the particle distributions lead to the macroscopic quantities
that can be used to describe the components of plasmas in terms of fluid variables
such as density (n), mean speed (u) and pressure (p). Particle mean energy is linked
to the fluid temperature as above. In many situations an isothermal assumption is
made, implying that the gradients in fluid temperature are weak and that heat is
able to be exchanged with the fluid to maintain it at a steady temperature. When
this is not the case the system should be considered to be adiabatic.

In a steady-state discharge in a low-pressure atomic gas, ionization within the
volume is the dominant source of charged particles whereas recombination on
bounding surfaces is the dominant loss mechanism. Under such circumstances the
electron temperature of a self-sustaining plasma is controlled by a global balance
between volume ionization and ion outflow at the boundaries, constrained by the
gas pressure and the system size:

Kiz(Te) = �wall

ne

(
1

ng

A

V

)
.

The input power to a self-sustaining plasma must be balanced by the power lost
from the system. The power loss proceeds in proportion to the charge outflow at the
boundaries and can be tracked through the lifecycle of electrons. Each electron lost
from the system takes with it (i) the effective energy expended on ionization (which
includes collateral losses associated with excitation), (ii) energy transferred to the
neutral gas through collisions, (iii) thermal energy and potential energy deposited
at the plasma boundary:

Ploss =
[
εiz + Kexc

Kiz
εexc + 3m

M

Kel

Kiz
kTe + 2kTe + e�φ

]
�wall

A

V
.
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Figure 2.7 Electromagnetic properties in the different frequency ranges.

Plasmas can be viewed as being either dielectrics with a complex, frequency-
dependent, relative permittivity

εp = 1 − ω2
pe

ω(ω − iνm)
= 1 − ω2

pe

ω2 + ν2
m

− i
νm

ω

ω2
pe

ω2 + ν2
m

or as conductors with a complex, frequency-dependent, conductivity

σp = ne0e
2

m (iω + νm)
.

The former naturally lends itself to high-frequency considerations while the latter
suits the lower-frequency regime.

Electromagnetic waves encountering unmagnetized plasmas cannot penetrate
deep into them if the wave frequency is below ωpe. This will be the regime of interest
for inductive discharges presented in Chapter 7. If the plasma is collisionless, the
penetration is limited to the inertial skin depth

δ = c

ωpe
.

If the plasma is collisional, the penetration is limited to the resistive skin depth

δ =
√

2

μ0 ω σm
.

At higher frequency, ω � ωpe, the waves propagate and are often used as diagnos-
tics. The diagram in Figure 2.7 summarizes the above.

Electrostatic waves propagate in plasmas but only at frequencies above ωpe or
below ωpi. The high-frequency mode corresponds to electron plasma waves that
travel with a phase speed of (kBTe/m)1/2 for short wavelengths. The phase speed
of long-wavelength ion acoustic waves is (kBTe/M)1/2.
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The mean power dissipated in a slab of plasma (A × d) through ohmic heating
by RF current density of amplitude J0 at frequencies well below ωpe is

P ohm(x) = J 2
0

2σm(x)
Ad.

For the same conditions the plasma itself can be modelled as a series combination
of an inductance (Lp), which accounts for electron inertia, and a resistance (Rp),
which includes collisional dissipation, where

Lp = m

ne2

d

A
, (2.82)

Rp = mνm

ne2

d

A
. (2.83)



3

Bounded plasma

In the previous chapter fundamental equations were established that govern the
properties of low-pressure plasmas. Elementary processes such as collisions and
reactions were described, and fundamental electrodynamic quantities such as the
plasma conductivity and the plasma permittivity were derived. These concepts were
mostly considered in the context of an infinite plasma or else were viewed as part
of a global system without reference to the internal structure of the plasma volume.

Laboratory plasmas are confined. The consequence of the presence of boundaries
on the structure of an electrical discharge through an electropositive gas will be
discussed in this chapter. The basic idea to keep in mind in the discussion is that in
this case charged particles are predominantly produced in the plasma volume and
lost at the reactor walls. This was the basis of the global balances in the previous
chapter. Conditions in the central volume may differ to some extent from those
near the edge. Close to the walls a boundary layer spontaneously forms to match
the ionized gaseous plasma to the solid walls; whether insulators or conductors,
the walls have a major influence.

Figure 3.1 is a picture of a discharge generated between two parallel electrodes
by a 13.56 MHz power supply. The discharge appears to be stratified, with regions
of different properties. Light is emitted from the central region, with evidence of
internal structure particularly away from the main vertical axis. There is relatively
little emission from the boundary layers in front of the upper and lower electrodes.
Since the emission comes from the relaxation of excited states produced originally
by electron–neutral inelastic collisions, the weakness of emission is a clear sign of
the markedly reduced electron density in these regions.

The purpose of this chapter is to study the stratification, shown schematically in
Figure 3.2. The discussion will focus separately on two apparently distinct regions:
(i) the boundary layers at the walls, which turn out to be sheaths of space charge and
(ii) the plasma itself, where the net space charge is almost zero – in fact, the plasma
region is usually said to be where quasi-neutrality prevails. When considering a

59
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Figure 3.1 Side view of a plasma bounded by parallel-plate electrodes, showing
the dark space in front of the lower electrode – note that the camera was set to view
exactly along the lower electrode and does not therefore capture a clear image of
the dark space adjacent to the upper electrode.

space charge sheath space charge sheath

quasi-neutral plasma

ni

ne

ni

ne

nine =

Figure 3.2 Schematic representation of a bounded plasma. The quasi-neutral
plasma is separated from the walls by space charge sheaths. It is convenient
to show the electrodes in a vertical orientation – in practice, gravity is unimportant
and the orientation has no impact on the structure of the plasma, or of the sheaths.

DC discharge, the structure of the sheaths does not vary in time, whereas in the RF
domain, the sheaths expand and contract during an RF cycle. However, in the
next chapter it is shown that the fundamental properties of DC sheaths, with some
modifications, apply also to RF sheaths. One of the major differences lies in the
fact that under certain conditions an RF sheath makes a significant contribution to
the transfer of power from the supply into the electron population of the plasma.

This chapter first explains the necessity for space charge sheaths and describes
their properties as the voltage difference between a plasma and a solid boundary
increases. Then the transition from the sheath to the plasma is investigated, arriving
at the so-called Bohm criterion for sheath formation. Next, the three main theories
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of transport within the plasma region are established for the various regimes of
pressure.

Plasmas of industrial interest are often more complicated than the simple, low-
density, electropositive, atomic case. The sheath and transport theories are revisited
in a later chapter to encompass electronegative plasmas and high-density plasmas,
which both profoundly modify the transport.

Q The analysis of sheaths and the plasma transport will be based on the fluid
equations with isothermal electrons, and cold ions. Explain the meaning of
the terms in italics.

A The isothermal assumption means that temperature gradients will be ignored
(see Section 2.2.2); fluid equations are based on quantities like density and
drift speed, derived by averaging over particle distributions. Since Ti � Te,
thermal effects are negligible for ions – the so-called cold ion approximation.

The two fundamental equations discussed for the particle transport will be
Eqs (2.32) and (2.33). When studying the sheath region, the fluid equations will
be coupled to Gauss’s law (in terms of the scalar electric field E) or Poisson’s
equation (in terms of the electrostatic potential φ). Finally, most of the time, one-
dimensional calculations will be presented to avoid mathematical complexity and
so to concentrate on the physics.

3.1 The space charge sheath region

Suppose that an object is inserted in an electropositive plasma, and that this object
is not electrically connected to ground (a piece of a dielectric or a floating probe).
Initially, it will collect electrons and positive ions and the corresponding current
densities will be, according to (2.15),

Je = −e�e = −1

4
eneve = −ene

√
kTe

2πm
, (3.1)

Ji = e�i = 1

4
enivi = eni

√
kTi

2πM
. (3.2)

Since m � M and, as already mentioned, Te � Ti, so Je � Ji, the object would
quickly accumulate negative charge, acquiring a negative potential. It follows that
electrons would then start to be repelled, reducing the electron flux, while positive
ions would be accelerated towards the object. A steady state would be reached when
the potential of the object is sufficiently negative for the electron flux to exactly
balance that of the positive ions. Such a potential is called the DC floating potential;
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an expression will be derived for it later in this chapter. Note that the floating
potential is necessarily more negative than the potential of the plasma because
Te � Ti and m � M . However, if the object were conducting, it could be biased
by a voltage source and held at any potential with respect to the plasma, provided
an appropriate current from the source were circulating through the plasma.

3.1.1 Boltzmann equilibrium and Debye length

Plasmas are DC conductors and so it is difficult to sustain large electric fields
inside them. Large fields associated with charge on boundary surfaces will be
localized to a narrow boundary layer, known as a space charge sheath. It will now
be shown that there is a natural scale length for this space charge sheath. Suppose
that the plasma adjacent to the boundary is sustained by some form of ionization.
It simplifies matters if details of the process of ionization are not included here.
This is equivalent to saying that the region of interest is small compared with the
mean free path for ionization (1/ngσiz) – that is something to check afterwards.

Q It is also convenient to ignore elastic collisions in the space charge region –
what constraint does this put on the mean free path for elastic collisions?

A If collisions are unimportant to the modelling of the sheath region it must be
narrower than the mean free path for elastic collisions. That is a more stringent
condition because elastic collisions far outnumber ionization events (i.e., the
mean free path between elastic collisions is much shorter than that between
ionizing collisions), so this is definitely something to check afterwards.

Consider an infinite plate in the y and z-directions, in contact with an electropos-
itive plasma having the same ion and electron density ni0 = ne0. The potential of the
plasma is arbitrarily set at zero and the plate is biased at a potential slightly negative
with respect to this. The situation is shown schematically on the left-hand side of
Figure 3.3. Since the plate has a negative surface charge and a negative potential,
electrons must be repelled to some degree and their density will be reduced close
to the plate.

Ions will be attracted by the negative surface charge on the plate. The electric
force tends to accelerate them and thus the ion fluid speed will tend to increase on
approaching the plate. According to the steady-state ion continuity equation with
no local ionization, the conservation of flux requires the density to decrease as the
speed increases. In the situation shown on the left of Figure 3.3, the surface charge
is so small that the decrease in ion density is not yet significant – at least for the
sake of the argument.
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Figure 3.3 A small potential perturbation at the edge of a plasma defining the scale
length (left) and a larger potential drop across a Child–Langmuir sheath (right).

Electrons, unlike ions, are very mobile because of their relatively small mass,
and they will be repelled by the electric force (the electric field is directed towards
the plate), with a density depletion similar to that illustrated in Figure 3.3 (left).
Given that the electron mass is very small, and that collisions have been presumed
to be unimportant, the inertial terms in the steady-state momentum conservation
equation Eq. (2.33) are often swamped by the electric field and pressure gradient
terms. The electric field is related to the gradient of potential: in one dimension,
E = −dφ/dx.

Q If the electron pressure term balances the electric force, show that the electron
density establishes an exponential relationship with the local potential.

A The proposed equilibrium is between pressure gradient and electric field
terms

kTe
dne

dx
= −neeE = nee

dφ

dx
,

which integrates to the following important, exponential relationship:

ne(x) = ne0 exp

(
eφ(x)

kTe

)
. (3.3)
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The Boltzmann equilibrium for electron density, Eq. (3.3), applies only to the
isothermal situation. It is widely used for its convenience, though it is always
prudent to consider whether or not it is appropriate. The approximations made in
obtaining it are that electron inertia is unimportant (which implies that electrons
can be considered to respond instantaneously) and that the electron population is
isothermal (which implies that within the system of interest there are no times or
places where there is any significant variation in the mean electron energy).

Within the approximation of a small potential perturbation (|eφ| � kTe), the
space charge in front of the plate is therefore

e(ni − ne) = ene0

[
1 − exp

(
eφ

kTe

)]
� −e2 ne0 φ(x)

kTe
, (3.4)

where quasi-neutrality has been invoked at the edge of the plasma (ni0 = ne0)
and in the last expression the exponential potential variation has been linearized.
The potential φ is determined by Poisson’s equation, which is a combination of
Gauss’s law and the equivalence between the electric field and the negative potential
gradient, so that in one dimension

(ni − ne)e

ε0
= dE

dx
= −d2φ

dx2
. (3.5)

Poisson’s equation relates space charge to potential. Using Eq. (3.4),

d2φ

dx2
= e2 ne0 φ

ε0kTe
.

The appropriate solution of this linearized equation should satisfy φ = 0 when
x → ∞, so

φ(x) = φ0 exp

(
− x

λDe

)
, (3.6)

where

λDe =
√

ε0kTe

ne0e2
(3.7)

is the scale length of the space charge region, commonly known as the Debye length.
The small negative potential perturbation imposed at the plate relaxes exponentially
within a typical distance λDe as the free charges in the plasma become distributed
so as to screen the electrostatic potential.

Exercise 3.1: Debye length Calculate the Debye length for a plasma in which
the electron density is ne0 = 1.0 × 1016 m−3 and kTe/e = 2.0 V.
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Note that Eq. (3.7) may also be written

λDe = ve

ωpe
, (3.8)

where ve = (kTe/me)1/2 is the electron thermal speed (not the mean speed ve) and
ωpe is the electron plasma frequency. In the previous chapter, it was shown that
electromagnetic waves in a non-magnetized plasma diminish with a characteristic
skin depth δ. Here, electrostatic fields are shown to be screened with a characteristic
length λDe.

Q Show that λDe/δ = ve/c and hence deduce that electromagnetic waves pen-
etrate further into plasmas than electrostatic perturbations.

A Since δ = c/ωpe (from Eq. (2.57)), substituting ωpe = c/δ in Eq. (3.8) gives
the required result. Since the electron thermal speed is much smaller than the
speed of light, λDe � δ and so electrostatic perturbations penetrate less far
than electromagnetic waves.

3.1.2 The ion matrix model

In the preceding analysis it was assumed that |eφ| � kTe and that the ion density
remained unchanged from that in the plasma. The constraint on the potential is now
lifted but the constant ion density will be retained, so that throughout the sheath
the ions provide a uniform space charge, as if there were no acceleration of the
ion fluid. This is a convenient approximation that leads to a simple analysis; in
fact, a stationary matrix of ions might arise transiently if somehow the electrons
were swept away by the rapid application of a negative potential on the wall in
Figure 3.3 or if collisions were so frequent that ions were not accelerated in the
sheath.

First consider what happens to the space charge of electrons when the local
potential becomes large and negative: eφ � −kTe. The electrons will be strongly
repelled.

Q According to the Boltzmann relation, what value of eφ/kTe would reduce
the electron density to 1% of its initial value?

A Using Eq. (3.3), the problem amounts to solving exp (eφ(x)/kTe) = 0.01.
Taking natural logarithms: eφ(x)/kTe = ln(0.01) = −4.6.
Comment: In laboratory plasmas the electron temperature is typically in the
range 1–5 eV, so a retarding potential of a few volts can substantially reduce
the electron density.
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So if eφ � −kTe, the electron space charge in the sheath can be completely
neglected. The potential in the sheath must then satisfy Poisson’s equation Eq. (3.5)
with constant ion density and zero electron density:

d2φ

dx2
= −e ni0

ε0
.

This can easily be integrated twice from the wall where x = 0 through the ion
space charge to the boundary with the plasma:

φ(x) = −e ni0

ε0

(
x2

2
+ C1x + C2

)
.

Two boundary conditions must be supplied to determine the constants C1 and C2.
Since the plasma is a conductor it is reasonable from a sheath point of view to
set the electric field, −dφ/dx, to zero at the boundary with the plasma x = s: that
requires C1 = −s. The second condition is simply that the potential at x = s is
zero; that is, the plasma boundary is taken as the reference for the potential. That
requires C2 = s2/2, whereupon

φ(x) = −e ni0

2ε0
(x − s)2 . (3.9)

This electron-free ‘ion matrix model’ is the simplest model of a space charge
sheath. It has two major shortcomings, as its description implies – electrons are
excluded from the model and the ions do not ‘flow’ through the sheath, accelerated
by the sheath field. Nevertheless, it gives an initial means of estimating the size of
space charge sheaths. If the plate potential φ(0) = −V0 with respect to the plasma,
then

V0 = e ni0

2ε0
s2 ; (3.10)

note that V0 is the magnitude of the potential across the sheath and that the potential
has been defined so that in the sheath φ < 0. Since the net space charge would be
lower with both accelerated ion flow and electrons, this model underestimates the
sheath thickness for a given sheath potential.

Exercise 3.2: Ion matrix model Divide both sides of Eq. (3.10) by kTe/e

and rearrange it to show that an ion matrix sheath with 200 V across it, at
the edge of a plasma with electron temperature 2 eV, will be about 14 Debye
lengths thick (at the plasma boundary ni0 = ne0).
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3.1.3 The Child–Langmuir law

In this section ion flow will be included in the sheath model, but electron space
charge will again be neglected on the grounds that the model will be restricted to
regions of large negative potential: eφ � −kTe. To obtain the ion density variation
as a function of the potential variation, simultaneously continuity and momentum
equations for the ions, Eqs (2.32) and (2.33), must be considered.

In the interest of simplicity, the ion fluid will be presumed to be cold so until
further notice, Ti → 0 and at any point in space all ions move at the fluid speed
u(x) (the so-called mono-energetic ion assumption). Ions will also be presumed to
be singly charged.

The low-pressure (collisionless) case

Consider first the low-pressure limit in which the friction force is negligible
(Muνm � eE). In the steady state, the electric force acting on the cold ion fluid is
balanced by the remaining inertial term. In one dimension:

niMu
du

dx
= nieE.

Q Combine this ion momentum equation with E = −dφ/dx to confirm that the
ion energy is conserved.

A The combined equation is

Mu
du

dx
= −e

dφ

dx
,

which integrates to (
1

2
Mu2 + eφ

)
= constant.

So the total ion energy (kinetic plus potential) is conserved.

If the ions are at rest where the potential is zero, it follows that

1

2
Mu(x)2 + eφ(x) = 0 , (3.11)

and that eφ ≤ 0. To this can be added the steady-state ion continuity equation,
which balances the divergence of the ion flux with production and loss of ions,
but it has already been stated that ionization in the sheath region can usually be
discounted and recombination is predominantly a surface process. That means the
continuity equation simply requires that the ion flux has no divergence and therefore
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remains constant. In terms of the ion current density,

Ji = eni(x)u(x). (3.12)

Note that although it is more consistent than the ion matrix model, there is a logical
inconsistency in this model, since Eq. (3.11) gives the ion speed on entering the
sheath (φ = 0) as zero, yet Eq. (3.12) has the speed–density product non-zero
throughout, which requires infinite density at the plasma boundary. Fortunately,
there are no serious implications for the calculation developed here because ions
are accelerated to very large speeds in the sheath. Later, a more careful consideration
will show that ions do not in fact enter the space charge region with zero speed,
nor even with the ion thermal speed.

The combination of Eqs (3.11) and (3.12) allows the positive ion density to be
expressed as a function of the potential,

ni(x) = Ji

e

(
−2eφ(x)

M

)−1/2

. (3.13)

Substituting this density into Poisson’s equation, Eq. (3.5), (with ne = 0) leads to
the following differential equation for the potential:

d2 φ

dx2
= −Ji

ε0

(
−2eφ(x)

M

)−1/2

. (3.14)

Note that since

d

dx

(
d φ

dx

)2

= 2
d φ

dx

d2 φ

dx2
,

Eq. (3.14) can be changed into a form that can be formally integrated by multiplying
first by 2dφ/dx and then integrating from a general point x = x1 up to the plasma
boundary at x = s. It is convenient to use the notation φ′ to represent the derivative
of φ(x) with respect to x:

(φ′(s))2 − (φ′(x1))2 = 4
Ji

ε0

(
2e

M

)−1/2 [
(−φ(s))1/2 − (−φ(x1))1/2

]
. (3.15)

At the plasma boundary (x1 = s) two conditions can be set as for the ion matrix
model, namely that the field and the potential are both zero: φ(s) = φ′(s) = 0. Using
these conditions, one can integrate again from x1 = 0, where again φ(0) = −V0 is
the potential at the surface, to x1 = s where the potential has been defined to be
zero; this gives

V
3/4

0 = 3

2

(
Ji

ε0

)1/2 (2e

M

)−1/4

s. (3.16)
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This relation is known as the Child–Langmuir law. It was first derived as the
voltage–current relationship for a fixed space occupied by electron space charge in
a thermionic diode [32,33]. In the present case the sheath size s is not independently
fixed but is related to the magnitude of the potential between the plasma boundary
and the surface, V0, and to the ion flux crossing the sheath Ji/e (which will be
determined in Section 3.2). Equation (3.16) shows that for a given positive ion
current extracted from the plasma, the sheath thickness increases as the 3/4 power
of the voltage applied to an electrode.

Exercise 3.3: Child–Langmuir model Rearrange Eq. (3.16) to show that,
according to the low-pressure Child–Langmuir model, a sheath with 200 V
across it at the edge of a plasma with electron temperature 2 eV will be about
25 Debye lengths thick if the ion current density is Ji = ne0e

√
kTe/M .

The high-pressure (fully collisional) case

In the low-pressure case the energy of the ion fluid within the sheath is not
transferred to the gas, so the conservation of energy could be applied to the ion
motion. This is not always a good approximation. Taking the example of argon gas,
the ion–neutral mean free path is about λi ≈ 4 mm at a pressure P ≈ 1 Pa, from
Eq. (2.30). The sheath size may easily be greater than λi, even at relatively low
pressure. In this situation, energy conservation is not useful in determining the ion
motion. Including the collision term in the cold ion momentum equation Eq. (2.33)
leads to a high-pressure limit in which the electric force is entirely balanced by
collisions, that is the friction force. In the one-dimensional steady-state case it
reads

niMuνi = eniE, (3.17)

where the pressure term is neglected because ions are cold. It will be assumed
that the mobility is constant on the basis of the ion collision frequency being
fixed by ions moving slowly between collisions at their thermal speed vi � u,
so that

νi = vi/λi. (3.18)

The ion fluid drift speed is then proportional to the electric field

u = e

Mνi
E = μiE, (3.19)

where μi ≡ e/(Mνi) is called the ion mobility. Even though there are collisions, it
is still assumed that ionization and recombination do not occur in the sheath so the
ion flux remains constant and Ji = eniu throughout. Poisson’s equation can now
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be written for the high-pressure limit:

φ′′(x) = − Ji

ε0μiφ′(x)
, (3.20)

where φ′′(x) is the second derivative of φ(x) with respect to x. Note that as before
there is an inconsistency in this model since at the plasma boundary, where the
electric field (and hence the ion speed) is presumed to be zero, the ion space charge
must become infinite to maintain a finite positive ion current.

Q Show that in the high-pressure case

V0 =
√

8

9

s3Ji

ε0μi
. (3.21)

A Multiplying Eq. (3.20) by φ′(x) and integrating with the same boundary
conditions as before: (

φ′(x1)
)2 = 2Ji

ε0μi
(s − x1) .

Integrating φ′(x1) from x = 0 where φ(0) = −V0 to the plasma boundary
leads to Eq. (3.21).

Benilov [34] refers to this case as the Mott–Gurney law, noting its origin in semi-
conductor physics. This approximation is not satisfactory in most high-pressure
sheaths because the ion fluid speed always exceeds the thermal speed. In the next
section the mobility is taken to be a function of the drift speed, giving a more use-
ful representation for many plasma processing discharges (in particular in etching
discharges).

The intermediate-pressure (collisional) case

An intermediate regime, between free-flow (collisionless) motion and fully col-
lisional motion, has been introduced. This regime is called the variable mobility
regime [24]. It mainly consists of considering the ion fluid speed instead of the
ion thermal speed in determining the motion between collisions. The mobility then
becomes a function of the fluid speed and is written, in the one-dimensional case, as

μi = 2eλi

πM|u| , (3.22)

where λi is the ion–neutral mean free path. Following the same integration
procedure as in the fully collisional case above, a new Child–Langmuir law
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Figure 3.4 Normalized potential profiles for space charge sheaths according to
various models. Collisions tend to slow the ions, increasing their contribution to
the space charge and so narrowing the sheath – the intermediate-pressure model
has been used to calculate the collisional case. In each case the parameters have
been set to match the examples in the text.

expression is obtained, which can be written in normalized form as

s

λDe
=

(
8

9π

λi

λDe

)1/5 (
ne0e

√
kTe/M

Ji

)2/5 (
5

3

eV0

kTe

)3/5

. (3.23)

This relation will be termed the ‘collisional’ Child–Langmuir law in this text.

Exercise 3.4: The intermediate-pressure Child–Langmuir law Show that
according to the intermediate-pressure (collisional) model, a sheath with 200 V
across it, at the edge of a plasma with electron temperature 2 eV, will be
a little over 20 Debye lengths thick if the ion current density is such that
Ji = ne0e

√
kTe/M , which is no more than a convenient choice of scale factor,

and the mean free path for ions is such that λi = 3λDe.

Review

Figure 3.4 compares the ion matrix model with the two versions of the Child–
Langmuir models. The reduction of the ion space charge in the non-matrix models
makes the sheath thicker. The more collisions there are, the less the ion space
charge density falls, so that a highly collisional sheath tends towards the ion matrix
assumption of constant ion density.
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The three variations of the Child–Langmuir law, Eqs (3.16), (3.21) and (3.23),
present the same general features but with different scalings. For a given positive
ion current flowing in the sheath and a fixed pressure, the sheath size increases with
voltage (to the power of 3/4, 2/3 or 3/5 depending on the pressure regime). For
a given positive ion current and a fixed voltage V0, the sheath size decreases with
pressure, with the following scalings: s ∝ p−1/3 in the fully collisional case and
s ∝ p−1/5 in the partially collisional case. What remains unsatisfactory, however,
for all three models is the ‘undetermined’ value of the positive ion current and
the problem of sustaining a finite ion current at the plasma boundary, where all
three Child–Langmuir models presume that the ion speed is zero – the next section
addresses these issues.

3.2 The plasma/sheath transition

When the voltage across a sheath is very large compared to the electron temperature
(eV0 � kTe), the electron density is virtually zero in most of the sheath. However, in
the vicinity of the plasma/sheath transition, the electron density must be comparable
to the ion density. To study the transition, the space charge of both electrons and
ions must be included in Poisson’s equation; this will be done now.

3.2.1 The Bohm criterion: the transition from sheath to plasma

Consider the situation shown in Figure 3.5, which represents the boundary region
between a quasi-neutral plasma in a low-pressure gas and a space charge sheath; as
before, the ions will be assumed to be cold. The plasma/sheath transition takes place
at x = s, where φ = 0 and nis = nes = ns. In the ion matrix and Child–Langmuir
models the electric field at the plasma/sheath boundary is also set to zero, but that
is not consistent with a non-zero ion current. A more cautious approach is simply
to suggest that the field is nearly, but not exactly, zero: i.e., φ′ ≈ 0.

Applying the isothermal assumption allows the electron density to be linked to
the local potential by the Boltzmann relation (Eq. 3.3)

ne(x) = ns exp

(
eφ(x)

kTe

)
. (3.24)

For the cold ions, the low-pressure continuity and momentum equations, neglecting
the effects of ionization and momentum transfer collisions, are

ni(x)u(x) = nsus (3.25)

1

2
Mu(x)2 + eφ(x) = 1

2
Mu2

s , (3.26)
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ni(x)

−V0
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ne(x)

φ (x)
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0

s

=φ 0

≈φ′ 0

Figure 3.5 Densities and potential around the plasma/sheath transition region.

where us is the positive ion fluid speed at the plasma/sheath transition, building in
the fact that the ion fluid is not at rest at this point. The aim now is to find a speci-
fication for that speed. Substituting the ion speed u from Eq. (3.26) into Eq. (3.25)
gives an expression for the positive ion density as a function of the potential:

ni(x) = ns

(
1 − 2eφ(x)

Mu2
s

)−1/2

.

The net space charge in the sheath is therefore

ρ = ens

[(
1 − 2eφ

Mu2
s

)−1/2

− exp

(
eφ

kTe

)]
. (3.27)

Looking at Figure 3.5, it is clear that the potential falls on passing from the plasma
into the sheath (x decreasing), so dφ/dx > 0, while the net space charge becomes
positive, as x decreases, so dρ/dx < 0; even though both ion and electron densities
decrease, the latter must fall more rapidly. Thus, for φ < 0,

dρ

dφ
< 0.
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Differentiating Eq. (3.27) with respect to φ leads to a requirement that

e2ns

Mus

(
1 − 2eφ

Mus

)−3/2

<
e2ns

kTe
exp

(
eφ

kTe

)
.

Expanding this for small φ, the development of positive space charge requires that

e2ns

Mus

(
1 + 3eφ

Mus
. . .

)
<

e2ns

kTe

(
1 + eφ

kTe
. . .

)
and for φ < 0 this inequality is satisfied if at the boundary the ion speed is such that

us =
(

kTe

M

)1/2

; (3.28)

the leading terms then cancel, but the next order will always ensure that the
condition is met. This condition is known as the Bohm criterion, after the physicist
who established this relation in 1949 [35], so from now on this quantity will be
called the Bohm speed and designated uB.

Note that the Bohm speed is equal to the ion acoustic speed that was derived in the
context of low-frequency electrostatic waves in the previous chapter (Eq. (2.71)).
In order for the sheath to form, it is apparently necessary for the ions to reach the
‘sound’ speed u = uB. It is as if the sheath were coincident with the formation of
a shock in the boundary-directed flow of the ion fluid [36].

Q What potential difference would ions have to fall through without collision,
starting from rest, to acquire the Bohm speed?

A Equation (3.11) describes the consequence of collisionless ion acceleration –
replacing φ(x) in that equation by �φ, and using Eq. (3.28) for the final ion
speed, the potential drop required to achieve the Bohm speed is given by

e�φ = −1

2
M

(
kTe

M

)
.

In order for a sheath to form at the boundary, the potential variation between the
centre and the edge of a collisionless plasma therefore does not need to be more
than kTe/2e. Actually, this is only true if all ions are created at rest, in the centre.
In practice, ionization takes place throughout the volume. In that case the centre-
to-edge potential will have to be higher to compensate for some ions being much
slower than others.

Q What is likely to be the effect of introducing momentum transfer collisions
into the ion motion on the centre-to-edge potential difference?
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A Since collisions will tend to slow the ion fluid, in order to achieve the Bohm
speed at the boundary, the potential between centre and edge will again have
to become larger than kTe/2e.

The ion flux at the plasma boundary

When the sheath is free of ionization, the ion flux leaving the plasma, which is
�i = nsuB according to the above, is also equal to the positive ion flux arriving at
the wall:

�wall = nsuB. (3.29)

The flux leaving the discharge volume is a key quantity for global models (see
Eqs (2.40), (2.45) and (2.47)). Also, e�i gives the ion current density entering the
space charge sheath region, which is required for the calculation of the sheath size
using the Child–Langmuir model.

So far, the ion flux to the boundary is expressed as a function of the density
at the sheath edge ns. In the collisionless ionization-free case, the potential in the
centre must be kTe/2e higher than at the edge, and it follows from the Boltzmann
relation that the density in the centre n0 must be higher than that at the edge:

ns

n0
= exp

(
−1

2

)
≈ 0.6. (3.30)

In the more realistic case where ions undergo collisions with neutrals, and where
ionization within the plasma is included, the potential between centre and edge will
be greater and consequently the density drop will be more pronounced. Examining
these cases will be the topic of Section 3.3.

The potential of a floating surface

Now that an expression for the ion flux crossing into the sheath has been quantified,
it is possible to find the potential difference across the sheath that would retard
the electron flux to such an extent that the net current is exactly zero. This will
be the steady potential that any insulating, or electrically isolated, surface would
‘naturally’ acquire when exposed to a region of plasma. This floating potential was
introduced at the start of Section 3.1.

The ion flux to the surface has just been calculated. The electron flux was
discussed in the previous chapter (Eq. (2.17)) – when a surface retards a Maxwellian
distribution of electrons of temperature Te so only those with energy greater than
e�φ can reach it, the flux arriving at the surface is

�e = nsve

4
exp

(
−e�φ

kTe

)
. (3.31)
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Q Starting from

�e = �i

show that the floating potential of a surface exposed to a region of plasma
with cold ions of mass M and Maxwellian electrons (temperature Te)
is

Vf = kTe

e

1

2
ln

(
2πm

M

)
(3.32)

with respect to the potential at the plasma/sheath boundary.
A Substituting for the electron and ion fluxes from Eqs (3.31) and (3.29), with

�φ = −Vf , gives

nsve

4
exp

(
eVf

kTe

)
= nsuB,

which gives the required result on taking logarithms. Note that Vf < 0, since
m � M .

Exercise 3.5: Ion flux and energy at a floating surface For a plasma with
Maxwellian electrons characterized by a temperature of 2 eV and a central
density of 1016 m−3, in argon at a pressure for which the mean free path for
charge exchange collisions is λi ∼ 10 mm, estimate the ion flux and the ion
energy flux (power density) arriving at a floating surface.

3.2.2 The transition from plasma to sheath

The transition from quasi-neutral plasma to space charge sheath can also be viewed
starting from the plasma. Instead of separate electron and ion densities, a single
plasma density n is considered:

ne = ni = n. (3.33)

This quasi-neutrality condition, also called the plasma approximation, will be used
again in the next section when considering transport properties within the plasma.
In addition to the assumption of quasi-neutrality, collisions will be included through
a drag term in the ion momentum equation of the ion fluid. Ionizing collisions will
be considered in the next section, but for the present case it must be supposed
that the plasma is created somewhere further ‘upstream’. A steady flux of ions
enters the region of interest. The ion fluid motion is determined by (i) an equation
of continuity that sets the divergence of the flux to zero (no volume sources or
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sinks)

(nu)′ = 0 (3.34)

and (ii) a force balance

nMuu′ = neE − nMuνi, (3.35)

where νi is the collision frequency for momentum transfer between ions and the
background gas. The inclusion of the electric field in the quasi-neutral plasma
needs some comment. From the sheath perspective the field vanishes at the plasma
boundary. However, within the plasma a small field is required to reduce the flow
of electrons, and to sustain the flow of ions, to the plasma boundary. In this way,
volume production and surface loss can be kept in balance. The next section will
quantify the electrical potential profile in the plasma region that self-consistently
achieves this balance. The presence of the electric field in the plasma means that the
plasma is not exactly neutral, which is why it is described as quasi-neutral, meaning
that ion and electron densities are almost, but not exactly, equal. Finally, the electron
force balance is assumed to be dominated by the electric field (E = −φ′) and the
pressure gradient, so that

−neφ′ = −kTen
′. (3.36)

This is equivalent to the Boltzmann equilibrium. Using Eq. (3.36), Eqs (3.34) and
(3.35) can be rewritten:

un′ + nu′ = 0, (3.37)

nu u′ = −u2
Bn′ − nuνi. (3.38)

These can be manipulated further to express the density and velocity gradients in
the following way:

u′ = u2νi

u2
B − u2

, (3.39)

n′ = −nuνi

u2
B − u2

. (3.40)

It is evident that both gradients (n′, u′) become singular at u = uB, which suggests
that the quasi-neutral solution (i.e., a solution forcing ne = ni) breaks down when
ions reach the Bohm speed. See Figure 3.6. This time starting in the plasma, it
appears that the boundary with the sheath occurs when positive ions reach the
Bohm speed. Notice that in Figure 3.5 the boundary is at x = 0 and in the plasma
(x > 0) the ion speed is directed to the boundary (u < 0). Then, as Eq. (3.40)
shows, the density increases away from the boundary (n′ > 0), since u2 < u2

B.
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Figure 3.6 Schematic plasma density and ion fluid speed profiles on the plasma
side (x > 0) of a plasma/sheath transition from a 1-D quasi-neutral plasma model
with elastic ion–neutral collisions. Such a model cannot resolve the sheath and
matches singularities in the density and speed profiles to the boundary at x = 0.

3.3 The plasma region: transport models

After studying the sheath and the plasma/sheath transition, we move further away
from the boundary and now consider charged particle transport within the plasma
itself, where the plasma is produced by the ionizing collisions of electrons with the
background gas.

The transport within the plasma depends strongly on the pressure regime of
interest, which determines the relative importance of the various terms in the conti-
nuity equation and the force balance equations, Eqs (2.32) and (2.33), specifically
for the ion fluid. The temperature of all particles will be considered to be uniform.
The gas temperature and that of the ion fluid will be supposed to be close to that of
the walls that confine the plasma. However, it is easy to show that the value of the
electron temperature may not be arbitrarily chosen – it was shown in Section 2.3
that a global particle balance leads to

Kiz(Te) = �wall

ne

(
1

ng

A

V

)
, (3.41)

where �wall is the flux leaving the plasma, Eq. (3.29), and ne is the plasma density
averaged across space defined by the volume V and boundary area A. Writing the
density profile in the form n(x) = n0h(x) for a 1-D symmetrical plasma region,
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where h(x) is the form of the density profile, the mean plasma density is

ne = n0
2

l

∫ l/2

0
h(x)dx.

In this section, the form of the density profile, h(x), will be discussed in the
different pressure regimes. There are three models traditionally used to describe
the charged particle transport in plasma discharges. They correspond to the three
pressure regimes that were discussed in the context of the Child–Langmuir law.
The difference between these models arises from the assumptions made to treat
the transport of ions. The first to be considered is a collisionless solution at low
pressure, obtained in the early years of discharge physics by Tonks and Langmuir
[37]. Then, the opposite limit of high pressure, in which ions are fully collisional,
will be studied. This regime was described by Schottky [38], a few years before the
low-pressure analysis of Tonks and Langmuir. Finally, the intermediate pressure
regime of Godyak and Maximov [39] is discussed. In each case the goal will be to
obtain an expression for the edge-to-centre density ratio, which will be given the
symbol hl, where the subscript (l for linear) indicates an axial 1-D model.

Thus, Eq. (3.41) sets the electron temperature through the rate coefficient Kiz, in
terms of the Bohm speed uB, gas density ng, the system dimensions A/V and the
edge-to-centre density ratio ns/n0 (from Eq. (3.29)). It will be shown in due course
that the electron temperature depends solely on the product of the gas pressure and
the system size.

3.3.1 Low-pressure models

The sheath models did not need ionization to sustain the space charge because ions
and electrons were supposed to penetrate the region from an ‘upstream’ source. In
the case of the bulk volume of a plasma, ionization must be included to sustain it in
the presence of wall-directed fluxes. In one dimension, the ion continuity equation
with ionization is

(nu)′ = nngKiz, (3.42)

where ng is the neutral gas density and Kiz is the ionization rate coefficient defined
by Eq. (2.27). The collisionless fluid model is examined first; the model of Tonks
and Langmuir will follow later. The ion momentum equation can be written as being
predominantly a balance between inertial and electrical forces if one considers a
steady, collisionless flow of the ion fluid:

nMuu′ = neE. (3.43)
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The total neglect of collisions from the momentum conservation equation is artifi-
cial, since the fluid model requires all ions at any point to have the same speed –
strictly, the momentum required for newly generated ions to get up to speed should
be included. Nevertheless, the simplicity of the model makes it amenable to analy-
sis, from which some insight can be gained. To complete the set of equations, there
is the Boltzmann relation in the form of Eq. (3.36).

To solve these equations it is noted that the integration of Eq. (3.43) from the
centre (x = 0) into the positive half-plane, with φ(0) = 0 and u(0) = 0, gives
(remembering that E = −φ′):

u =
(

2e

M

)1/2

(−φ)1/2 (3.44)

and with Eqs (3.42) and (3.36):
e

kTe
φ′u − e

Mu
φ′ = ngKiz. (3.45)

Substituting Eq. (3.44) into Eq. (3.45) and integrating with the condition φ(0) = 0,
yields

−2e

3kTe
(−φ)3/2 + (−φ)1/2 = ngKiz

(
M

2e

)1/2

x, (3.46)

which is the equation for the potential. Using Eq. (3.44) again translates this into
an equation for the ion speed as a function of position:

u − u3

3u2
B

= ngKizx. (3.47)

Equation (3.47) is a third-order algebraic equation which can be solved analytically
to obtain u(x), and in turn φ(x) and n(x).

In Section 3.2.2 the speed and density derivatives were shown to become sin-
gular when u = uB, i.e., where the sheath forms. Equation (3.47) now locates the
plasma/sheath transition (i.e., the position at which u = uB) at

xs = 2

3

uB

ngKiz
. (3.48)

Note that if the sheath size is small compared to the plasma size, xs ≈ l/2. Equa-
tion (3.48) determines the electron temperature then – a very similar result was
found from the global particle balance in the previous chapter. Equation (3.44) gives
the potential drop between the centre, where u = 0, and the plasma/sheath transi-
tion, where u = uB, to be φ(xs) − φ(0) = −kTe/2e. Consequently, from the Boltz-
mann relation, the collisionless edge-to-centre density ratio is hl ≡ ns/n0 = 0.6
(as obtained at the end of Section 3.2.1).
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Letting ξ ≡ 2x/3xs, the solution of Eq. (3.47) is

u(ξ ) = 2uB cos

{
1

3

(
4π − arctan

(
4

9ξ 2
− 1

)1/2
)}

, (3.49)

which in turn determines the potential and the density as a function of the position
through the two relations

φ(ξ ) = −M

2e
u2(ξ ), (3.50)

n(ξ ) = n0 exp

(
eφ(ξ )

kTe

)
. (3.51)

In the above derivation, the ion momentum equation did not include a term to
account for the reduction of momentum due to newly generated ions being born at
rest but having instantaneously to catch up with the ion fluid flow. To deal with this
the analysis should be repeated with Eq. (3.43) replaced by

nMuu′ = neE − nMngKizu ; (3.52)

a complete analytical solution is not particularly simple [40, 41], though further
insight is possible without it.

Q Substituting Eqs (3.42) and (3.36) into Eq. (3.52) leads to

(nu2)′ = −u2
Bn′.

Integrate from the centre to the edge to show that in this case hl = 0.5 and
determine the boundary potential.

A At the centre u = 0 and n = n0 while at the edge u = uB and n = ns. The
integration simplifies because∫

y ′dx =
∫

dy.

So [
nsu

2
B − 0

] = −u2
B [n0 − ns] .

That means

hl = 0.5 (3.53)

φs = − ln 2

[
kTe

e

]
. (3.54)
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Figure 3.7 Schematic of how the Tonks–Langmuir model accounts for the distri-
bution of ion speed at any point in terms of the acceleration of ions born at all
points ‘upstream’ in the potential profile.

The new solution is therefore quite similar to the previous one, but the collisional
drag leads to a larger potential drop between the centre and the sheath edge and
consequently to a smaller hl.

Tonks and Langmuir [37], however, took a more general approach avoiding the
above somewhat contrived fluid model that requires instantaneous acceleration of
new-born ions up to the local fluid speed. Their solution treats the ions kinetically;
see Figure 3.7. The supposition is that as in the first part of this section the motion
of ions is collisionless so energy is conserved within the ion population. However,
ions only gain energy by falling freely in the electric field from their point of
generation. That means that ions generated at rest at one particular position only
contribute to the flux downstream from this position. There is no longer a single ion
fluid speed but a distribution of speeds reflecting the distribution of places where
ions are generated. As shown in Figure 3.7, the ion density at x is the result of
ions generated at all positions between zero and x. The elementary contribution to
density at x from ions born at z is therefore a function of the rate of generation in
a slab of width dz at position z, with z < x:

dn = n(z)ngKiz dz

u(x, z)
, (3.55)
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where u(z, x) is the speed at which ions generated at position z arrive at position
x. This speed follows from the energy conservation equation, and is

u(x, z) =
(

2e

M

)1/2

(φ(z) − φ(x))1/2 . (3.56)

The plasma density at position x is obtained by doing the sum (the integral) of all
contributions of slabs dz between z = 0 and z = x:

n(x) =
(

M

2e

)1/2 ∫ x

0

n(z)ngKizdz

(φ(z) − φ(x))1/2 . (3.57)

The calculation is not complete because n(z) is not yet specified. To do this,
quasi-neutrality is assumed so the plasma density follows the electron Boltzmann
equilibrium of Eq. (3.3) with ne0 = n0. This leads to an integral equation for the
potential:

exp

(
eφ(ξ )

kTe

)
=

(
kTe

2e

)1/2 ∫ ξ

0

exp (eφ(ξ1)/kTe) dξ1

(φ(ξ1) − φ(ξ ))1/2 (3.58)

where ξ ≡ ngKizx/uB and ξ1 ≡ ngKizz/uB. Tonks and Langmuir originally found
a power series solution for this equation. Later, Thompson and Harrison [42] found
a closed-form solution in terms of Dawson functions. The solution allows the eval-
uation of the following important quantities, to be compared to the fluid solutions:

hl = 0.425, (3.59)

φs = −0.854

[
kTe

e

]
. (3.60)

Figure 3.8 compares the three density profiles determined in this section on
plasma transport in the low-pressure (collisionless) limit. The solid line is the
solution of Tonks and Langmuir, the dashed line is the fluid solution with the
ionization term in the momentum equation and the dash-dotted line is the fluid
solution neglecting the ionization term in the momentum equation.

3.3.2 High-pressure model

The opposite pressure limit was considered in 1924 by Schottky [38], in a radial
model of the positive column in DC glow discharges, for which the ion–neutral
mean free path was significantly shorter than the column diameter, λi � r0. In this
case the ion motion is collisional, so energy is not conserved within the ion fluid
and the ion drag force must play an important role. Collisions keep the ion fluid
speed small or comparable with the ion thermal speed in the major part of the
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Figure 3.8 Density profile in the low-pressure regime: the solid line is the solution
by Tonks and Langmuir, the dashed line is the fluid solution with the ionization
term in the momentum equation and the dash-dotted line is the fluid solution
neglecting the ionization term in the momentum equation.

discharge. The thermal motion of the electrons is even more dominant over any
drift motion. If the situation is still dominated by production of charged particles
in the volume and loss of charged particles by recombination at the walls, the
electric field must be such that the electron and ion fluxes at any position within the
plasma are the same, otherwise quasi-neutrality would not be maintained. Since
both charges appear to diffuse together in this collision-dominated motion at the
same density, n, and the same speed, u, the expression ambipolar diffusion is used
to describe the process. The isothermal force balance from the momentum equation
for each charged species is

0 = −neE − kTen
′ − nmuνe

0 = neE − kTin
′ − nMuνi.

These can each be rearranged as expressions, respectively, for the flux in terms of
electrons and ions:

nu = −nμeE − Den
′ (3.61)

nu = nμiE − Din
′, (3.62)

where diffusion coefficients have been introduced to describe thermally driven
motion: De = kTe/mνe and Di = kTi/Mνi; the field-driven motion is described in
terms of the mobilities μe = e/mνe and μi = e/Mνi.
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There are three quantities to be determined: n, u and E and the third equa-
tion, as before, comes from a continuity equation that includes the ionization
source:

(nu)′ = n ng Kiz. (3.63)

Using Eqs (3.61) and (3.62), the electric field that maintains the equality of the
electron and ion fluxes is

E = −De − Di

μe + μi

n′

n
. (3.64)

Substituting this expression back into Eq. (3.61), the ambipolar flux � = nu can
be written as an effective ambipolar diffusion flux

� = −Dan
′, (3.65)

where an ambipolar diffusion coefficient has been defined as

Da = μiDe + μeDi

μi + μe
. (3.66)

Q Show that in the usual situation of μi � μe and Ti � Te,

Da ≈ kTe

Mνi
(3.67)

and that

� � nμeE, Den
′.

A Putting μi � μe in Eq. (3.66),

Da ≈ μi

μe
De + Di

≈ μi
kTe

e
+ Di

≈ μi
kTe

e
+ μi

kTi

e
.

The first result follows from inserting Ti � Te and μi = e/Mνi. Thus, Da �
De, so on combining Eqs (3.67) and (3.61), it becomes apparent that the
ambipolar drift must be the difference between two much larger effects, the
electric field drift and thermal diffusion, that are not quite exactly balanced.
Comment: Equation (3.67) can be obtained directly if one supposes that the
electrons are in Boltzmann equilibrium and the ions are cold, Ti = 0.
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It appears that ions ‘diffuse’ faster than their own free diffusion coefficient
(if no electrons were present) and electrons diffuse slower than their own free
diffusion coefficient, i.e., Di < Da < De. This is due to the fact that the ambipolar
electric field acts differently on electrons and ions: it accelerates the ions out of the
discharge while it confines the electrons.

To find the density profile, Eq. (3.65) is combined with Eq. (3.63) to obtain a
second-order differential equation:

n′′ = −β2n, (3.68)

where β2 = ngKiz/Da. This equation has a solution that is a linear combination
of sine and cosine functions. Considering the typical case in which the plasma is
confined between two electrodes placed at x = ±l/2, a symmetrical solution is
appropriate, the simplest of which is

n(x) = n0 cos βx. (3.69)

This in turn gives

�(x) = −Dan
′(x) (3.70)

= Dan0β sin βx. (3.71)

A suitable boundary condition would be to set the plasma density to zero at the
vessel walls at x = ±l/2, neglecting for the moment that a thin sheath may in
practice separate the quasi-neutral plasma from the wall:

β =
(

ngKiz

Da

)1/2

≈ π

l
. (3.72)

This is the boundary condition used by Schottky, and Eq. (3.72) is sometimes called
the Schottky condition.

Q Equation (3.72) can be said to determine the electron temperature – explain
how this is so.

A Since β = (ngKiz/Da)1/2 and Da, uB and Kiz are all functions of Te, then
Eq. (3.72) links the system size, the gas density and the electron temperature
(cf. Eq. (3.48)).

In the absence of any more certain knowledge, a sheath edge might be set at
the place where the ion fluid reaches the Bohm speed (x = l/2 − s). The edge-to-
centre density ratio, hl, that characterizes the density profile would then be derived
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from the flux at the sheath edge:

nsuB = Dan0β sin β(l/2 − s). (3.73)

Thus

hl = ns

n0
= βDa

uB
sin

[
β

(
l

2
− s

)]
. (3.74)

Under circumstances where the sheath size is small, s � l/2, Eq. (3.72) applies
and

hl ≈ πDa

luB
= π

uB

vi

λi

l
. (3.75)

In the ‘high-pressure’ regime λi � l, though somewhat offset by the uB/vi ratio
that scales with the square root of the electron-to-ion temperature, hl will tend to
be small, scaling with p−1. Franklin [43] has shown from a full solution of the fluid
equations that above about 10 Pa between plates separated by about 3 cm, the ions
do not in fact reach the Bohm speed, which places an upper pressure limit on the
validity of including a sheath in the model.

The original Schottky model sets the electron density to zero at the wall. Looking
back at Eq. (3.64), it is clear that since De �= Di and the density gradient is finite,
then the electric field becomes infinite at the boundary, even though there is no
room for a sheath. In fact, with ne = 0 at the plasma boundary the Debye length
is infinite and so if there were any sheath it would be infinitely thick. In addition,
the finite particle flux at the boundary means that infinite particle speeds must
accompany zero particle density. This condition is therefore unsatisfactory.

3.3.3 Intermediate pressure

Many processing discharges operate in an intermediate-pressure regime for which
neither Tonks–Langmuir nor Schottky solutions are appropriate. This regime is
such that the ion–neutral mean free path is smaller, but not significantly smaller,
than the typical discharge size λi ≤ l. The fluid conservation equations for ions
and electrons are essentially those of the Schottky model, except that the collision
frequency of ions is not taken as a constant but is supposed to depend on the ion fluid
speed. This reflects the fact that the ion thermal motion no longer dominates over
the drift motion and so ions move between collisions essentially at the fluid speed
with relatively little influence of the thermal speed. Under these circumstances, it
turns out that the collision frequency is related to the mean free path by

νi = π

2

ui

λi
. (3.76)
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Figure 3.9 Density profiles according to Raimbault et al. [44] (dashed line) and
to the heuristic solution of Lieberman and Lichtenberg [2] (solid line).

This form replaces the high-pressure form used earlier, νe,i = ve,i/λe,i. A similar
argument was used in discussing the intermediate-pressure regime of the Child–
Langmuir sheath model (cf. Eq. (3.22)). That means that for intermediate pressure
the mobility of ions, for example, should be expressed as

μi = e

Mνi(u)
= 2eλi

πM |u(x)| , (3.77)

and therefore varies in space. Putting this form of mobility into Eqs (3.61) and
(3.62) in combination with Eq. (3.63) does not lead to a linear differential equation
for any one of the variables n, u and φ as it did in the high-pressure case.

A solution for the variable mobility model has been given by Godyak [39]. The
exact solution is somewhat cumbersome, and the density profile is only obtained
in an implicit fashion. Recently, Raimbault et al. [44] obtained a more general
solution and included the effect of neutral depletion on the transport, as will be
seen in Chapter 9. Lieberman and Lichtenberg [2] have shown that the density
profile in this intermediate-pressure regime is fairly well approximated by the
formula

n(x) = n0

[
1 −

(
2x

l

)2
]1/2

, (3.78)

as shown in Figure 3.9, where the density profiles are compared.
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Figure 3.10 Density profiles for the different models with l = 0.03 m in argon:
the dash-dotted line is for the Tonks–Langmuir model (p < 1 Pa), the dashed
line is for the Godyak model (p = 3 Pa), the solid line is for the Schottky model
(p = 30 Pa).

As discussed above, the appropriate boundary condition should be that the ions
reach the sound speed at the sheath edge, that is at x = l/2 − s. With this boundary
condition, one obtains the expression for the edge-to-centre density ratio, i.e., the
hl factor. Raimbault et al. have shown that this factor is

hl ≈ 0.877

(
l

2λi

)−1/2

. (3.79)

Figure 3.10 compares the density profile for the Tonks–Langmuir model, the
Schottky model and the Godyak (variable mobility) model. The Tonks–Langmuir
curve has been obtained in the collisionless limit, for a 0.03 m vessel this would
obtain for room temperature argon below about 1 Pa, while the Schottky model
curve has been obtained for a pressure of 30 Pa. The Godyak model curve has been
obtained for a pressure of 3 Pa.

The general trend is that at low pressure the density is flatter in the central
region, and falls more abruptly near the edge. It is interesting to note that the
intermediate profile is flatter than the Tonks–Langmuir profile near the discharge
centre, but falls more near the edge with a smaller hl factor. This is partially due
to the fact that within the Godyak model, the friction force is too small in the
centre where u < vi. To correct this effect, and simultaneously introduce a smooth
transition from Godyak to Schottky as the pressure increases, Chabert et al. [45]
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have proposed the following expression of the collision frequency:

νi = vi

λi

(
1 +

(
π

2

ui

vi

)2
)1/2

, (3.80)

which can be used in numerical solutions of the transport equations.

3.4 Review of Chapter 3

This section summarizes the key results and concepts obtained in this chapter,
which are necessary to follow the discussion of the next chapters.

3.4.1 Positive ion flux leaving the plasma

In the previous chapter it was shown that the highest level of simplification to
describe the equilibrium in a confined plasma (sustained by an unspecific exter-
nal power source) is to evaluate simultaneously the particle balance, given by
Eq. (2.40), and the energy balance, given by Eq. (2.47). Solving these two equa-
tions requires an expression for the flux of charged particles leaving the plasma, as a
function of the average density, or as discussed, as a function of the plasma density
in the discharge centre. The transport models described in this chapter allowed the
finding of an expression suitable for various pressure ranges. It has been found that
in planar geometry, the flux leaving the plasma is given by

� = hln0uB, (3.81)

where n0 is the plasma density at the discharge centre and hl is the edge-to-centre
density ratio, which depends on the pressure regime under consideration. The three
pressure regimes can be joined heuristically to obtain

hl ≈ 0.86

[
3 + 1

2

l

λi
+ 1

5

Ti

Te

(
l

λi

)2
]−1/2

, (3.82)

where l is the electrode separation and λi is the ion–neutral mean free path. The
first term is the dominant term at low pressure when λi � l. In the intermediate-
pressure regime, the second term (from the Godyak solution) dominates, and at
higher pressure, when λi � l, the last term dominates. Note that this latter depends
on the electron temperature, which is also a function of pressure (see the next
section).
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Figure 3.11 Heuristic axial edge-to-centre density factor, hl ≡ ns/n0, from equa-
tion (3.82) with Ti/Te = 0.02. For a 3 cm gap in argon, the two dashed lines
correspond to 0.13 Pa and 13 Pa respectively.

Similar factors have been obtained in cylindrical geometry [2,39]. The heuristic
radial edge-to-centre density factor in that case is

hr0 ≈ 0.8

[
4 + r0

λi
+ Ti

Te

(
r0

λi

)2
]−1/2

, (3.83)

where r0 is the radius of the cylinder. In this case, the flux at the radial wall is
simply given by � = hr0n0uB.

The h factors are plotted in Figure 3.11 (for axial hl) and Figure 3.12 (for radial
hr0) as a function of l/λi and r0/λi, respectively. The two dashed lines approximately
separate the different models valid in different pressure regimes. For the axial case,
the plate separation (gap) is 3 cm, typical of etching reactors. In this case, for argon
gas, the intermediate-pressure (variable mobility) model is valid between 0.13 Pa
(1 mTorr) and 13 Pa (100 mTorr), which is the typical pressure window of plasma
etching reactors. For the radial case, a radius of 6 cm is typical of the source tube
of helicon or cylindrical inductive reactors (see Chapters 7 and 8). Then, again
for argon gas, the transition from low to intermediate pressure occurs at 0.065 Pa
(0.5 mTorr). In most cases, plasma processing reactors like cylindrical inductive
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Figure 3.12 Heuristic radial edge-to-centre density factor, hr0 ≡ ns/n0, from
Eq. (3.83) with Ti/Te = 0.02. For a 6 cm radius in argon, the two dashed lines
correspond to 0.065 Pa and 6.5 Pa, respectively.

reactors will operate above this threshold, i.e., in the intermediate-pressure regime.
Plasma thrusters may operate below 0.065 Pa, but the plasma is often magnetized
by means of an external static magnetic field and the transport theories described
above are not valid. The effect of the magnetic field on transport will be discussed
in Chapter 9.

Finally, in the context of electronegative plasmas and/or high-density plasmas
these h factors must be revisited (Chapter 9).

3.4.2 Electron temperature

An important result of the previous chapter is the fact that, to a first approximation,
the electron temperature is independent of the plasma density (and thus of the power
deposited in the plasma) – it only depends on the product of the gas pressure by
the typical reactor dimensions. In the steady-state, one-dimensional case of interest
here, Eq. (2.41) can now be written

nengKizl = 2hln0uB, (3.84)
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where the LHS represents the production of particles by ionization within
the plasma volume, and the RHS represents the flux of particles to the two
electrodes.

Q Show that the mean density of the Schottky model is ne = 2n0/π .
A This is effectively a straightforward integration of the cosine profile between

zero and π/2:

ne

n0
= 2

l

∫ l/2

0
cos(πx/l)dx = 2

π
.

Note that while the density profile is a cosine at high pressure, it becomes flatter
at lower pressure so the following inequality must hold:

2

π
≤ ne

n0
≤ 1. (3.85)

This shows that the mean electron density is quantitatively never more than 36%
less than the central electron density. Thus, for the purposes of estimation, it is
acceptable to set ne = n0 in Eqs (3.84). Then, using Eqs (2.27) and (2.28) for the
ionization rate, one can isolate the strong temperature dependence in Eq. (3.84):

kTe

e
= εiz

[
ln

(
lngKiz0

2hluB

)]−1

; (3.86)

notice that the error in setting ne = n0 is substantially lessened by the logarithm.
However, Eq. (3.86) is not an explicit formula for the electron temperature because
Kiz0, uB and hl also depend weakly on Te. Therefore, a typical procedure is to use
kTe/e = 3 V to estimate the value for uB and hl, and then to calculate kTe/e with
Eq. (3.86) and iterate a few times. Figure 3.13 shows a calculation of the electron
temperature as a function of pressure for an argon plasma generated between two
plates spaced by l = 3 cm. The solid line is a self-consistent iterative calculation,
that is Te variations are included in hl and uB. The dashed line is a non-self-
consistent calculation using fixed values: uB = 2500 m s−1 and Ti/Te = 0.02. The
data for argon are from Table 2.1.

In a finite cylinder, the particle balance may be written

ngKizπr2
0 l = uB(πr0hl + 2πr0lhr0), (3.87)

where r0 is the cylinder radius and l is the cylinder length. One could now rework
the temperature calculation starting from this balance.
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Figure 3.13 Electron temperature (in eV) as a function of pressure for an argon
plasma generated between two plates spaced by l = 3 cm. The solid line is a
self-consistent calculation, that is Te variations are included in hl and uB. The
dashed line is a non-self-consistent calculation using Eq. (3.86) with fixed values:
uB = 2500 m s−1 and Ti/Te = 0.02.

3.4.3 Floating potential and scalings for the sheath thickness

This chapter began by establishing the necessity to form sheaths. It was shown
that if any surface is electrically isolated (for example a piece of a dielectric or a
floating probe), then a sheath forms adjacent to it to collect ions while repelling
sufficient electrons to obtain zero net current. Invoking an exact flux balance

1

4
nsve exp

(
eVf

kTe

)
= nsuB, (3.88)

where

Vf = kTe

2e
ln

(
2πm

M

)
(3.89)

is the potential of an isolated surface with respect to the plasma/sheath boundary.
For an argon plasma, Vf ≈ −4.7kTe/e. Since the electron temperature is typically
around 3 eV, the potential drop across a floating sheath is typically around 15 V. One
of the questions addressed in the following chapter is how this result is modified
in the presence of RF components of potential.
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The simplest description of the sheath is the ion matrix model. It neglects the
effect of ion acceleration in the sheath and sets the electron space charge to zero.
The sheath thickness is simply related to the difference in potential across the
sheath:

s

λDe
=

√
2eV0

kTe
. (3.90)

The model underestimates the thickness of steady sheaths but it is particularly
appropriate for the transient response of a sheath to a negative voltage step.

If a large, steady (negative) potential is applied across a sheath, the Child–
Langmuir model relates the voltage across the sheath, V0, to the sheath thickness, s,
in terms of the electron temperature and Debye length (and so the electron density).
Again, three pressure regimes were identified, but each is shifted to higher pressure
than the corresponding transport regime because sheaths are usually much thinner
than the plasma dimension. The ion current in each case is due to the Bohm flux;
the plasma density is presumed to be in the range 1015–1016 m−3.

Collisionless:

λi

λDe
> 10 typically p � 30 Pa in argon

s

λDe
=

(
4
√

2

9

)1/2 (
eV0

kTe

)3/4

. (3.91)

Intermediate pressure:√
Ti

Te
<

λi

λDe
< 10 typically 30 Pa < p � 4 kPa in argon

s

λDe
=

(
8

9π

λi

λDe

)1/5 (5

3

eV0

kTe

)3/5

. (3.92)

High pressure:

λi

λDe
<

√
Ti

Te
typically p � 4 kPa in argon

s

λDe
=

(
9

8

ωpi

νi

)1/3 (
eV0

kTe

)2/3

. (3.93)

It appears that for given voltage and plasma density, the sheath tends to shrink with
increasing pressure since λi ∝ p−1.
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Radio-frequency sheaths

So far in this book on radio-frequency plasmas the properties of plasmas have been
investigated in the absence of periodic time-dependent parameters or boundary
conditions, therefore effectively in a DC steady state. In this chapter the restriction
to DC conditions will be relaxed to prepare the ground for the discussion of plasmas
that are sustained by radio-frequency (RF) power supplies. Although quantities such
as electric fields and potentials then become a combination of steady and periodic
values, there are many useful situations that appear to be (RF) steady states when
viewed over many cycles – all relevant quantities exhibit coherent oscillations and
identical conditions are reproduced within each cycle. When the plasma is sustained
by a combination of volume ionization and surface loss, and the response of ions is
restricted by their inertia, as is the case in many RF plasmas, the density structure
of the plasma shows barely any temporal modulation. The ion space charge in
sheath regions is similarly robust. That is, the density profile of the plasma and
that of the ions in the sheath remain steady. However, because the electrons are
much more mobile, they are able to respond virtually instantaneously, thereby
changing the spatial extent of sheaths and quasi-neutral plasmas. The potential
profile is related to the spatial distribution of charges through Gauss’s law, and
this will change in line with applied potentials and consequent rapid redistribution
of electrons. In view of the fact that the plasma remains quasi-neutral, any rapid
spatial change in potential occurs in the space charge sheath rather than in the
plasma.

The discussions in this chapter relate to conditions in the region of a single
sheath that is subjected to RF-modulated boundary conditions. Such a situation
arises in RF plasmas when a substrate is supported on an independent electrode,
separate from any structures involved in plasma generation. In some circumstances
the RF excitation of the plasma leads to RF fluctuations of the plasma potential,
or it may be that the substrate electrode is itself connected to an independent RF

96
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source. In either case there is a component of RF potential across the sheath at the
substrate. A similar circumstance can arise around an electrostatic probe inserted
in an RF plasma.

The first step will be to reflect on how ions would respond to changing accel-
eration and also on what might be retained from the original DC steady-state
descriptions in the previous chapter. Then certain cases will be analysed to provide
quantitative models. In later chapters, these models will be extended to cover the
whole of a bounded plasma, sustained by RF fields.

4.1 Response times

4.1.1 RF modulation of a DC sheath

The first situation to be considered is that of a plasma confined by a vessel which
will be taken as being at ground potential so that there is some well-defined
reference. Suppose too that the plasma is sustained by some external agency that
does not require any current to flow to the vessel walls. A space charge sheath will
form between the vessel surface and the main body of the plasma comprising a
net positive space charge, self-organized in such a way that there is no net current
through the sheath – the potential of the wall with respect to that of the plasma will
therefore be Vf , as given in Eq. (3.32). Equivalently, one can say that the plasma
naturally floats with respect to a grounded vessel at a potential Vp = −Vf :

Vp = kTe

e

1

2
ln

(
M

2πm

)
.

Next consider an isolated section of the wall, forming an independent electrode.
Again, any currents necessary for sustaining the plasma do not pass through this
electrode in any significant quantity. That isolated surface in turn floats with respect
to the plasma and because it is adjacent to the same plasma, of electron temperature
Te, it will find itself at ground potential, though isolated from it – if it were otherwise
a net current would be drawn from the plasma. Suppose next that the electrode is
connected to ground via a large capacitor maintaining its DC isolation but now
allowing RF currents to cross its sheath. The potential across the capacitor will be
whatever it needs to be to ensure that the electrode draws no net current, and it has
already been established that this occurs with both sides of the capacitor at ground
potential. Figure 4.1 summarizes the above, with the inclusion of a voltage source
that at this stage is switched off: V1 = 0. It will be shown later in this chapter that
the consequence of V1 �= 0 is the development of a steady (DC) voltage across the
capacitor.
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Figure 4.1 A capacitively coupled electrode adjacent to a plasma excited by some
unspecified external means; V = V1 sin ωt .

4.1.2 Characteristic frequencies

It is helpful to establish the speed with which charged particles can respond to
changes in electric fields. It has already been shown that the highest macroscopic
electric fields are associated with space charge sheaths. The transport models in
Chapter 3 showed that in quasi-neutral plasma the potential changes by about
kTe/e over a distance comparable with the length scale of the vessel, whereas in
the sheath the same change in potential occurs over much shorter distances that are
comparable with the Debye length, λDe. It follows that the strength of the electric
field in the sheath region can be estimated to be greater than, or of the order of,
kTe/eλDe. The response time for an electron in the vicinity of the sheath might
therefore be judged to be the time that a decelerating field of this magnitude would
take to slow a thermal electron to rest, or equivalently, starting from rest, the time
taken for an electron to reach the thermal speed. In that case, starting from the
equation of motion,

m
dv

dt
= −e

kTe/e

λDe
,

the time for the speed of the electron to reach ve = √
kTe/m from rest in a constant

electric field, that is the response time τe, is found by integrating; the minus sign
just gives the direction of the motion, so the response time is:

τe = mλDe

kTe

√
kTe/m = λDe√

kTe/m
= ω−1

pe . (4.1)

This is also the characteristic time that is deduced from considering a typical elec-
tron (v = ve) travelling through the Debye distance. In Section 2.4 the frequency ωpe

was introduced as a characteristic frequency in connection with electromagnetic
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and electrostatic waves in plasmas – here it is seen to be associated with the
response of electrons to the large electrostatic environment of the sheath/plasma
boundary.

For ions, a similar argument can be applied but, in the vicinity of the sheath,
the important speed to consider is the Bohm speed (

√
kTe/M) rather than the ion

thermal speed. The ion response time in or near the sheath is then

τi = MλDe

kTe

√
kTe/M = λDe√

kTe/M
= ω−1

pi . (4.2)

This is also roughly the time it takes an ion to cross the first Debye length of the
sheath, having entered at the Bohm speed.

Q Show that the electron and ion plasma frequencies defined in Eqs (4.1) and
(4.2) are consistent with

ωpe =
√

ne2

mε0
and ωpi =

√
ne2

Mε0
. (4.3)

A From Eq. (4.1)

ωpe =
√

kTene2

mε0kTe
=

√
ne2

mε0
. (4.4)

Equations (4.1) and (4.2) have the same form with m and M interchanged,
so the ion plasma frequency expression is also confirmed.

Exercise 4.1: Response times Calculate the ion and electron response times
near the boundary of an argon plasma where the charged particle density is
1016 m−3 and compare them with the period of a 13.56 MHz sine wave.

To further appreciate the significance of plasma frequencies in time-varying
sheaths, consider the motion of an ion in an electric field that is of the same
order of magnitude as a typical sheath field but which is varying sinusoidally at
angular frequency ω. In that case we can model the ion motion as follows:

d2x

dt2
= e

M

kTe

eλDe
sin(ωt),

with x the position of the ion. The solution will have the form

x = −x0 sin ωt,
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so

x0ω
2 = e

M

kTe

eλDe
.

The amplitude of the oscillation thus has the following frequency scaling for
oscillations in a field of this characteristic strength:

x0

λDe
= ω2

pi

ω2
. (4.5)

Thus, at modulation frequencies greater than the ion plasma frequency, the oscilla-
tion amplitude of an ion would be less than the Debye distance. The displacement
of electrons scales similarly with ωpe in place of ωpi. The following questions
explore in general how a sheath responds to sinusoidal modulation. More detailed
analysis then follows in the rest of the chapter.

Q Suppose that in Figure 4.1 the voltage source provides an output voltage
V1 sin ωt . Outline the nature of the response of the plasma/sheath/electrode
system in each of the following cases: (a) ω < ωpi, (b) ωpi < ω < ωpe and
(c) ωpe < ω; assume that the plasma remains steady so the ion current entering
the sheath can be presumed to remain constant.

A (a) ω < ωpi: There will be slow oscillations in the sheath potential and thick-
ness since Eq. (4.5) suggests large displacements of ions at low frequency.
(b) ωpi < ω < ωpe: More rapid oscillatory changes may leave the ions barely
disturbed while the electrons are swept back and forth, as the potential across
the sheath varies.
(c) ωpe < ω: In this frequency regime neither ions nor electrons are able to
react to the changing potential.
Comment: See further details in the next section.

Q Based on the argument leading up to Eq. (4.5), state how the amplitude of
oscillations is likely to scale with the amplitude of an RF electric field.

A Setting the RF field to be α times the characteristic sheath field of kTe/eλDe

would introduce a factor of α in Eq. (4.5), so the field dependence of the
oscillation amplitude is linear.
Comment: Models of the sheath region are required to give a scaling with
RF voltage.

Exercise 4.2: Characteristic frequency Evaluate the ion plasma frequency
for a plasma with 1016 ions m−3 when the ion mass is 1 amu (hydrogen), 18 amu
(water) and 40 amu (argon).
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4.1.3 Frequency domains

Low-frequency domain (ω � ωpi)

According to Eq. (4.2) ions moving at the Bohm speed would traverse a region
that is 1 Debye length wide in a time of ω−1

pi . In the very low-frequency regime
therefore ions (and electrons) are able to respond faster than an applied alternating
voltage would change conditions at an electrode surface. The time for ions to
cross the sheath is much shorter than the oscillation period. Very low-frequency
oscillations in the sheath potential can therefore be treated as a series of quasi-
static states – that is, a DC sheath model might be applied at any instant. The
current and voltage might then be estimated from an ion matrix model or one of
the Child–Langmuir models discussed in the previous chapter, though allowance
may have to be made for the space charge of electrons when the magnitude of the
instantaneous potential is low. Whenever the potential across the sheath is equal
to the floating potential (Section 3.2.1), the electron and ion current will cancel
and the net current in the external circuit will be zero. At all other potentials there
is an imbalance of charge arriving at the surface and currents must flow through
the external circuit and back to the plasma through the ground electrode. If the
ground electrode is sufficiently large compared with the isolated one, then the
return electrode will be able to accommodate the return current through a similar
but less significant fluctuation of the potential between it and the plasma (see also
Section 10.2).

Intermediate-frequency domain (ω � ωpi)

As the RF frequency approaches the ion plasma frequency the transit time of
ions across a sheath becomes comparable with the RF period. Their incomplete
interaction with the varying sheath field under these circumstances complicates the
ion dynamics. The energy gained by an ion in crossing the sheath now depends
on the phase and frequency of the RF modulation and therefore the ion energy
distribution function may be adjusted through these control of parameters – see
Section 4.2.3.

Higher-frequency domain (ωpi � ω < ωpe)

Oscillations at frequencies above the ion plasma frequency tend to leave the ions
barely disturbed while the electrons are swept back and forth, as the potential across
the sheath varies. In this regime electrons near the plasma/sheath interface are still
able virtually instantaneously to redistribute in response to changes in the charge
on the capacitor driven by the applied voltage. This is the situation at the boundary
in many of the RF-excited plasmas that are discussed in this book.
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Q Anticipate the effect on the ions of collisions with the background gas.
A Collisions with background gas will transfer momentum and energy out of the

ion motion. The energy distribution at the surface will therefore be modified.
Comment: Collisions were included in the DC models of Chapter 3.

Beyond the electron plasma frequency (ωpe < ω)

In this regime even the electrons are unable to keep up with changes induced
by the applied voltage. There is insufficient time to maintain the instantaneous
quasi-neutrality of the plasma bulk. Under these circumstances an electrostatic
disturbance can be launched from the electrode into the plasma as a wave of charge
inequality propagating according to the dispersion relation for electron plasma
waves, introduced in Section 2.4.3.

4.2 Ion dynamics

4.2.1 Ion motion in a steady sheath

Following on from the consideration of ions oscillating in RF fields, it is instructive
to model the motion of ions in a collisionless sheath, first under steady conditions
using one of the DC sheath models in Chapter 3 and then in the presence of RF
modulation of the sheath potential.

The general equation of motion for a singly charged ion is

d2x

dt2
= e

M
E(x).

Note that since we are examining the motion of a typical ion, x denotes its position
as well as the general spatial coordinate.

In a steady (DC) sheath the electric field is independent of time. The simplest
space charge model (Section 3.1.2) assumes constant ion density (ni = n0 = con-
stant) and no electrons (ne = 0). This can be described as an ion matrix, step model
in view of the fixed ion density and the sudden transition in electron density at the
boundary. In that case the electric field varies linearly with distance. Starting from
zero field at the plasma boundary (x = s), on moving into the sheath (x < s)

E = n0e

ε0
(x − s), (4.6)

so for the ions moving in the −x direction

d2x

dt2
= ω2

pi(x − s).
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Figure 4.2 Schematic ion trajectories (dashed lines) in a steady sheath: ions
approach the sheath boundary close to the Bohm speed, being significantly accel-
erated when inside the sheath.

Ion motion in a steady sheath is not expected to be oscillatory, so an appropriate
solution has the form

x = s − x0 sinh(ωpit), (4.7)

so that

v = −x0ωpi cosh(ωpit), (4.8)

with −x0ωpi being the speed of the ions as they enter the sheath at x = s. This
model is not self-consistent since the ion density is taken as constant even though
ions are accelerating. Under the conditions of any step model there is no lower
limit on the ion speed at the boundary (since the space charge is always positive),
but one might propose matching this crude sheath model to a quasi-neutral plasma
that expels ions at the Bohm speed. Applying a Bohm speed boundary condition to
a single integration of the motion equation sets the scale length of the ion motion
as x0 = uB/ωpi = λDe.

Figure 4.2 shows the trajectories of two ions, the first of which is described
directly by Eq. (4.7) and the second one is shifted in time, crossing into the
sheath at some later time. In this figure notice how the ions approach from the
plasma at the Bohm speed (uB = λDeωpi, so the initial trajectory traverses 10 λDe in
10 ω−1

pi ). Note also that the rapid steepening of the curves towards x = 0 indicates
that the transit time is dominated by the slower motion near the plasma sheath
boundary.



104 Radio-frequency sheaths

Q Derive an expression for the transit time of ions crossing a strongly biased
(eV0 � kTe), electron-free, ion matrix sheath, having entered at the Bohm
speed.

A The time taken by an ion to cross the ion matrix sheath, τIM, is found by setting
x = 0 and x0 = λDe in the equation for the position of an ion, Eq. (4.7):

0 = s − λDe sinh(ωpiτIM).

Next, combining this with Eq. (A.3.1) and then applying the limiting approx-
imation 2 sinh z → exp z for large z gives

τIM ≈ ω−1
pi ln(2

√
2eV0/kTe). (4.9)

The ion transit time is a few times ω−1
pi . It is dominated by the time it takes to

cross the first Debye length or so when the ion speed is about uB, after which ions
are rapidly accelerated so that the dependence on the potential across the sheath is
weak.

For an ion moving without collisions in a steady field its kinetic energy change
is derived directly from the local potential

�w = eE�x.

So, direct integration of the electric field in Eq. (4.6) gives the energy gained by
an ion as it moves in the steady field from the sheath/plasma boundary at x = s to
x = 0 as ∫ 0

s

eEdx = 1

2

n0e
2

ε0
s2.

Not surprisingly in this steady case the same result can be deduced from the
observation that after falling through the total sheath potential, V0 = n0e/2ε0s

2

(Eq. (3.10)), the kinetic energy of an ion will be increased by eV0. Other dis-
tributions of space charge would change the spatial variation of the electric
field but this would not affect the net transfer of electrical potential into kinetic
energy.

It must be remembered that as a representation of reality, the ion matrix, step
model is strictly limited to transients that occur faster than ions can respond (though
it also approximates aspects of a highly collisional sheath). Its application here to
study aspects of ion motion in a sheath is purely for the purpose of illustrating the
general principles in circumstances where the mathematical analysis is tractable.
More realistic models in general require more sophisticated analysis or numerical
methods.
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Figure 4.3 Schematic ion trajectories in a temporally modulated sheath (ω ∼ ωpi):
ions approach the sheath boundary close to the Bohm speed, being significantly
accelerated when inside the sheath.

4.2.2 Ion motion in an RF sheath

When the sheath potential fluctuates at around the ion plasma frequency then it
is important to consider the effect of the ion transit time and the phase at which
an ion approaches the space charge region. It has already been shown that the
transit time τIM ≈ ω−1

pi . Under these circumstances some of the ions will fall into
the sheath when it has a relatively small but fast growing potential across it. Other
ions, having entered the sheath when the potential difference was rising more
slowly close to its highest, may then be overtaken by the plasma boundary during
the phase when the sheath width decreases. These latter ions then re-enter the
sheath when the potential difference is lower. Figure 4.3 illustrates these different
trajectories. When ω ∼ ωpi, the speed of the oscillating plasma boundary becomes
comparable with the ion Bohm speed.

The ion trajectories through sheaths modulated by frequencies higher than ωpi

become increasingly less responsive to the sheath motion. The case for ω ∼ 5 ωpi

is shown in Figure 4.4. Once an ion comes within the range of the moving sheath
its speed begins to increase, driven effectively by the time-averaged electric field
in the region swept by the plasma/sheath boundary.

4.2.3 Ion energy distribution function

For the collisionless fluid models of electropositive plasmas discussed so far, in
the absence of temporal variations, ions at any position all have the same speed
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Figure 4.4 Schematic ion trajectories in a temporally modulated sheath
(ω ∼ 5 ωpi): ions approach the sheath boundary close to the Bohm speed, being
significantly accelerated when inside the sheath and being repeatedly overtaken
by the oscillating sheath.

and energy whether in the plasma or the sheath – the ion energy is simply a
function of position. It has also been tacitly assumed that even when collisions
with the background gas are significant, the ion fluid remains mono-energetic.
In this section the effects of plasma structure, sheath modulation and colli-
sions in the sheath will be considered as corrections to the model to account
for the distribution of ion energies that arrive at surfaces immersed in real RF
plasmas.

Ion energy distributions emerging from a DC plasma

In the Tonks–Langmuir model of the plasma (Section 3.3.1) the mono-energetic
assumption for the ion fluid was not imposed. Instead, this model considers the
ion population at any point to be comprised of ions that have fallen freely, starting
at rest, from various points upstream – ions are being generated everywhere in
proportion to the local electron density. So at the plasma/sheath boundary there
will be a distribution of ion speeds (and hence ion energy). Ions born close to
the boundary have barely begun to move, whereas the greatest speed and energy
corresponds to ions having fallen through the entire potential difference between
the centre and the edge (0.854kTe/e).

An expression for the ion energy distribution function (IEDF) at the
plasma/sheath boundary can be extracted from the model equations of Section 3.3.1
[46]. The result is plotted in Figure 4.5. After entering the sheath there will be vir-
tually no addition to the distribution as the electron number density falls rapidly
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Figure 4.5 The ion energy distribution function from a Tonks–Langmuir model with
kTe/e = 2 V (a) at the plasma/sheath boundary – the maximum ion energy corresponds
with ions falling through 0.854kTe/e and (b) after collisionless acceleration through a 25 V
DC sheath – the entire distribution is shifted up the energy axis by the potential across the
sheath.

and so the entire distribution is shifted by the change in electrostatic potential, and
the IEDF maintains its shape (the height and width are unchanged). At a surface
where the potential is Vs below that of the plasma/sheath boundary the IEDF is
spread between eVs and eVs + 0.854kTe. As Figure 4.5 indicates, after crossing a
DC sheath with several kTe/e across it, the distribution tends to become virtually
mono-energetic.

Q What will be the effect of elastic collisions (i) in the plasma and (ii) in the
sheath?

A (i) Collisions will spread the distribution to lower energy so that the peak
in Figure 4.5 will be lowered while the numbers of particles at lower ener-
gies are increased, maintaining the same area under the curve. (ii) As the
distribution is being shifted towards higher energy by the sheath potential,
collisions will be spreading the distribution back down towards zero energy,
again maintaining the same area under the curve.
Comment: In the sheath, ions readily gain sufficient energy to excite and ion-
ize the background gas – ionization will add new particles to the distribution.

Q In a steady-state sheath, the conservation of energy ensures a transfer of
electrical potential into the kinetic energy of ions at any point in space.
Suggest how to determine the energy of an ion when the sheath field is
changing.

A When the electric field changes in time the energy of any particular ion at a
given point in space is no longer related to the local electrical potential. In
that case the ion energy will depend on the detail of the trajectory through
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the time-varying field if the period of the oscillation is comparable with the
ion transit time. To determine the energy of an ion it will be necessary to
follow its trajectory, integrating the energy it gains through motion in the
local instantaneous field.

Low-frequency sinusoidal modulation

Warning: In this section be careful to distinguish between particle energy, w,
and angular frequency, ω (omega).

For simplicity consider first the case of mono-energetic ions crossing into a
sheath, across which there is a large sinusoidal modulation of potential. The volt-
age across the sheath changes most slowly through the phases of maximum and
minimum. Thus if the period of the modulation is much larger than the ion transit
time, at the surface there will be markedly more ions having energies corresponding
to the maximum and minimum potentials compared with the intermediate range.
This is illustrated in Figure 4.6. The shape of this idealized distribution is derived
as follows. Ions arrive at the plasma boundary at a steady rate dN/dt . The poten-
tial difference across the sheath is presumed to comprise a steady component, V0

(which will be considered further in Section 4.3), and a sinusoidal component with
amplitude V1 ≤ V0:

w = e(V0 + V1 sin ωt) + Mu2
B/2.

This equation conveniently links energy and time. Then, defining the ion energy
distribution function at any energy w as the number of ions with energy in the
range w to w + dw:

fi(w) = dN

dw
= dN/dt

dw/dt

= dN/dt

eV1ω cos ωt
.

For a high modulation voltage, V1 � kTe/e, it is scarcely necessary to consider
a more realistic distribution of ions leaving the plasmas as in the previous sec-
tion. However, in the case of low modulation the mono-energetic behaviour needs
to be convolved with the distribution that arrives at the plasma/sheath boundary
(Figure 4.5).

Q How would the low-frequency modulation of the IEDF be affected by (i) a
modulation waveform that had narrow peaks and broad troughs and (ii)
collisions?
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A (i) An asymmetric waveform that spends more time through the minimum
potential region, and least time through the high potential region, will lead to
an asymmetric IEDF with the lower peak more emphasized than the upper
peak.
(ii) Collisions will scatter some ions down to a lower energy, reducing the
peaks and spreading the distribution down to zero energy.

Intermediate and high-frequency sinusoidal modulation

When the modulation frequency is increased to around the characteristic response
frequency of the ions, they no longer respond fully to the RF fields. A full solution
of the ion dynamics requires numerical methods that relate the instantaneous values
of the potential across the sheath, the width of the sheath and the charged particle
currents [47].

At intermediate frequency the ions cross the sheath in a time that is comparable
with the RF period. When the pressure is high enough for ion–neutral collisions
to occur within the sheath, the ion trajectory depends not only on the phase at
which the ion enters the sheath but also the phase at which a collision occurs.
In certain conditions the resulting IEDF contains many pairs of peaks in the cas-
cade down to lower energy, corresponding with the periodic field structure in the
sheath.

As one might anticipate, increasing the modulation frequency narrows the IEDF,
effectively drawing the high and low-energy peaks closer together. At sufficiently
high frequency (ω � ωpi), the peaks effectively merge to give a mono-modal
IEDF. Under these circumstances ions spend several RF cycles in the region that
is swept by the sheath/plasma boundary. Figure 4.4 shows schematically how ion
trajectories develop over several cycles of high-frequency oscillations. Notice that
the ions are never slowed as they pass out of the bulk plasma onto the elec-
trode (or other) surfaces. Furthermore, the ion motion in this regime is effec-
tively governed by the average fields so that the trajectories closely resemble those
of a steady sheath (Figure 4.2). A review of various models of IEDFs is given
in [48].

Q The IEDF at a surface where the sheath is subjected to an RF modulation
is shown in Figure 4.7; comment on the modulation frequency and the ion–
neutral collision frequency, νi−n.

A In the collisionless and weakly collisional regimes there is a single, ‘high’-
energy peak so it appears that ω � ωpi; as the pressure increases the distri-
bution is spread to lower energies suggesting that ωpi ∼ νi−n at 4 Pa.
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Figure 4.6 The normalized ion energy distribution (IEDF) at a surface that is
biased 100 V (DC) below the potential of the plasma and modulated with a 50 V
amplitude sinusoidal potential – singly charged ions, in the absence of collisions,
ω � ωpi.

Q The IEDF at a surface where the sheath is subjected to an intermediate
frequency modulation V1 sin ωt will have a bimodal structure for heavy ions.
How would you expect the energy separation between the peaks (�w) to
scale with the V1, ω and M , the ion mass.

A The electric field in the sheath will increase with V1 (though not necessarily
in strict proportion) and the extent of the ion response will decrease as ω/ωpi

increases, so one might tentatively propose

�w ∝ V1/
√

Mω.

Comment: This does indeed appear to be the case [48].

4.3 Electron dynamics

In the previous section it was supposed that the instantaneous voltage across an
RF-modulated sheath would have a DC component of potential. This is generally
the case and in this section it will be shown that the non-linearity of the electron
dynamics is responsible for rectifying the RF voltage.

In an RF sheath the current collected by any electrode has, in addition to the
electron and ion (particle) currents, a contribution from the time-varying electric
field. This extra component of RF current increases in proportion with the frequency
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Figure 4.7 Argon ion energy distributions at the grounded electrode of a
13.56 MHz plasma with low power input (∼2 W) in a CCP between 10 cm diameter
plates, 2.5 cm apart [49].

since it depends on the rate of change of electric field. The electric field at an
electrode is directly related to its surface charge. In a plasma environment that
surface charge is itself matched by the space charge in the sheath, since the electric
field falls rapidly in crossing from the sheath (where it is of ∼Vsheath/λDe) into the
quasi-neutral plasma (where it is ∼kTe/el). This means that the displacement of
charge at the sheath/plasma boundary (say n0 electrons pushed back at a speed us)
is directly linked to the electric field at the electrode. The associated conduction
current in the plasma equals the displacement current at the electrode:

nseus = ε0
dE

dt

∣∣∣∣
electrode

. (4.10)

When the sheath motion is periodic, the displacement current averages to zero,
whereas particle currents do not necessarily do so, though conditions must be such
that the net particle current is zero for an isolated surface. During continuous RF
modulation of the potential between a surface and the plasma, the instantaneous
electron flux arriving at the surface will be modulated through the dependence of
the Boltzmann retardation factor on the instantaneous potential:

�e = 1

4
nsve exp

(
eV (t)

kTe

)
. (4.11)
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This section applies this relatively simple dynamic response to the high-frequency
regime when a surface is subjected to a capacitively coupled RF modulation
(Figure 4.1).

4.3.1 Floating potential under RF bias (ω � ωpi)

With reference to Figure 4.1, before any external RF oscillation is started, the
electron and ion fluxes must be equal as the electrode is isolated by the capacitance –
the Bohm flux of ions is balanced by a Boltzmann-retarded thermal flux of electrons.
The voltage difference between the electrode surface and the plasma boundary will
be the floating potential defined in the previous chapter:

VfDC = kTe

2e
ln

(
2πm

M

)
, (4.12)

where the subscript has been extended to indicate the ambient DC condition.
During continuous RF modulation the instantaneous electron flux arriving at

the surface will be modulated through the dependence of the Boltzmann retarda-
tion factor on the instantaneous potential, whereas that of the ions will remain
unchanged. Since there can be no steady current passing through the capacitor,
conditions must settle down such that the electron flux averaged over the RF cycle
equals the steady ion flux, otherwise the net current would not be zero. The dis-
placement current automatically averages to zero, so it does not need to be included
here. Therefore

<
1

4
nsve exp

(
e(V1 sin ωt + VfRF)

kTe

)
> = nsuB, (4.13)

where the potential VfRF relates to floating with RF bias, and is the yet to be
determined ‘RF floating potential’ and the angled brackets imply averaging over
one period (2π/ω):

< f (t) > = (ω/2π )
∫ 2π/ω

0
f (t)dt.

Since in the present case f (t) includes an exponential function, it is useful to know
that

(ω/2π )
∫ 2π/ω

0
exp(a sin ωt)dt = I0 (a) (4.14)

in which I0 is the zero-order modified Bessel function which has the form shown in
Figure 4.8; for small arguments the function tends to unity and for large arguments
it becomes close to a pure exponential.
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Figure 4.8 The modified Bessel function I0(x).

Q Show that the presence of an RF voltage across a sheath shifts its floating
potential by −(kTe/e) ln (I0 (eV1/kTe)) (which is known as the RF self-bias).

A Starting from Eq. (4.13), the time-averaged flux balance requires that

1

4
nsve exp

(
e(VfRF)

kTe

)
(ω/2π )

∫ 2π/ω

0
exp

(
eV1 sin(ωt)

kTe

)
dt = nuB.

Expressing the integral in terms of the modified Bessel function:

1

4
nsve exp

(
e(VfRF)

kTe

)
I0

(
eV1

kTe

)
= nuB.

Inserting the usual expressions for ve and uB, rearranging and taking loga-
rithms now gives the floating potential under RF-biased conditions:

VfRF = kTe

e

[
1

2
ln

(
2πm

M

)
− ln I0

(
eV1

kTe

)]
. (4.15)

Comparison with Eq. (4.12) shows the additional shift in floating potential.

A reference electrode without RF bias would adopt a potential given by
Eq. (4.12), so that the potential difference between the biased and unbiased elec-
trode amounts to just the second term in Eq. (4.15). This term is therefore often
called the ‘self-bias voltage’. This relationship between the RF self-bias and the
amplitude of the applied RF voltage is shown in Figure 4.9. For V1 < kTe/e the
floating potential is close to the DC value, but for V1 � kTe/e the magnitude
of the floating potential gets ever closer to the RF amplitude. Figure 4.10 shows
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Figure 4.9 Floating potential for a sinusoidally modulated sheath in an argon
plasma (40 amu); the floating potential approaches the RF amplitude V1 at high
bias while at very low bias the RF self-bias becomes negligible and the floating
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Figure 4.10 Distribution of DC and RF potentials assuming that the area of the
RF-driven electrode is small compared with the ground area and that external
capacitance is sufficiently large for it to have negligible RF impedance compared
with the electrode sheath; V = V1 sin ωt .

how the DC and RF potentials are primarily distributed across the various ele-
ments when the RF electrode is small and the external capacitance is large. In
terms of Kirchoff’s laws, the original voltage sources are the external RF and the
normal floating potential at the ground sheath. The RF voltage almost entirely
appears inverted across the adjacent sheath, accompanied by a DC component, the
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self-bias, that adds to the normal floating potential; the self-bias voltage must also
appear inverted across the external capacitor so that there is no net voltage around
a loop from the plasma, round the external circuit and back to the plasma.

The RF impedance of the sheath has not been required for this discussion of the
self-bias but it will be considered later after a fuller model of the sheath has been
outlined.

4.3.2 Ion flux and energy onto an RF electrode

On the basis of the above discussion estimates can be made of the thickness of
the RF sheath. More importantly, estimates can also be made of the flux of ion
kinetic energy arriving at a plane RF-biased electrode. Suppose that the plasma in
Figure 4.10 is formed in argon at 1 Pa (ion–neutral mean free path about 4 mm),
has a mean charged particle density of 1016 m−3 and an electron temperature of
2 eV. Suppose also that the RF potential applied to the isolated electrode has an
amplitude of 50 V at a frequency of 13.56 MHz.

Exercise 4.3: Collisionality of RF sheaths On the basis of the DC compo-
nents of voltage only, use the ion matrix model to estimate the width of the
sheath at the surface of the RF-biased electrode in Figure 4.10 given the above
conditions and suggest whether or not ions are likely to cross this space without
collision.

Ions that cross the sheath without collisions arrive at the electrode with kinetic
energy equivalent to the electrostatic potential energy. The ion plasma frequency
compared with the RF frequency is

ωpi

ω
=

√(
1016 × [1.6 × 10−19]2

)
/
(
1.67 × 10−27 × 40 × 8.9 × 10−12

)
2π × 13.56 × 106

∼ 1

4
.

So the ions will barely respond to the RF fluctuations and will reach the electrode
having an energy close to the mean sheath potential Eion ∼ −eVfRF .

Exercise 4.4: Ion energy flux Estimate the ion energy flux onto the surface
of the RF-biased electrode in Figure 4.10 for a collisionless plasma of central
density 1016 m−3 and electron temperature 2 eV.

4.3.3 RF self-bias with more than one frequency component

If they are completely independent, which is to say that there is no phase syn-
chronization between them, additional RF components each produce additional
self-bias in proportion to ln(I0(ai)), where ai is the amplitude of the ith component.
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When there is a strict phase relationship then the self-bias depends on that phase
difference, especially if the frequencies are not too widely separated (such as a
fundamental and its second harmonic). For phase-locked harmonic waveforms the
self-bias is generally less than would be achieved if the effects of each simply
contributed independently.

Q Calculate the self-bias of an isolated electrode for a square wave modulation,
amplitude Vsq, period τ .

A Modifying the integral in Eq. (4.13):

1

4
nve exp

(
e(VfRFsq )

kTe

)
(1/τ )

[∫ τ/2

0
exp

(
eVsq

kTe

)
dt

+
∫ τ

τ/2
exp

(
−eVsq

kTe

)
dt

]
= nuB,

which simplifies to

VfRFsq = kTe

e

[
1

2
ln

(
2πm

M

)
− ln

(
cosh

(
eVsq

kTe

))]
.

Exercise 4.5: Tailored IEDF The form of the IEDF depends on various
factors. Suggest how these might be used to manipulate the precise shape of
the IEDF to achieve a narrow distribution at a specific energy on a biased,
insulating substrate.

4.4 Analytical models of (high-frequency) RF sheaths

This section investigates the structure and impedance of an RF sheath in the
frequency range ωpi � ω � ωpe. It is necessary to build models that include the
distribution of space charge and the displacement currents (associated with time-
varying fields) as well as the particle currents. A simple analysis treats the space
charge using a constant ion density (n = n0), as in the DC ion matrix model; this
case is sometimes also called a ‘homogeneous’ sheath model. More realistic models
include ion motion resulting in a non-uniform (or ‘inhomogeneous’) distribution
of ion space charge.

4.4.1 Equivalent circuit of an RF sheath

There are three parallel contributions to the current that crosses an RF-modulated
sheath formed at an electrode of area A, namely the ion, electron and displacement
currents:

IRF = −n0euBA + n0eve

4
A exp

−eVsh

kTe
+ Id. (4.16)
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Figure 4.11 A schematic circuit model of an RF sheath featuring a constant current
source (ion current), a reverse-biased diode (electron current) and a non-linear
capacitor (displacement current). The ion source and diode will each dissipate
power in proportion to the current through it and the component of in-phase
voltage across it.

In the high-frequency range the steady Bohm flux of ions in circuit terms has the
appearance of a constant current source. The electron current is controlled by a
Boltzmann exponential function of the voltage across the sheath, which gives it
the same current–voltage characteristic as a reverse-biased diode. Since a capacitor
is the archetypal component through which a displacement current flows, this
provides the third parallel element of the equivalent circuit shown in Figure 4.11.
This third element though is no ordinary capacitor, as the capacitance changes in
response to the RF modulation – the dielectric (sheath) thickness depends on the
amplitude of the RF modulation. Therefore it is necessary next to consider models
for the behaviour of the space charge in an RF sheath so that this non-linear element
can be specified.

4.4.2 Constant ion density models of RF sheaths

The first case to examine is that of a constant ion density (ion matrix or homo-
geneous) sheath with a superimposed RF modulation. From the perspective of
the electrons, the ions therefore appear to form a fixed matrix of space charge,
which has a constant density, as in the DC case. Although this model is not
self-consistent, its simplicity allows rapid insight without the burden of numerical
methods. Figure 4.12 sets out the geometry and confirms the definition of key quan-
tities in the analysis. The task is to find expressions for the current, sheath potential
and sheath width that arise in response to the application of an RF modulation of
the sheath.
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Figure 4.12 An RF ion matrix sheath; the ion density is constant throughout at n0
and s(t) is the instantaneous sheath width, so that ne = n0 for x > s(t); sm is the
maximum sheath extent and s is the mean sheath width.

Gauss’s law in the sheath relates the electric field gradient to the net space
charge:

∂E

∂x
= n0e

ε0

(
1 − exp

eφ

kTe

)
, (4.17)

in which � is the potential with respect to that in the plasma where ne = n0.
The electron space charge can be ignored in Gauss’s law wherever |eφ/kTe| � 1.
It is reasonable to continue the analysis on the basis that this holds everywhere,
presuming the total voltage across the sheath to be so large that the region where
eφ/kTe � 1 does not hold is small in extent. Then, using E = 0 at x = s(t), that
is at the plasma/sheath boundary, Eq. (4.17) can be simply integrated to give the
electric field at any point in the sheath as

E(x, t) = n0e

ε0
(x − s(t)) . (4.18)

The total voltage across the sheath (with respect to the electrode), at any instant,
is found by integrating the field from the electrode at x = 0, to the place where
electron and ion number densities are equal:

Vsh(t) = −
∫ s(t)

0
E(x, t) dx

= −
[
n0e

ε0

(
x2

2
− s(t)x

)]s(t)

0

= n0e

2ε0
s(t)2. (4.19)
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Equation (4.18) also shows that Maxwell’s displacement current in the sheath is
everywhere given by

ε0
∂E

∂t
= −n0e

ds

dt
.

This also conveniently shows that the displacement current in the sheath is con-
tinued across the sheath/plasma boundary as a conduction current carried by the
motion of plasma electrons (−n0e), moving with the speed that defines the bound-
ary motion (ds/dt). The current in the external circuit as it enters the sheath at the
electrode can be viewed as the sum of three contributions, namely the displacement,
ion and electron currents:

J (t) = −n0e
ds

dt
− n0euB + n0eve

4
exp

−eVsh

kTe
, (4.20)

where the signs are consistent with Figure 4.12 and the electron current has been
determined in terms of the flux reaching the electrode surface. The potential dif-
ference Vsh measures the instantaneous voltage across the sheath and is referenced
to the electrode rather than to the plasma; it turns out that this makes the analysis
simpler on this occasion. Note that although the electron space charge in the sheath
has been neglected, the electron current cannot be ignored so easily, owing to the
high thermal speed of electrons.

To establish the current, voltage and sheath width, Eqs (4.19) and (4.20) must
be solved together with a third equation involving at least one of these quantities.
Two cases are considered – voltage-driven sheath modulation and current-driven
sheath modulation.

Voltage drive

The non-linearity of the sheath has already been shown to rectify applied RF
voltage, leading to self-bias, so that the voltage-driven sheath with zero mean
current has an instantaneous bias with respect to the electrode surface given by

Vsh(t) = V1 cos ωt − VfRF . (4.21)

Then, using Eq. (4.19), the sheath edge motion is found to be

s(t) = [
V1 cos ωt − VfRF

]1/2
(

2ε0

n0e

)1/2

(4.22)

and the mean sheath width is

s =
[

2

∣∣∣∣eVfRF

kTe

∣∣∣∣ ]1/2

λDe.
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Inserting this expression for s(t) into Eq. (4.20) for the total current density
gives

J (t) = +(2ε0n0e)1/2 V1 sin(ωt)[
V1 cos ωt − VfRF

]1/2 − n0euB

+ n0eve

4
exp

−e
(
V1 cos ωt − VfRF

)
kTe

. (4.23)

The first term on the RHS averages to zero owing to its trigonometric components,
as it must do since it represents periodic displacement current. The second and third
terms cancel since VfRF was defined in Section 4.3.1 precisely to ensure that they
would, so that < J (t) > = 0. Note that although the current has been constrained
to have no DC component, Eq. (4.23) contains frequency components at higher
harmonics – see Figure 4.13.

Thus the voltage-driven RF sheath in the ion matrix approximation has volt-
age, width and current described, respectively, by Eqs (4.21), (4.22) and (4.23).
Since the current is not a pure sinusoid and |J (t)| is not directly proportional
to Ṽ , the circuit concept of a steady complex impedance is not applicable –
a circuit element based on the current–voltage relationship of a sheath will be
non-linear.

Current drive

An alternative way to drive an RF modulation is to specify the current injected into
the plasma through a capacitively coupled electrode such as that in Figure 4.1. A
pure sinusoidal current might be thought to be the most appropriate choice, but for
an analytical solution a different one must be made. By imposing a total current
that has the following form:

J (t) = −J0 sin ωt − n0euB + n0eve

4
exp

−eVsh(t)

kTe
, (4.24)

a simple expression can be obtained for the rate of change of sheath width:

n0e
ds

dt
= J0 sin ωt.

It then follows that the sheath width is subjected to a purely sinusoidal variation
of amplitude

s0 = J0

n0eω
, (4.25)
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Figure 4.13 Normalized sheath voltage, eVsh/kTe, and normalized currents during
two cycles of voltage-driven RF modulation of a constant density ion matrix sheath.
Total current J/n0euB is the solid line; the displacement current component is
shown as a grey short-dashed line and the electron current is shown as a grey long-
dashed line; the ion current is a steady component of magnitude −1. For the case
shown n0 = 1016 m−3, kTe/e = 2 V, V1 = 100 V. Compare with Figure 4.14.

such that

s(t) = s − s0 cos ωt. (4.26)

The mean sheath width s is to be determined by the requirement for capacitive
coupling, which is that

< J (t) = 0 >.
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Inserting this s(t) into the basic ion matrix model, Eq. (4.19), gives

Vsh(t) = n0e

2ε0

(
s − J0

n0eω
cos ωt

)2

,

= n0e

2ε0
(s − s0 cos ωt)2 ,

which can be expanded to give the DC and time-varying components of the voltage
that necessarily appears across the sheath:

Vsh(t) = n0es
2

2ε0
− sJ0

ε0ω
cos ωt + J 2

0

2ε0n0eω2

(
1 + cos 2ωt

2

)
, (4.27)

= n0e

2ε0

[
s2 − 2ss0 cos ωt + s2

0

(
1 + cos 2ωt

2

)]
. (4.28)

The time-varying part has a second harmonic term in addition to that at the drive
frequency. Now using this voltage in Eq. (4.24) and setting the average total current
to zero effectively constrains s. The mean electron conduction current cannot be
simplified in terms of the modified Bessel function (as in Section 4.3.1) owing to the
appearance of the second harmonic term, so it is necessary to resort to a numerical
iteration to find the value of s that leads to zero net current. See Figure 4.14.

Q Compare Figure 4.14 with the current and voltage behaviour for a pure
capacitance and comment on the sheath impedance.

A For a pure capacitance the current and voltage are purely sinusoidal and out of
phase by 90◦; at first sight this looks similar to the case in the figure. However,
the sheath voltage is not a pure sinusoid (and even has a DC component) and
|Vsh| is not directly proportional to J0, so the circuit concept of a steady
complex impedance does not properly fit a single, ion matrix sheath. The
sheath impedance is both non-linear and time-dependent.

The current-driven RF sheath in the ion matrix approximation has current and
voltage described, respectively, by Eqs (4.24) and (4.28). Its width must in general
be found by iteration. If J0 � n0euB the current is only significantly non-sinusoidal
during the times near the voltage minimum, when there is a pulse of electron
current; this pulse is discernible in Figure 4.14. Numerical analysis shows that as
J0 increases above about 0.3 × n0ev̄e/4, the departure of the current from a simple
sinusoid becomes less than 10%; the mean sheath thickness s is then within 20%
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Figure 4.14 Normalized sheath voltage, eVsh/kTe, and normalized currents during
two cycles of current-driven RF modulation of a constant density ion matrix
sheath. Total current J/n0euB is the solid line; the displacement current component
is shown as a grey short-dashed line and the electron current is shown as a
grey long-dashed line; the ion current is a steady component of magnitude −1.
For the case shown n0 = 1016 m−3, kTe/e = 2 V, J0 = 75 A m−2. Compare with
Figure 4.13.

of s0. So, for large external, sinusoidal currents the sheath motion can be presumed
also to be sinusoidal, but in that case the sheath must be presumed to vanish for
one instant in each cycle, which means at that moment the potential difference
between the electrode and the plasma is zero, allowing the ion charge built up
during that cycle to be neutralized – this simplification will be used in the next
chapter.
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Q Show that for a single sheath driven by a sinusoidal current waveform
J0 sin ωt with J0 � 0.3 × n0ev̄e/4, Eq. (4.28) simplifies to

Vsh(t) = V0

(
3

8
− 1

2
cos ωt + 1

8
cos 2ωt

)
. (4.29)

A If Vsh goes to zero at one instant as the sheath momentarily vanishes, then
s = s0 = J0/n0eω. Putting this into Eq. (4.28) and rearranging gives

Vsh(t) = J 2
0

2ε0n0eω2

(
1 − 2 cos ωt +

(
1 + cos 2ωt

2

))
,

which has a maximum value at ωt = π that defines V0 = 2J 2
0 /ε0n0eω

2.
Further manipulation then leads to Eq. (4.29).

It is also interesting to calculate the time-averaged electron density profile within
the region swept through by a periodically modulated sheath:

ne(x) = ω

2π

∫ 2π/ω

0
ne(x, t)dt.

The high-current-driven sheath sweeps back and forth in the region 0 < x ≤ 2s0;
the motion is sinusoidal so one need only consider half the cycle. According
to Eq. (4.26) at ωt = 0 the sheath starts with zero width and the electron front
reaches right up to the electrode, while at ωt = π the sheath is fully expanded.
Consequently, in the first half cycle, at any position x1 within the region swept by
the sheath, ne(x, t) = n0 for s(t) ≥ x1 and elsewhere ne(x, t) = 0 – the switchover
from n0 to zero happens, according to Eq. (4.26) with s = s0, at x1 when

ωt1 = arccos

[
s0 − x1

s0

]
. (4.30)

Therefore

ne(x1) = ω

π
n0

∫ t1

0
dt

= n0

π
arccos

[
s0 − x1

s0

]
.

Taking the average over space, it turns out that

1

2s0

∫ 2s0

0
ne(x1)dx1 = n0

2
(4.31)

shows that globally, the spatially and temporally averaged electron density in the
region swept by the sheath is half that in the plasma bulk. Though perhaps not
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surprising, this result is valuable because it has been derived in a manner that can
be applied to more sophisticated models.

4.4.3 Child–Langmuir models of RF sheaths (ω � ωpi)

The previous section treated the RF sheath as an extension of the DC ion matrix
model with particle currents. The model is not self-consistent as the ion space
charge is not allowed to respond to the local electric field. In this section that
restriction is lifted and the ion space charge is now determined through motion in
the mean electric field. From the perspective of the electrons, the ions therefore
again appear to form a fixed matrix of space charge, though now that charge is
not uniformly distributed in space. Because the ion density is non-uniform, this
scenario is also sometimes described as the basis of the ‘inhomogeneous’ model
of an RF sheath.

Q Under what circumstances is it justified to suppose that the ions respond only
to the mean local electric field in the sheath?

A It was shown at the start of this chapter that the ion transit time across the
sheath is comparable with the reciprocal of the ion plasma frequency, so
when ω/ωpi � 1 the ions take several RF cycles to cross the sheath; within
one RF period the ion speed cannot be significantly altered. Therefore in this
frequency regime the ion motion is determined by the mean field.

It has been shown in Chapter 3 that taking a more consistent account of the ion
space charge in a steady sheath leads to the Child–Langmuir relationship between
the current, the thickness of the sheath and the potential difference across it. That
model will now be extended to analyse an RF sheath. The density of the ion fluid
in the RF sheath is presumed to be determined by acceleration in the mean (time-
averaged) field, with ions entering the RF-modulated ‘sheath’ region at the Bohm
speed. The equations to be solved are

∂E(x, t)

∂x
= e

ε0
[ni(x) − ne(x, t)], (4.32)

∂φ(x, t)

∂x
= −E(x, t), (4.33)

ni(x) = n0

(
1 − 2e

kTe
< φ(x, t) >

)−1/2

, (4.34)

ne(x, t) = n0 exp

(
eφ(x, t)

kTe

)
, (4.35)
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Figure 4.15 Charged particle densities in the vicinity of an RF Child–Langmuir
sheath. The solid line shows the profile of steady ion density; instantaneous elec-
tron density is represented by the grey area and is delimited by x = s(t). The mean
electron density is shown by the broken line. Ions enter the ion sheath (x = sm) at
the Bohm speed and fall freely in the mean potential.

with boundary conditions that set the potential to zero where the electron and ion
densities are equal and that prescribe either the voltage across the sheath or the total
current through it. These are already too complicated to solve analytically, and an
obvious first simplification is to use again the notion that the electron density steps
discontinuously to zero at the boundary of the oscillating sheath structure. That
replaces Eq. (4.35) with

ne(x, t) = ni(x) for x ≥ s(t)

= 0 for x < s(t),

which is a reasonable approximation when the total voltage across the region is
much larger than kTe/e. This situation is illustrated in Figure 4.15, which also
shows the resulting average electron density. There are two important things to
note. First, as before, from the ion perspective there is a clear and fixed boundary
between a neutral plasma and a non-neutral sheath that is located at x = sm. On the
sheath side of the sheath/plasma boundary the ions see an average electron density.
Second, from the electron perspective the boundary between a neutral plasma and
an instantaneous space charge sheath, x = s(t), moves back and forth, with the
density at this boundary therefore being strongly modulated through the RF cycle.
Electrons are in fact swept back and forth during the RF oscillation in such a way
that they exactly neutralize the ion space charge on the plasma side of the moving
sheath/plasma boundary, x > s(t). As before, the displacement of electrons at
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the edge of the instantaneous boundary of the non-neutral region defines the RF
current.

Voltage drive

In this case it is supposed that the potential difference across the sheath varies
sinusoidally on top of a mean value (chosen such that the net particle current is
zero):

Vsh = V1 cos ωt − VfRF .

The instantaneous sheath thickness, s(t), must then be calculated from the distri-
bution of ion space charge in the mean potential and the applied voltage waveform.
But the mean potential at any point can only be calculated once the instantaneous
potential is known at that point throughout the RF cycle. Thus an iterated numerical
solution or some clever mathematical trick is required. Figure 4.15 is a result from
an iterated solution.

Another, less rigorous approach is to make a crude adaptation of the result for
a DC Child–Langmuir sheath. In an RF-modulated sheath the ion space charge is
not as effective as it is in a DC sheath because of the periodic neutralization by the
electrons driven by the RF potential. A crude estimate of the spatial extent of an
RF Child–Langmuir sheath can be obtained (Eq. (3.16)) by artificially decreasing
the effectiveness of the ion space charge at all points, which can be achieved by
introducing a fraction, α, to scale it down, leading to a relationship between the
mean sheath voltage and the maximum sheath width:

sm = 2

3

(
ε0

αJi

)1/2 (2e

M

)1/4

(−VfRF)3/4, (4.36)

where Ji = ni(sm)e uB and 0 < α < 1; for smaller applied voltages α will be closer
to zero and for larger voltages, α will be closer to unity.

One could then proceed to apply this idea to the spatial distribution of ion space
charge. Then the instantaneous RF displacement current that would be associated
with this RF sheath can be deduced by taking the electron density at the position of
the moving sheath edge (which equals the local ion density) and the instantaneous
speed of the sheath edge to form the current density ni(s)e ds/dt . The current must
be periodic but it is not expected to be a simple sinusoidal current because the speed
of the sheath edge and the ion density at the sheath edge both vary with position.
Furthermore, as in the homogeneous ion matrix case, the electron particle current
should be included for completeness if the total current in the external circuit is to
be determined.
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In modelling a capacitively coupled RF discharge (see Chapter 5) it is necessary
to treat two sheaths in series, one each side of the plasma. For this case it turns out
to be more convenient to analyse the current-driven situation, so the voltage-driven
RF sheath will not be examined further.

Current drive

For a current-driven sheath there are four steps in the reasoning that relates the
sinusoidal RF current to the mean sheath potential and the mean sheath size.

(i) First, as in the voltage-driven case, where ns represents the boundary density
in any DC formula that is developed into an RF model, it should perhaps be replaced
by αns, with 0 < α < 1 to account for the periodic compensating effect of electron
space charge.

(ii) Next, the time-varying electric field in the sheath is linked to the displacement
current by

J0 sin ωt = ε0
∂Ẽ

∂t
.

The time-varying electric field will then certainly have a harmonic component
(cos ωt), but in the simplest cases the field does not change sign so there must be
a DC component of the field that scales with E. So this DC (or mean) field E =
< E > can also be expected to be proportional to J0/ω. Then, higher frequency
and/or lower current will lead to lower mean fields. (Under some circumstances, in
fact, the sheath field does transiently change sign during the RF cycle [51–55], but
this sheath field reversal is so brief that it does not invalidate the general argument
here.)

(iii) It can be shown from the normal Child–Langmuir relationship, which applies
when ions fall freely through the sheath, that the potential across the space charge
is proportional to the fourth power of the field that it produces.

Q Look back to Chapter 3 and identify where in the development of the colli-
sionless Child–Langmuir sheath the potential can be seen to scale with the
fourth power of the electric field.

A Equation (3.15) with appropriate sheath edge conditions (φ′(s) = 0 and
φ(s) = 0) shows that

(φ′(x1))2 = 4
Ji

ε0

(
2e

M

)−1/2

(−φ(x1))1/2.

Thus the fourth-power relationship between field (−φ′) and potential is
confirmed.
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Supposing that this strong non-linearity applies equally to the RF field, it can be
anticipated that the amplitude of the potential across an RF sheath is

V0 ∝
(

J0

ω

)4

. (4.37)

(iv) The final step is to adapt the DC version of the Child–Langmuir model
(Eq. (3.16)) to relate the width of the region swept through by the sheath to this
mean sheath potential. The ion current is still the Bohm current, but the factor of
α must be included to allow for the partial compensation of the ion space charge
by the periodic ingress of electrons. The RF version of the Child–Langmuir model
for the mean sheath width sm is therefore anticipated to take the form

sm = (J0/ω)3

6 (αns)2 ε0kTe
. (4.38)

A more thorough analysis by Lieberman [56] confirms the scaling of potential
with the current (Eq. (4.37)) and shows that for a high current drive 6α2 = 12/5,
which suggests that the effectiveness of the ion space charge is given by α ∼ 0.63,
through a combination of rearrangement in the mean field and periodic screening
by electrons as the sheath contracts and expands. Lieberman [56], neglecting the
particle currents, goes on to show that the instantaneous voltage across a sheath
driven by a sinusoidal RF current contains contributions up to the fourth harmonic,
owing to the non-linearity of the sheath. So, the more realistic modelling of ions in
equilibrium with the mean field leads to a richer spectrum than the fundamental and
second harmonic found in the case of constant ion density. The full analysis leads to
an expression for the voltage across a high-current-driven, inhomogeneous sheath
in terms of a voltage scaling parameter, which is given here for later reference:

H = 1

πε0kTens

(
J0

ω

)2

, (4.39)

with amplitudes of the first four Fourier amplitudes in the voltage waveform being

eV

kTe
= 3

4
πH + 9

32
π2H 2,

eVω

kTe
= πH + 0.34π2H 2,

eV2ω

kTe
= 1

4
πH + 1

24
π2H 2,

eV3ω

kTe
= −0.014π2H 2.
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The scaling parameter can also be expressed as πH ≈ (sm/λDe)2 – sheath mod-
ulations of several Debye lengths are expected, so in practice the analysis is chiefly
of interest when H > 1 and then the harmonics make significant contributions.

4.5 Summary of important results
� There are characteristic response frequencies for electrons ωpe and ions ωpi in

and adjacent to a plasma. These formulas depend on the square root of particle
number density over particle mass. Ions tend to cross space charge regions in
times that are a few ω−1

pi .
� The typical domain of RF plasmas is the range ωpi < ω < ωpe.
� In the RF domain only the lightest ions respond to the full RF cycle; most ions

effectively experience time-averaged fields.
� Ion energy distributions at surfaces reflect the form of the plasma upstream of

the sheath, fluctuations in RF fields in the sheath relative to ωpi, and collisions.
If ω < ωpi, in the absence of collisions, the distributions tend to be bimodal.
Collisions scatter ions down to lower energy and for ω ≈ ωpi multiply peaked
distributions can occur.

� RF modulation of sheaths shifts the conventional floating potential more neg-
ative. At large RF modulation the shift is almost in proportion to the amplitude
of the RF potential.

� RF sheaths look like a parallel combination of a current source (ion current), a
reverse biased diode (electron current) and a non-linear capacitance (displace-
ment current). Models of RF sheaths can be set up considering the modulation
to be forced by an RF voltage or an RF current. Owing to the non-linearity of
the sheath, sinusoidal voltages lead to currents with higher harmonics whereas
a pure sinusoidal current leads to voltage waveforms with higher harmonics.
In modelling RF sheaths one can use different models for the ion space charge.
The simplest is a fixed ion density model that ignores all ion dynamics. A more
realistic model allows ions to respond only to the mean fields, and this repre-
sents the situation where ωpi < ω. (One can also include ion motion to account
for the dynamics of lighter ions, but this was not detailed in this chapter.)
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Single-frequency capacitively coupled plasmas

Capacitively coupled plasmas (CCPs) have been used for several decades for
the etching and deposition of thin films. CCPs consist of two parallel elec-
trodes, typically of radius r0 ∼ 0.2 m separated by l ∼ 3 − 5 cm, and biased by a
radio-frequency power supply, typically operating at 13.56 MHz. A plasma forms
between the electrodes, from which it is separated by space charge sheaths, the
thicknesses of which vary at the excitation frequency – see Chapter 4.

A very important aspect of the following discussion is the fact that in many
industrial systems the neutral gas pressure may be below 10 Pa. This has two
major consequences for the physics of such plasmas. Firstly, collisionless processes
then play a significant role in the transfer of energy to the electron population
from electromagnetic fields. The usual collisional (joule) heating term is too small
to explain the high electron densities observed. Secondly, the electron energy
relaxation length may then become larger than the physical dimensions of the
discharge (see Chapter 2). This introduces non-local effects into the plasma kinetics
and electrodynamics.

Q Compare the vacuum wavelength of electromagnetic radiation and the colli-
sionless skin depth of a plasma of density ne ≤ 1016 m−3 at f = 13.56 MHz
with the characteristic system dimensions.

A The vacuum wavelength, λ, is c/f ∼ 22 m � r0 and the collisionless skin
depth, δ, is c/ωpe > 0.05 � l.
Comment: In this regime, the discharge can be modelled in the electrostatic
approximation, and all the physics can be associated with a single dimension,
perpendicular to the electrodes.

The first chapters of this book have explored the fundamental mechanisms
governing weakly ionized bounded plasmas, including collisions and reactions,
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electromagnetic properties and transport of charged particles to the boundaries and
the boundaries themselves. In particular, it has been shown that in the simplest
quantitative analysis, the so-called global models, low-pressure plasma reactors
can be described in terms of two equations, namely the particle and energy bal-
ance equations, Eqs (2.40) and (2.47). These equations require expressions for the
generation of charged particles by volume reactions and for the loss of particles
through fluxes of charged particles to the wall. These were discussed in Chap-
ters 2 and 3. The energy equation (Eq. (2.47)) also requires an expression for the
power absorbed by electrons from the external supply. This has not so far been
discussed, and it will be central to the purpose of this and the three following
chapters.

In RF discharges the absorbed power depends strongly upon the way in which
energy is coupled from the external power supply into the electric fields in which
electrons are accelerated. There are three ways (modes) to couple the energy
provided by the RF generator to the electrons: the electrostatic (E) mode, the
evanescent electromagnetic (H) mode, and the propagating wave (W) mode. CCPs
generally operate in the E-mode, although it will be shown in the next chapter
that this is not necessarily the case at very high frequency. Inductively coupled
plasmas (ICPs), described in Chapter 7, generally operate in the H-mode, although
they may operate in the E-mode at low power. Finally, helicon plasmas generally
operate in the W-mode but may also operate in the E and H-modes. The physics of
these various modes, along with the transitions between modes, will be described
in this and the following chapters.

An equivalent-circuit description of the discharge is useful for the calculation of
the absorbed power term in the global models. Equivalent-circuit models account
for the plasma and sheaths in terms of impedances that link instantaneous voltages
and currents. These impedances are derived by integrating the local electromagnetic
fields over plasma and sheath regions. The RF electric and magnetic fields in the
analysis are thereby replaced by RF voltages and currents – quantities that can also
be conveniently compared with direct measurements. Sections 5.1 and 5.2 develop
appropriate expressions for these impedances.

The global model of the symmetrical single-frequency capacitively coupled
discharge is presented in Section 5.3. In this section the most important scaling
laws of capacitive discharges are discussed. Section 5.4 focuses on other interesting
phenomena, such as asymmetric discharges, higher pressure regimes and series
resonances. Finally, Section 5.5 summarizes the important results of this chapter
and underlines the principal limitation of CCPs, namely that the flux and the energy
of ions bombarding the electrodes cannot be independently controlled. This topic
is then taken up in Chapter 6.
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plasmald∼
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IRF −I0 sin ωt=

Figure 5.1 Schematic of the symmetrical capacitive discharge model. The defini-
tion of the current is chosen to simplify the analysis.

5.1 A constant ion density, current-driven symmetrical model

A basic model of a symmetrical capacitively coupled plasma was introduced in
the 1970s by Godyak [39, 57]. This model is sometimes called the homogeneous
model. A more sophisticated (‘inhomogeneous’) model has also been introduced
by Godyak [39] and revisited by Lieberman [2,56,58]. The inhomogeneous model
is based on Child–Langmuir models of the RF sheaths (see Chapter 4); it will be
discussed briefly later in this chapter.

Consider the situation shown schematically in Figure 5.1, where there is a quasi-
neutral plasma that extends over a distance d, separated from the electrodes by two
time-varying sheaths of thicknesses sa(t) and sb(t). While the sheath ‘a’ expands,
during one half RF cycle, sheath ‘b’ contracts, and vice-versa.

Q Considering the distributions of current and voltage between the electrodes,
suggest why the voltage that appears across the electrodes is a less attractive
control parameter than the current for the purposes of a simple model.

A At any instant the current is continuous across all planes parallel to the
electrodes; the voltage is distributed across two distinct space charge sheaths
and the plasma, none of which is certain to exhibit a linear response. Thus,
specifying a sinusoidal current in the external circuit ensures sinusoidal
current within the plasma, whereas an externally imposed voltage between
the electrodes is no guarantee that the sheaths or the plasma will conveniently
experience sinusoidal differences of potential.
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The RF current is a convenient control (input) parameter – the sheaths will
then be described by the current-driven sheath model from Chapter 4. The other
input parameters are: the power supply frequency f (or equivalently ω = 2πf ),
the neutral gas pressure p (or equivalently the gas density ng = p/kTg), and the
electrode gap l. The following assumptions are also made:

(i) The electron temperature is constant in space (the energy relaxation length is
large compared to the electrode spacing).

(ii) Ion inertia is sufficiently large so that ions only respond to the time-averaged
electric field; ω � ωpi.

(iii) Electron inertia is negligible. Electrons follow the instantaneous electric field;
ω � ωpe.

(iv) The system is divided into three regions: the quasi-neutral plasma, in which
ne = ni = n0 (constant) and E is (nearly) zero; two sheaths (‘a’ and ‘b’), where
ne = 0 and ni = n0, so E �= 0.

(v) The electrostatic regime applies, which requires λ � R and δ � l, such that
the voltage between the electrodes is independent of their radius R.

In the next sections, the voltages across the sheaths and across the plasma are
calculated for a given RF current, IRF = −I0 sin ωt . This leads to a definition of
the impedance of each of these elements and an equivalent circuit model of the
capacitive discharge. The results obtained in Chapter 4 on RF sheaths will be
developed for a combination of two RF sheaths connected in series by a plasma.

Warning: Do not confuse the modified Bessel function, I0(x), from the previ-
ous chapter with the amplitude of an RF current, I0, in this chapter.

5.1.1 Electric field and potential between the electrodes

A schematic of the constant ion density model is shown in Figure 5.2; sa(t) is the
instantaneous position of the boundary between sheath ‘a’ and the plasma, s is its
time-averaged position, and sm is its maximum extent. Similar notation applies to
sheath ‘b’.

Although it was shown in Chapter 3 that it is not generally appropriate to
set E ≡ 0 throughout the plasma, the electric field in a quasi-neutral plasma is
extremely small (virtually zero) compared with that in the space charge sheaths.

Q By considering the continuity of the RF current, show that in the low-pressure
regime (ω � νm) the electric field within the plasma is much smaller than
that in the sheath when ω � ωpe.

A The RF current crosses the sheath region (sh) predominantly as displacement
current associated with the time variation of the electric field, whereas in
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Figure 5.2 Schematic of the sheath dynamics for the constant ion density model.

the plasma (p) the electron fluid has a finite, non-zero conductivity σ and
the displacement current is negligible. The continuity of current therefore
requires that

ε0
∂Esh

∂t
= σEp,

which, given the sinusoidal nature of the current, requires that∣∣∣∣Esh

Ep

∣∣∣∣ ∼ σ

ε0ω
.

Using Eq. (2.53) for the conductivity and taking the low-pressure limit leads
to the conclusion that, since ω � ωpe,∣∣Esh/Ep

∣∣ � 1.

Therefore, when considering the sheath regions, the electric field in the plasma
can be neglected. The electric field in sheath ‘a’ is given by Eq. (4.18) with
s(t) = sa(t):

E(x, t) = n0e

ε0
(x − sa(t)); (5.1)

in the interval 0 ≤ x ≤ sa the electric field is directed towards the electrode.
From the current-driven model, the motion of the sheath is given by Eq. (4.26).

In the high-current regime the particle current crossing the sheath is negligible,
so sinusoidal sheath motion results from an externally imposed sinusoidal cur-
rent, of amplitude I0, distributed uniformly over an electrode of area A (i.e.,
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I0 � 0.3 × An0eve/4). Then

sa(t) = s − s0 cos ωt, (5.2)

where the amplitude of the sheath motion is

s0 = I0

n0eAω
. (5.3)

In practice there is a continuous small ion current that must be neutralized over one
RF cycle by a burst of electron current. Because particle currents have not been
included explicitly in the present model, as discussed at the end of Section 4.4.2,
sa(t) must be zero for an instant (so that the sheath vanishes and electrons escape
to the electrode), which requires that

s = s0.

In this model, as the sheaths grow and contract in anti-phase, the plasma dimension
remains constant at l − 2s0. The motion of the plasma/sheath boundary close to
electrode ‘b’ is therefore

sb(t) = l − s0(1 + cos ωt). (5.4)

In driving a sinusoidal current between the electrodes a potential difference
will appear between them, but the form of the potential in this model is deter-
mined by the non-linear impedances of the two sheaths. For definiteness, electrode
‘b’ at x = l will be set at ground potential and the as yet unknown potential at
x = 0 will be written Vab(t); an expression for this voltage will be found in due
course.

In the region 0 ≤ x ≤ sa(t), that is in sheath ‘a’, the potential φ(x, t) between
the electrode and the plasma can be calculated by integrating Eq. (5.1) from zero,
with the boundary condition that φ(0, t) = Vab(t):

Ea(x, t) = n0e

ε0
[x − sa(t)] , (5.5)

φ(x, t) = −n0e

ε0

[
x2

2
− sa(t)x

]
+ Vab(t). (5.6)

The electric field varies linearly in space while the potential is quadratic. In the
plasma region the electric field is zero (assumption (iv)) and the potential is inde-
pendent of x. Since the potential must be continuous at the plasma/sheath boundary
its value in the plasma is φ(sa(t), t), so throughout the plasma, sa(t) < x < sb(t),

φp(t) = +n0e

2ε0
sa(t)

2 + Vab(t). (5.7)
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In the region sb(t) ≤ x ≤ l, that is in sheath ‘b’, the potential between the plasma
at x = sb(t) and the electrode is obtained by integrating Eq. (4.18) with s(t) = sb(t),
imposing the boundary condition that φ(sb(t), t) = φp(t):

Eb(x, t) = n0e

ε0
[x − sb(t)] , (5.8)

�(x, t) = −n0e

ε0

[
x2

2
− sb(t)x + sb(t)2

2

]
+ φp(t). (5.9)

Finally the potential difference between the electrodes, Vab(t), can be deter-
mined by requiring that the potential at x = l is zero. In that case Eq. (5.9)
gives

φp(t) = +n0e

2ε0
(l − sb(t))2 . (5.10)

Using Eqs (5.2) and (5.4) for the positions of the two sheath/plasma boundaries,
Eqs (5.7) and (5.10) combine to give

Vab(t) = n0e

2ε0
s2

0 (1 + cos ωt)2 − n0e

2ε0
s2

0 (1 − cos ωt)2

= V0 cos ωt, (5.11)

with

V0 = 2n0es
2
0/ε0. (5.12)

So where’s the non-linearity?

The result in Eq. (5.11) is remarkable. Space charge sheaths are inherently non-
linear, so the imposing of a sinusoidal current passing through the space charge
sheaths and the plasma would not be expected in general to be associated with a
sinusoidal voltage. Yet the constant ion density model is a special case for which
a symmetrical sheath/plasma/sheath system is linear, in the sense that a sinusoidal
current is associated with a sinusoidal voltage.

Non-linearity is still present within the system as the profiles of potential between
the electrodes reveal. Figure 5.3 shows profiles at different phases of the RF cycle.
At the instant when ωt = 0, sheath ‘a’ is collapsed and sheath ‘b’ is at its maximum
expansion, sb = l − 2s0; there is no voltage difference between the plasma and the
powered electrode ‘a’. At ωt = π , sheath ‘a’ is fully expanded and sheath ‘b’ has
collapsed. At any other time during the RF cycle, the potential in the plasma is
greater than the potential of each electrode. This has to be the case, otherwise
electrons would be lost so quickly that a plasma could not be sustained.



138 Single-frequency capacitively coupled plasmas

s0

sm

x
wt = p

wt = 0

f

+V0

−V0

 V0

f

3
8

Figure 5.3 Potential φ(x, t) between the electrodes for two different times during
the RF cycle, along with the time-averaged value.

Each sheath has a non-linear response to the sinusoidal current (as shown in
Section 4.4.2). That at electrode ‘a’ leads to a difference of potential between that
of the plasma (Eq. (5.7)) and that of the electrode (Eq. (5.11)):

φp(t) − V0 cos ωt = V0

4
(1 − cos ωt)2

= V0

[
3

8
− 1

2
cos ωt + 1

8
cos 2ωt

]
. (5.13)

The potential across the sheath has a DC, fundamental and second harmonic com-
ponents – a linear response to a sinusoidal current would contain only the middle
one of these. Similarly, at electrode ‘b’ there is a rapid change of potential from
that in the plasma to zero at the electrode:

0 − φp(t) = −V0

[
3

8
+ 1

2
cos ωt + 1

8
cos 2ωt

]
. (5.14)

These voltages are plotted in Figure 5.4. Although each sheath oscillates, the
sum of the two sheath thicknesses (and so by subtraction the spatial extent of
the plasma region) is independent of time. One source of non-linearity therefore
vanishes.
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Va

Vb Vt
2π ωt

V

Figure 5.4 Voltages across sheath ‘a’, Va (Eq. (5.13)), and sheath ‘b’, Vb
(Eq. (5.14)), along with the sum of the two, Vt = −Vab = −V0 cos ωt .

Q Show that at given density n0, the amplitude of the voltage that appears
across the plasma, V0, has a non-linear dependence on the amplitude of the
RF current, I0.

A Equations (5.3) and (5.12) combine to show

V0 = 2

n0eε0A2ω2
I 2

0 ,

so the amplitude response of the system seems non-linear. However, this
result may be misleading because in practice the plasma density is a function
of V0 (or equivalently I0). It will be shown in Section 5.3 that depending on
the heating mechanisms, there are regimes in which n0 ∝ V0, so that I0 ∝ V0,
as observed experimentally by Godyak [59].

Also plotted in Figure 5.3 is the time-averaged potential (dotted line) at 3V0/8;
note that both sheaths have an average size of s0. In this model the ion density
is constant everywhere between the electrodes, so the motion of ions, even in the
mean field, has been neglected. It is not strictly appropriate therefore to consider
the energy of ions at the electrodes, nevertheless it will later be presumed that the
ions crossing the sheath gain an energy equivalent to the mean sheath potential. It
still remains to consider the electron dynamics that couple energy into the plasma
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2Ri + 2Rstoc + 2Rohm,sh

Ii

Cs

Ii

Figure 5.5 The electric circuit model for the two sheaths considered separately
(left) and combined (right).

region, but first it is convenient to construct an equivalent electrical circuit for a
CCP, according to the constant ion density, high-current-driven model.

5.1.2 Equivalent circuit of a symmetrical CCP

From the outside, a symmetrical CCP can be seen to have a specific relationship
between the current that flows in and the voltage that appears across the plates by
means of which it absorbs a measurable quantity of power. The aim here is to use
standard electronic components to devise an electrical circuit that has equivalent
current–voltage characteristic and that dissipates the same power; choosing com-
ponent values to match the properties of the plasma. If this is done accurately then
one can explore parameter space using the circuit model instead of returning each
time to the direct solution of Maxwell’s equations.

The total sheath region

An equivalent circuit model for an RF sheath was proposed in Section 4.4.1,
involving a current source, a diode and a non-linear capacitance. This circuit is
used on the left-hand side of Figure 5.5 for the two sheaths in series with a highly
conducting plasma region. However, there are three simplifications that can be made
for the present situation. First, in the high-current-drive limit the particle currents
have already been ignored so the non-linear capacitances predominantly determine
the current–voltage relationship. Therefore, so long as the power dissipated in
the various components is still included somehow, the diode and current source
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paths can be omitted. Second, since it has been shown that the combination of
the two sheaths becomes linear for any fixed high amplitude of driving current,
the combined effects of the sheaths can be modelled by a single capacitance
with a single resistance to represent power dissipation in the original model. This
much simpler circuit is shown on the right-hand side of Figure 5.5. The value of
this capacitance is simply calculated from the following relation between the RF
voltage and the RF current:

dVab

dt
= −ωV0 sin ωt (from Eq. (5.11))

= −ω2n0es
2
0

ε0
sin ωt (from Eq. (5.12))

= − 2s0

ε0A
I0 sin ωt (from Eq. (5.3)).

The RF current was defined at the outset to be IRF = −I0 sin ωt , so this last equation
confirms that together sheaths ‘a’ and ‘b’ respond as an effective capacitance:

Cs = ε0A

2s0
= n0eωε0A

2

2I0
. (5.15)

There are three contributions to the power dissipation in the sheath, which can
be scaled and lumped together as a single resistance in series with the capaci-
tance. The first two contributions, 2Rohm,sh and 2Rstoc, are due to electron heating
processes within each sheath by collisional (ohmic) and collisionless (stochastic)
mechanisms. The third contribution, 2Ri, is due to power dissipation by ions accel-
erated across each sheath. Parametric formulas for these resistive terms will be
determined in the following sections. The complex impedance for the combination
of the two sheaths can be written

Zs = 1

iωCs
+ 2(Ri + Rstoc + Rohm,sh). (5.16)

The total resistance is usually small compared with the impedance of the capacitor.

The plasma region

In solving equations for the distribution of the potential in the previous section, the
electric field in the plasma was neglected. The next step is to resolve the detail of
the plasma region with a view to tracking the flow of energy. Provided the potential
changes across the plasma remain small, it will not be necessary to revisit the
sheath model.
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Figure 5.6 The equivalent circuit model for a symmetrical CCP.

It was shown in Chapter 2 that the electrical circuit equivalent to the plasma bulk
is composed of a capacitance in parallel with a power-dissipating resistance and an
electron inertia inductance in series. The capacitance accounts for the displacement
current crossing the plasma, though this is negligible since ω � ωpe. The equivalent
circuit therefore reduces to a resistance and an inductance in series. The potential
difference across the plasma is then

Vp = RpIRF + Lp
dIRF

dt
. (5.17)

In circuit theory, it is often convenient to use complex notations. With the complex
plasma impedance Zp = Rp + iωLp and the complex current amplitude ĨRF, the
complex amplitude of the potential difference across the plasma is

Ṽp = ZpĨRF. (5.18)

The whole CCP

Finally, the total equivalent circuit of the capacitive discharge is a series combi-
nation of plasma and total sheath components. The resulting circuit is sketched in
Figure 5.6.

RF power is mostly deposited into the plasma electrons, which respond to the RF
fluctuations. The power absorbed by the electrons leads to heating of the electron
population, by collisional and collisionless mechanisms (Section 5.1.3). Since ions
only respond to time-averaged fields, they do not gain energy directly from the
RF field; ion heating by the RF field is negligible. However, there is a steady
(DC) component of potential across each sheath. The acceleration of ions within



5.1 Constant ion density, current-driven model 143

this sheath accounts for a significant fraction of the power dissipated within the
discharge. The ionic power dissipation is studied in Section 5.1.4.

5.1.3 Power dissipated by electrons

The local, instantaneous ohmic power dissipation was introduced in Chapter 2
via Eq. (2.74). To evaluate the mean ohmic heating power in the plasma,
this expression must be integrated over time and space. To achieve this, it is
worth utilizing the stratification of the discharge into the plasma and the sheath
regions.

The region sm ≤ x ≤ l − sm is always occupied by quasi-neutral plasma, for
which the constant ion density model makes the conductivity, σm, also constant.
The current has been taken to be purely sinusoidal, so Eq. (2.77) takes care of the
time average while the integration over space trivially leads to the total power in
the plasma volume being

A

∫ l−sm

sm

I 2
0

2A2σm
dx = I 2

0

2A σm

∫ l−sm

sm

dx

≡ 1

2
Rohm,pI

2
0 , (5.19)

with

Rohm,p = mνm

n0e2

(l − 2sm)

A
≈ Rp. (5.20)

This is the resistance of the region that is always quasi-neutral.
The situation is more complex in regions explored by the sheaths, i.e., 0 ≤

x ≤ sm and l − sm ≤ x ≤ l, because the volume over which the power is deposited
depends on time and it is more convenient to integrate first over space and thereafter
over time. Adapting Eq. (2.76) to sheath ‘a’, the instantaneous total power dissipated
in the electron front while it is penetrating the region 0 ≤ x ≤ sm is

Pohm,sh(t) = A

∫ sm

s(t)

J 2
0

σm

(
1 − cos 2ωt

2
− ω

νm
sin ωt cos ωt

)
dx. (5.21)

where J0 = I0/A. In deriving Eq. (2.76), the RF current density was chosen to be
J0 sin, ωt , but changing the sign of J0 to match the situation described above
has no effect here so the equation still applies. The fact that the integration
domain is not constant in time can be accommodated by using the sheath posi-
tion to change the variable from space (x) to temporal phase (θ ) through the
sheath motion s0(1 − cos θ ) and so dx ≡ s0 sin θdθ ; in the high-current-drive limit
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sm = 2s0. Transforming the integral from one over space to one over temporal
phase gives

Pohm,sh(θ1) = I 2
0 sm

2A σm

∫ π

θ1

(
1 − cos 2θ

2
− ω

νm
sin θ cos θ

)
sin θdθ (5.22)

= I 2
0 sm

2A σDC

[
4

3
(2 − cos θ1) cos4

(
θ1

2

)
+ ω

3νm
sin3 θ1

]
. (5.23)

The temporal average amounts to an integral over the phase, θ , from zero to 2π

which loses the sinusoidal terms, leaving

P ohm,sh = 1

3

I 2
0 sm

A σm
. (5.24)

The resistance accounting for ohmic heating in one sheath is therefore

Rohm,sh = 1

3

mνm

n0e2

sm

A
. (5.25)

Comparing Eqs (5.20) and (5.25) one can see that ohmic heating in the bulk is
larger than ohmic heating in the two sheaths if l ≥ 8sm/3. Although the sheath size
is usually significantly smaller than the plate separation, this relation shows that
for discharges between narrowly separated plates, ohmic heating in the sheath is
not negligible compared to ohmic heating in the plasma bulk.

In addition to collisional (ohmic) heating, there is a collisionless mechanism
for heating in the sheath, sometimes called stochastic heating. This mechanism
results from the interaction of the strongly non-uniform sheath electric field with
the plasma electrons. Collisionless (stochastic) heating is strictly zero for a uniform
density (homogeneous) sheath, so here Rstoc = 0. This mechanism will be discussed
in the section devoted to the inhomogeneous model.

5.1.4 Power dissipated by ions

In the high-frequency regime of interest, ions do not respond to the RF field; they
do, however, pick up energy from the DC fields and deposit it on the electrodes
where the impact energy is absorbed (at significantly high pressure, they also
transfer some energy to the neutral gas, leading to neutral gas heating). The DC
potential structure within a CCP plasma region is small (�kTe/e) compared with
that in the sheaths (�kTe/e), so it is the sheath region that dominates. Although
the ion conduction current in the sheaths is generally much smaller than the RF
displacement current, the power dissipated by the acceleration of ions in the sheath
may still be a significant fraction of the power delivered by the generator. It is
easily calculated by taking the product of the ion current and the magnitude of the



5.1 Constant ion density, current-driven model 145

time-averaged voltage across the RF sheath. The former can be assumed to be due
to the Bohm flux arriving at the sheath/plasma boundary and the latter has already
been calculated (Eq. (5.13) or (5.14)):

Pi = 3

8
eAn0uBV0

= 3uB

4ε0Aω2
I 2

0 . (5.26)

As before, an equivalent resistance, Ri, that accounts for this power dissipation
can be placed in the equivalent electrical circuit. Placing it in series with the sheath
capacitance means that it will pass the entire current IRF so that the mean ion power
dissipation would be

Pi = 1

2
RiI

2
0 .

That then sets

Ri = 3uB

2ε0ω2A
. (5.27)

Note that Ri is independent of the plasma density, and that for a fixed RF current
flowing in the discharge, it scales with 1/ω2, which indicates that the power dis-
sipation in ions will strongly decrease as the frequency increases. This important
point will be revisited later.

5.1.5 Limitations of the uniform ion density model

The uniform ion density model has captured a number of features of a real CCP
but the simplification of the constant ion density profile forces a number of com-
promises, including those in the following list.

� The ions are presumed to enter the sheath at the Bohm speed and to gain energy
in freely falling through the sheath, but the ion space charge is taken as constant
throughout.

� The ion space charge in the sheath is overestimated – more realistic models will
have thicker sheaths.

� The two constant ion density sheaths, though each separately non-linear, combine
in such a way that a sinusoidal current in the model CCP would force a sinusoidal
voltage across the electrodes – current-driven and voltage-driven CCPs in this
model are identical. More realistic models will lead to non-linearities that cause
harmonic generation even when the system is driven by a single frequency.
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Figure 5.7 Schematic of the inhomogeneous model.

However, it is still the case that the harmonic content of the combination of the
two symmetrical sheaths is considerably smaller than that of one single sheath.

� The flat ion profile completely suppresses electron stochastic heating mecha-
nisms that more realistic models exhibit.

At this stage, the various components of the equivalent circuit of a CCP have
been specified on the basis of a constant ion density (homogeneous) approximation.
From this, one should be able to construct a global model of the whole discharge.
Before examining this global model, the circuit parameters are reconsidered in
the context of the more realistic situation of non-uniform (‘inhomogeneous’) ion
density between the electrodes.

5.2 A non-uniform ion density, current-driven model

A schematic of the non-uniform capacitive discharge model is shown in Figure 5.7.
Note that to be consistent with the results in Chapter 3, the origin has been shifted
to the mid-plane. The principles of calculation in this model are similar to those
developed for uniform ion density, however, there are some mathematical com-
plications that will not be addressed here in detail. The effects of using the more
realistic profile of ion density will be discussed and in particular, the stochastic
heating (collisionless dissipation) in the RF sheaths that did not arise in the uniform
ion density model will be examined. Stochastic heating is of primary importance in
the physics of CCPs. There are two main approaches, but here the emphasis will be
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on the fluid approach promoted by Turner and co-workers [60,61]. The alternative
approach, based on ‘Fermi acceleration’ and often called the hard-wall model, is
discussed in detail in Lieberman and Lichtenberg [2]. A quantitative comparison
of the two models will be given at the end of Section 5.2.3. Finally, the new cir-
cuit components that can be used in a global model of CCPs are summarized and
compared to those of the uniform ion density model.

5.2.1 Sheath impedance and RF Child law

One of the most important modifications compared to the uniform model is the
changed relationship between RF current, voltage and sheath thickness. The law
relating the RF current (or voltage), the sheath size and the electron density was
discussed at the end of Chapter 4:

sm = 5

12e(hln0)2 ε0kTe

(
I0

Aω

)3

(5.28)

for a collisionless sheath [56]; this has the form anticipated in Eq. (4.38). The
analysis can also be done for a collisional sheath in the intermediate pressure range
[58], which leads to

sm = 0.88

(
λi

ε0kTeω3eh2
l A

3

)1/2
I

3/2
0

n0
. (5.29)

These relationships can be compared with Eq. (5.3), which holds for homogeneous
sheaths. Note that, as illustrated in Figure 5.7, the ion profile is non-uniform,
but symmetrical, and in these formulas, n0 is the electron and ion density at the
discharge centre. To take into account the profile of quasi-neutral plasma density,
the hl factor is used in specifying conditions at the boundaries between the quasi-
neutral plasma and the sheath region. The hl factor was discussed in Chapter 3.

The potential across an inhomogeneous sheath in response to an RF current was
considered in Section 4.4.3. The sheath voltage has a non-linear dependence on
RF current and contains harmonics of the driving frequency up to 4ω. However,
unlike in the homogeneous case, analysis reveals that the sum of the voltages across
the two out-of-phase sheaths in a CCP modelled with non-uniform ion density is
not purely sinusoidal, as the harmonics generated in each sheath do not exactly
compensate. This is because the width of the plasma bulk is not constant within the
inhomogeneous model. However, it has been shown [39, 56] that the RF voltage
across two sheaths in series has no even harmonics and that the third harmonic
represents only 4% of the fundamental. Therefore, the voltage is almost sinusoidal
and the combination of two sheaths is still reasonably well modelled by a capacitor.
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The effective capacitance turns out to be [56]

Cs = Kcap
ε0A

sm
, (5.30)

where Kcap is a constant given later in Table 5.2 (this constant has different values
for collisionless and collisional sheaths). It follows that the voltage amplitude
across the discharge is approximately

V0 ≈ smI0

Kcapωε0A
(5.31)

if one again neglects the RF voltage drop across the plasma region.

5.2.2 Ohmic heating and ion power dissipation

The calculation of ohmic heating within the plasma bulk starts by noting that
the electron density is now a function of x. Letting n(x) = n0f (x), the time and
volume-averaged power dissipated due to ohmic heating within the plasma bulk is
given by

I 2
0

2A

mνm

n0e2

∫ (l/2−sm)

−(l/2−sm)

dx

f (x)
= 1

2
RohmI 2

0 , (5.32)

where l − 2sm is the width of the region that is always occupied by quasi-neutral
plasma. Taking a Schottky cosine density profile (valid at rather high pressure),
f (x) = cos(πx/l) and Eq. (5.32) integrates to give

Rohm = 1

A

mνm

n0e2

4l

π
tanh−1

[
tan

(
π (l − 2sm

4l

)]
. (5.33)

What this means is that, compared with the constant ion density model (every-
where n0), the resistance of the current path through an inhomogeneous plasma is
increased since the plasma density only reaches n0 on the axis. Inserting numbers
into the above expression, with a cosine profile and sheaths that together occupy
10% of the space between the electrodes, the plasma resistance is twice what the
constant density model would suggest.

When the pressure is lower, the electron density profile is flatter and to a good
approximation the resistance remains close to that given by Eq. (5.20).

Ohmic heating in the sheath is determined in the same way as for the homoge-
neous model. However, because of the complexity of the inhomogeneous sheath
model, the calculation is more complicated. The result is given in Table 5.1 [62–64].
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Q The uniform ion density model found ohmic heating in the sheath and bulk to
be comparable when the quasi-neutral plasma occupied only about one-third
of the region between the electrodes. How will this be changed by the more
realistic ion profile of the inhomogeneous model?

A In the inhomogeneous sheath the conductivity is reduced (resistance
increases) because the ion profile forces the electron density to be markedly
lower than in the constant ion density sheath. This means that sheath heating
is more significant in the inhomogeneous sheath and so the equality of bulk
and sheath terms occurs for narrower sheaths and when a greater fraction of
the gap is filled with quasi-neutral plasma.

The ion power dissipation in one sheath is again given by the product of the ion
flux entering the sheath and the mean potential across it:

Pi = V · I i, (5.34)

where the time-averaged voltage across one sheath and the positive ion current are
given by

V = KsV0 = Ks
smI0

Kcapωε0A
, (5.35)

I i = eAhln0uB, (5.36)

with Ks a constant given in Table 5.2 (this constant was 3/8 in the homogeneous
sheath). The resistance associated with the power dissipated by ions is therefore

Ri = 2Ksehln0uBsm

Kcapωε0I0
. (5.37)

5.2.3 Stochastic (collisionless) heating

It has been shown experimentally that ohmic heating is not sufficient to explain
the electron power absorption and the high resulting electron density observed in
low-pressure capacitively coupled plasmas [65, 66]. It seems clear that electrons
gain their energy via collisionless heating, which results from the interaction of
the localized sheath electric field with the plasma electrons. An essential feature
of this mechanism is that the electron thermal velocity is much larger than the
sheath edge velocity. This means that electrons gain their energy in the sheath in
a short interval during which the electric field in the sheath is almost constant
(independent of time). After interacting with the sheath, electrons then release
this energy away from the sheath. A similar type of interaction may exist in the
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skin depth of a low-pressure inductive discharge, resulting in anomalous field
penetration and collisionless inductive heating. There are several approaches to the
modelling of this phenomenon, and this subject is still an active area of research.
The first approach, proposed initially by Godyak [67] and completed by Lieberman
[56] (see also [68,69]), is the so-called ‘hard-wall’ model. The time-varying sheath
edge is treated as a rigid barrier (the hard wall) that specularly reflects electrons
coming from the plasma. The argument considers the velocity component that is
parallel to the direction of the sheath motion. The reflected velocity of an individual
electron is

vr = −v + 2vs, (5.38)

where v is the incident speed and vs(t) = u0 cos ωt is the sheath edge speed.
Electrons interacting with a forward-moving sheath (towards the plasma) gain
energy, while those interacting with a retreating sheath lose energy. It is therefore
necessary to average over the velocity distribution, and over time, to calculate the
net power transferred to the electron population. The number of electrons per unit
area interacting with the moving sheath in a time interval dt and in a velocity range
v to v + dv is (v − vs)fes(v, t)dv dt , where fes(v, t) is the distribution function at
the sheath edge for the velocity parallel to the direction of the sheath motion. The
infinitesimal power per unit area is then the product of this number times the net
energy gain per unit time:

dSstoc = 1

2
m(v2

r − v2)(v − vs)fes(v, t)dv. (5.39)

Integrating this over the appropriate range of velocity is tricky because fes(v, t)
evolves as the sheath oscillates. Lieberman [2, 56] assumed a shifted Maxwellian
distribution and used the fact that the sheath velocity is much smaller than the ther-
mal velocity, vs � ve, to calculate the following time-averaged stochastic heating
per unit area:

Sstoc,hardwall = 3π

32
nsmveu

2
0H, (5.40)

in which ns is the density at the ion sheath edge, i.e., where the sheath is
fully expanded, and H is the inhomogeneous sheath parameter defined earlier
in Eq. (4.39).

The hard-wall model is appealing because it is a kinetic calculation that attempts
to represent the interaction between electrons and the sheath electric field. How-
ever, it has been shown that this model is not entirely self-consistent, because it
violates the conservation of RF current at the instantaneous (moving) sheath edge.
An alternative approach has been proposed to repair this deficiency. Turner and
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co-workers proposed a kinetic fluid (compressional heating) model to describe
collisionless heating [60, 61, 70], inspired by earlier work by Surendra and Graves
[71] and Surendra and Dalvie [72]. The idea behind the model is that net heat-
ing takes place as a consequence of the cyclic compression and expansion of the
electron fluid that occurs as the sheaths expand and contract. Within this model,
it is clear that heating must vanish in the homogeneous sheath, where there is no
compression (no density change). The model is concerned with the quasi-neutral
part of the space defined by the maximum sheath expansion; i.e., the model is not
strictly speaking dealing with the instantaneous sheath, but rather with the part of
the plasma that explores the time-averaged sheath thickness.

The Turner model combines the first three moments of the Vlasov equation
(kinetic equation appropriate for collisionless plasmas), which leads to the follow-
ing equation for the electron fluid:

∂

∂t

(
1

2
nkT

)
+ ∂

∂x

(
3

2
nukT + Q

)
− u

∂

∂x
(nkT ) = 0, (5.41)

where n, u and T are the electron fluid density, speed and temperature, respectively,
and Q is the heat flux carried by the electron fluid. There are four variables, so
additional physics is required to supply three further equations to solve this problem.
First note that the density n is in fact imposed by the time-independent ion density
profile, which is already known from the RF sheath model; remember that the aim
is to calculate compression of the electron fluid in the quasi-neutral part of the
time-averaged sheath volume. It is also a reasonable approximation to assume that
the electron temperature T is independent of space, because the electron thermal
conductivity is very high and the sheath thickness is relatively small. The evolution
of the electron temperature is followed by specifying the heat flux Q. To close the
set of equations, Turner and co-workers [60, 61, 70] further assumed that:

� the electron heat flux to the electrode is negligible;
� the random fluxes of electrons and heat at the ion sheath edge (at maximum

expansion) may be characterized by separate densities and temperatures for
electrons entering and leaving the sheath region;

� electrons in the plasma bulk have a fixed temperature Tb.

These assumptions allowed the heat flux at the sheath/plasma interface to be
expressed in the following way:

Q = 1

2
nsvekTb

(
T

Tb

)(
1 − T

Tb

)
= 0. (5.42)
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Figure 5.8 Normalized electron temperature τ ≡ T/Tb during one RF cycle. The
dashed line is from a PIC simulation [73] and the solid line is from Eq. (5.43).

With this expression for the heat flux and with the listed assumptions, Eq. (5.41)
can be reduced to the following first-order ordinary differential equation
for T :

u0

ve

[
(1 + cos θ )

1

Tb

∂T

∂θ
+ 2

T

Tb
sin θ ln

(
nes

ns

)]
+ T

Tb

(
T

Tb
− 1

)
= 0, (5.43)

where θ = ωt is the phase, nes is the density at the instantaneous sheath edge, so
that nes/ns is a function of θ and is given by the sheath model. This equation can
be solved numerically to calculate the oscillations of the electron temperature in
the sheath and the related heat flux to the plasma. The normalized electron temper-
ature is shown in Figure 5.8 during one RF cycle. During the first part of the cycle
the electron temperature in the sheath region is larger than the bulk temperature,
leading to a heat flux out of the sheath region into the plasma, while in the second
part the opposite occurs. Taking the average over a cycle shows that there is a net
heat flux into the plasma. The associated collisionless heating per unit area [61,70]
is found to be

Sstoc,fluid = π

16
nsmveu

2
0

(
36H

55 + H

)
. (5.44)

It is easy to see that for H � 55, this expression has the same scaling with
all parameters as the hard-wall model expression obtained by Lieberman and
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co-workers. The quantitative difference between the two models (again at moder-
ate H ) is

Sstoc,fluid

Sstoc,hardwall
= 72

165
≈ 0.4. (5.45)

In this book both models will be used, depending on the original published work,
remembering that there is not a large difference between the results of both models.
Note that collisionless heating is still an active area of research, and these models
may be subject to change in the future.

Since the sheath oscillates with a speed v(t) = u0 cos ωt , the amplitude of the
current is I0 = ensu0A. Taking the case of a collisionless sheath, for which sm/s0 =
5πH/12, Eq. (5.40) becomes

Sstoc = 9

40
mve

(
ωsmI0

eA

)
. (5.46)

The resistance to be inserted in the equivalent circuit model of the capacitive
discharge is therefore

Rstoc = 2SstocA

I 2
0

= 9

20
mve

(
ωsm

eI0

)
= 9

20

(
mve

nse2A

)(
ωsm

u0

)
. (5.47)

Note that it is also possible to use a collisional sheath law to calculate this resistance,
with a slightly different result (see Table 5.2).

5.2.4 Comparison with the homogeneous model

Table 5.1 summarizes the values of the elements of the circuit models for the
homogeneous and the inhomogeneous models. As mentioned previously, these
elements are functions of the electron density, the sheath thickness and the RF
current. However, there is a relation between these three quantities (the equivalent
of the Child–Langmuir law in DC sheaths). In the table, the electron density has
been systematically substituted using the appropriate sheath laws, namely Eq. (5.3)
for the homogeneous sheath and Eqs (5.28) and (5.29) for the inhomogeneous
sheaths. This will prove convenient when solving the energy balance, although the
expressions look somewhat cumbersome. In particular, this hides the important fact
that the main resistances accounting for transfer of energy from the electric fields
to the electron population, i.e., Rstoc and Rohm, scale with 1/n0.

The various coefficients introduced in this section come from various integra-
tions; they are summarized in Table 5.2. Some of them have not been obtained in
this section, but come from calculations described in the cited publications.
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Table 5.1 Expressions for the components of the equivalent circuit in the different
models

Component Homogeneous model Inhomogeneous model

Cs
ε0A

sm
Kcap

ε0A

sm

Rstoc 0 Kstoc(mkTe)1/2

(
ωsm

eI0

)
Rohm,sh

2
3mνmsm

(
ωsm

eI0

)
Kohm,shmνmsm

(
ωsm

eI0

)
Ri

3
2

(
uB

ε0Aω2

)
Ki

(
esmI0

Mε3
0A

3ω5

)1/2

Rohm mνm(l − 2sm)

(
ωsm

eI0

)
Kohmhlmνm(l − 2sm)

(
ω

eI0

)3/2

(Aε0smkTe)1/2

Lp Rohm/νm νmRohm

Table 5.2 Constants used in the inhomogeneous model components
of the equivalent circuit

Constants Collisionless sheath Collisional sheath

Kcap 0.613 0.751
Kstoc 0.72 0.8
Kohm,sh 0.33 0.155
Kohm 1.55 1.14

√
sm/λi

Ks 0.42 0.39
Ki 0.87 0.9

√
λi/sm

5.3 Global model

The expression ‘global’ here refers to the fact that the spatial dependence of the
variables related by the model has been integrated out through prior analysis and
reasoning. So far the details have been established for a symmetrical, single-
frequency CCP. There are four external (control) parameters that are in principle
chosen by the user, namely the neutral gas pressure p, the electrode spacing l,
the driving frequency ω and the RF current IRF (when required Eq. (5.31) enables
a convenient way of switching to the more intuitive voltage drive). Three global
variables then characterize the CCP: the electron temperature Te, the central electron
density in the plasma n0 and a parameter sm that represents the size of the region
swept out by an RF sheath, i.e., the maximum sheath thickness.
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To solve for the three variables, three equations are required: the particle balance,
the power balance and the RF sheath law (or RF Child law), given by Eq. (5.28)
for collisionless sheaths and Eq. (5.29) for collisional sheaths.

The simultaneous solution of these equations can be used to evaluate important
quantities from a plasma processing point of view, such as the ion flux to the
electrodes or the energy of ions bombarding those electrodes. In the next section,
the model equations are gathered together and a simple procedure is given to solve
these equations. The effect of the external parameters on the plasma variables will
then be analysed. Finally, to account for all the power dissipation, the modelling
is extended to include the electrical matching circuitry that is usually incorporated
into processing reactors.

5.3.1 Model equations

The electrode surface is A and the plasma volume is A(l − sm) such that, according
to Eq. (3.84), the steady-state particle balance can be written

ngneKiz(l − sm) = 2hln0uB (5.48)

where, from Eq. (2.27), Kiz = Kiz0 exp(−eεiz/kTe) is the ionization rate constant
and εiz is the ionization potential. Note that this uses the simplification that there is
no volume recombination, which is a very good approximation in electropositive
plasmas because electron–ion recombination is negligible. Note also that multi-step
ionization has been neglected.

Q In the remainder of this section the assumption will be made that ne = n0.
To what extent is this a valid approximation?

A In Section 3.4.2 it was shown that 2/π ≤ ne/n0 ≤ 1, so setting axial and
mean densities equal will not seriously affect the density scalings but may
limit confidence in absolute values to ±30%.

In the limit of small sheath size, sm � l, the particle balance is independent
of the electron density, and this equation determines the electron temperature,
independently from the two other variables. This key result was part of the dis-
cussion of discharge plasmas in Chapter 3. However, many industrial capacitive
discharges have a rather small electrode gap (2–3 cm) and consequently it is not
always appropriate to neglect sm in Eq. (5.48). One may anticipate that as the RF
current increases, the sheath size increases which reduces the volume of the plasma
bulk, without changing the loss flux to the boundaries. Consequently, the ionization
rate has to increase to sustain the plasma from a smaller production volume: thus
the electron temperature has to increase.
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Figure 5.9 Schematic of the power absorbed by electrons as a function of the elec-
tron density for two different RF current amplitudes (solid lines) compared with
power loss from the electron population (dashed line). The electron temperature
is presumed fixed. The crossings are equilibrium points that indicate potentially
stable plasmas.

The steady-state electron power balance can be written in terms of the equivalent
circuit with Eqs (2.45) and (3.29) as

1

2
(Rohm + 2Rstoc + 2Rohm,sh)I 2

0 = 2hln0uBεT(T )A. (5.49)

The left-hand side is the absorbed power in the equivalent circuit model. The power
dissipated by ions crossing the sheaths, represented by Ri in the equivalent circuit,
does not feature in the electron power balance.

5.3.2 Scaling with external control parameters

A simple graphical analysis of the discharge equilibrium is informative. Figure 5.9
plots schematically the power absorbed by electrons from electric fields, Pabs(n0),
and the power lost from the electron population, Ploss(n0), for two different values
of the amplitude of the RF current, I0. Since the main resistances in Eq. (5.49) scale
with 1/n0, at constant current Pabs(n0) ∝ 1/n0 (if one neglects the Rohm,sh and the
weak density dependence of l − 2sm). On the other hand, the rate of energy loss
from the electron population increases linearly with n0, with a slope determined
by the electron temperature Te. The equilibrium must be at the crossing of the two
curves Pabs(n0) and Ploss(n0), that is when losses exactly balance the power deliv-
ered to electrons from the RF generator. In particular, Figure 5.9 shows that when
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the RF current amplitude is increased, the balance occurs at higher electron density.
This graphical representation of the power equilibrium is very useful in understand-
ing the physics of more complex dynamics such as mode transitions and related
hysteresis and instabilities – some of these aspects will be treated in later chapters.

For a fully quantitative solution the challenge is to solve simultaneously
Eqs (5.48), (5.49) and (5.28) (or (5.29)). A convenient procedure is first to choose a
value for sm, then to solve the particle balance to obtain Te, and thereafter to solve the
power balance together with the appropriate sheath law for n0 and I0 [63]. It is pos-
sible to obtain analytical solutions in limiting cases and these will be discussed next.

Electron temperature

The electron temperature is essentially set by the particle balance and increases only
slowly with the applied voltage as a consequence of the reduction of the plasma vol-
ume when the sheath size increases. This effect is more pronounced at lower pres-
sure (<1 Pa) and low density, where the sheaths are largest. Here we should point
out that other subtle mechanisms, ignored in this simple modelling, may be respon-
sible for variations in the electron energy distribution, and therefore the effective
electron temperature. Among others, multi-step ionization is particularly important.

Plasma density

First consider a situation where (i) the sheath thickness is small compared to
the plate separation (sm � l), and (ii) stochastic heating dominates in the power
absorption term. This is valid at low pressure, typically less than a few Pa. In
this case, the electron temperature is determined from Eq. (5.48), which for given
pressure and plate separation will fix εT(Te). Given the expression of Rstoc in
Table 5.1, and using Eq. (5.31), one easily obtains

n0 =
[
ε0KstocKcap(mM)1/2

4ehlεT(Te)

]
ω2V0. (5.50)

Under these circumstances the electron density increases linearly with the applied
RF voltage, and scales with the square of the applied frequency. The same analysis
can be done in the opposite limit, where ohmic heating in the plasma dominates
(typically at much higher pressure).

Q Show that n0 ∝ ω2V
1/2

0 when ohmic heating in the plasma dominates.
A The ohmic power balance sets RohmI 2

0 /2 proportional to n0. The former term
contains the product smI0, which can be linked to ωV0, through Eq. (5.31).
When this is done and one assumes l � sm, what remains contains n0 scaling
with two of the four parameters, as given: ω2 and V

1/2
0 .
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Figure 5.10 Electron density, sheath size and electron temperature as a function
of the RF voltage amplitude. The frequency is 13.56 MHz, the argon gas pressure
is 19.5 Pa, the electrode radius is 15 cm, and the electrode gap is 3 cm.
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Figure 5.11 Components of the total power dissipation in the inhomogeneous
model as a function of the RF voltage amplitude. The frequency is 13.56 MHz,
the argon gas pressure is 19.5 Pa, the electrode radius is 15 cm, and the electrode
gap is 3 cm. Losses in the match-box PMB will be discussed in Section 5.3.4.



5.3 Global model 159

Sheath thickness

It is also interesting to examine the scaling of the sheath size with external param-
eters. Consider first a collisionless sheath. Then, combining Eqs (5.28) and (5.31),
one obtains s4

m ∝ V 3
0 n−2

0 h−2
l . Since from Eq. (5.50) we have hl n0 ∝ ω2V0, it

follows that

sm ∝ V
1/4

0

ω
. (5.51)

For a given frequency, the sheath size increases moderately with voltage, whereas
for fixed voltage, the sheath size decays significantly with frequency. Note that here
we considered collisionless sheaths and found that sm is independent of pressure.
However, in the intermediate pressure range, one should use the collisional sheath
law Eq. (5.29). Then, following the same procedure,

sm ∝
(

V0

p ω4

)1/5

. (5.52)

The trends with the RF voltage amplitude and frequency are similar (with slightly
different scalings), and we see that the sheath tends to shrink with the neutral gas
pressure p (remember that λi ∝ 1/p).

The two scaling laws in Eqs (5.51) and (5.52) were obtained on the assumption
that stochastic heating dominates, which may be questionable for typical gas pres-
sure used in plasma processing discharges. To assess the validity of these scalings,
the exact numerical solution of the three equations is shown in Figure 5.10, where
the electron density, sheath size and electron temperature are plotted as a function
of the RF voltage amplitude. The frequency has been set at 13.56 MHz and the
argon gas pressure is 19.5 Pa; the electrode radius is 15 cm, and the electrode gap is
3 cm. The sheath thickness increases slowly with the voltage (as anticipated by the
scaling laws (5.51) and (5.52)), which leads to a very weak increase in the electron
temperature. The gas pressure is relatively high (λi < sm < l), so that ohmic heating
should be appreciable. However, the electron density increases almost linearly with
the voltage, consistent with the result in (5.50), that is with collisionless heating.

To better understand the above observation and the relative importance of the
various heating mechanisms, Figure 5.11 shows the individual components as a
function of the RF voltage amplitude for the same conditions. Even for this rela-
tively high pressure, ohmic heating in the bulk plasma never dominates. Stochastic
heating at the boundaries of the strongly modulated sheaths is dominant for volt-
ages in the range 200–1000 V, after which ohmic heating in the now relatively
thick sheaths takes over. The diagram shows that ohmic heating in the plasma has
a weaker dependence on voltage than stochastic heating, and that ohmic heating in
the sheaths has the strongest scaling with voltage.
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Table 5.3 Effect of changing the electrode spacing on the plasma
parameters for a fixed voltage between the electrodes, V0 = 200 V.
The frequency is 13.56 MHz, the electrode radius is r0 = 15.0 cm
and the gas pressure is 19.50 Pa

l/10−2 m 3.00 6.00 9.00
kT /e/eV 1.83 1.63 1.53
sm/10−2 m 0.47 0.49 0.51
n0/1016 m−3 0.60 0.80 0.94
I0/A 1.72 1.62 1.57

Table 5.4 Effect of changing the gas pressure on the plasma
parameters for a fixed voltage between the electrodes, V0 = 200 V.
The frequency is 13.56 MHz, the electrode radius is r0 = 15.0 cm
and the electrode spacing is l = 3.00 cm

p/Pa 1.33 6.65 19.50 33.25
kT /e/eV 4.00 2.25 1.83 1.69
sm/10−2 m 0.76 0.58 0.47 0.41
n0/1016 m−3 0.10 0.32 0.60 0.85
I0/A 0.86 1.37 1.72 1.94

Gap width and pressure variations

The electrode spacing and the gas pressure both predominantly affect the electron
temperature. Table 5.3 sets out how changes in the electrode separation would
affect the plasma while holding V0 = 200 V, starting from reference conditions
that correspond with those of Figure 5.10: 13.56 MHz CCP, 19.50 Pa Ar, electrode
radius r0 = 15 cm. Increasing the gap at fixed pressure decreases the electron
temperature and increases the electron density. Both of these effects are due to
reduced losses (hl decreases) – it was shown in Chapter 2 that pressure and system
size determine the electron temperature when volume production is balanced by
surface loss. The sheath size increases slightly as the electrode gap is widened. The
current associated with the fixed voltage decreases slightly, keeping the product
smI0 constant, as required by Eq. (5.31).

Exercise 5.1: Global modelling Table 5.4 sets out how changes in the pres-
sure would affect the plasma while holding V0 = 200 V, starting from reference
conditions that correspond with those of Figure 5.10. Account for the obser-
vation that decreasing the pressure at fixed electrode spacing increases the
electron temperature, decreases the electron density and increases the spatial
extent of the sheath region.
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Figure 5.12 Electron density as a function of the driving frequency, as calculated
by a PIC simulation, a fluid simulation and the global model. The RF voltage
amplitude is fixed at V0 = 200 V, the argon gas pressure is 19.5 Pa and the electrode
gap is 3 cm. From [75].

5.3.3 Comparison with numerical models

The scaling with frequency that is predicted by the zero-dimensional global model
provides a useful basis for comparing the model with one-dimensional (1-D) fluid
and PIC calculations.

Q Identify the parameters that could increase the rate of plasma–surface inter-
actions in a processing step during semiconductor device fabrication.

A Reaction rates are likely to scale with plasma density. According to Eq. (5.50),
of the four (p, l, ω, V0 (or IRF)), the frequency and output level of the elec-
trical supply should strongly influence the process times.

Many authors have pointed out the advantages of increasing frequency in order
to increase the plasma density [12, 73, 74], though this strategy does not leave
everything else unchanged. For instance, if one tries to maintain a fixed plasma
density while increasing the frequency, then the voltage across the electrodes will
be lower (to maintain constant ω2V0) and therefore there will be a reduction in ion
bombardment energy. In a single-frequency CCP the ion flux (∝ plasma density)
and ion energy (∝ sheath voltage) cannot be varied independently.

Figure 5.12 compares the predictions of the global model described here with
1-D numerical solutions of the fluid equations [76–78] and a 1-D Monte Carlo,
particle-in-cell simulation [79]. All calculations predict a dramatic increase of the
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Figure 5.13 Electric circuit model for the capacitively coupled plasma reactor, including
match-box and stray elements.

electron density with the driving frequency. There is remarkably good agreement
between the global model and the PIC simulation. The fluid code predicts lower
densities and a weaker scaling with frequency. This can be attributed to the facts
that (i) the fluid approach does not capture the physics of stochastic heating in the
sheaths, and (ii) it neglects electron inertia, both of which become important as the
frequency increases.

5.3.4 Global model with match-box

The equivalent circuit of a CCP describes the electrical load that such an arrange-
ment presents to an RF power source. To match the load (the reactor with a plasma
between the electrodes) to a standard generator with 50 � output impedance, the
system must include a matching network or ‘match-box’. The complete electrical
analysis of a CCP should include the match-box and any other elements of the real
electrical system. A typical matching circuit comprising two variable capacitors
and an inductor is shown in Figure 5.13. The diagram also includes realistic circuit
losses, stray series inductance and stray capacitance to ground, respectively Rloss,
Lstray and Cstray. The turns of wire that form the inductor are the chief source of
circuit resistance, which is significant at radio frequency, so match-boxes usually
include a cooling fan to disperse the heat that is generated. In addition to the induc-
tor, there is additional inductance because of the specific path of current to and from
the plasma-facing surfaces of the electrodes – there is inductance both in the power
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feed and in the earth return path. Charge must be supplied to set any conductor at a
given potential, and where those potentials are between large areas that are closely
separated there is a significant capacitance – the RF-powered electrode in a CCP
is usually coaxially sleeved by a few millimetres of insulator and grounded metal.

The match circuit itself is composed of an inductor, Lm, and two variable
capacitors, C1 and C2, that are adjusted to achieve impedance matching. For RF
generators that have an output impedance of 50 � (resistive), the matching condition
essentially requires that the matched load also amounts to 50 �. The practical
circuit analysis is simplified if C2 is considered as part of the output circuit of the
generator, and the matching condition is restated as requiring that this arrangement
is presented with a total load that amounts to its complex conjugate.

Q Suggest how to determine Cstray, Lstray and Rloss when the match circuit is
connected to an empty CCP chamber.

A (i) The simplest quantity to measure is Cstray. Using a conventional low-
frequency bridge, the capacitance between the input to the match circuit and
ground is measured, with the generator and C2 disconnected. The result is
due to C1 in series with the parallel combination of Cstray and the paral-
lel plate capacitance of the inter-electrode gap (ε0A/l), which replaces the
components of the equivalent circuit that represents the plasma in normal
operation.
(ii) Still with the generator and C2 disconnected, so again no plasma, the
total circuit inductance can be found by finding the natural resonance of this
inductance with the net capacitance from (i).
(iii) Rloss is the hardest to measure directly since it is the net resistance of
the circuitry at the main excitation frequency – at RF the skin effect makes
resistance a function of frequency. A neat way to measure Rloss would be to
repeat step (ii) with C1 or Cstray augmented as necessary to make the circuit
resonant at the excitation frequency – then, driving the circuit with a rectan-
gular pulse train, the resistance can be deduced from the decay time of the
natural resonance initiated by each pulse.

The power dissipated in the match-box is of particular interest. This quantity
clearly depends on the reactor design, via the values taken by Cstray and Lstray for
instance, which contribute to determining the current drawn from the generator. For
a given reactor design, the power dissipation also depends on the external param-
eters, pressure, frequency and RF voltage amplitude. The following discussion
focuses on the driving frequency.

The resistance Rloss included in the circuit accounts for losses in conductors, in
the match-box and in parts after the match-box. The RF current flows in the skin
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Figure 5.14 Various components of power dissipation as a function of the driving
frequency for fixed voltage, V0 = 200 V (upper), or fixed electron density, ne =
1017 m−3 (lower). The argon gas pressure is 19.5 Pa and the electrode gap is
3 cm; for illustrative purposes, Rloss (13.56 MHz) = 0.5� (in practice it is system-
dependent). When the generator is matched to the load, the power dissipated within
the output circuit of the generator also equals Ptot.

of these conductors, that is in a small area; the (resistive) skin depth at 13.56 MHz
in aluminium is approximately 22 μm. In addition, and as shown in Eq. (2.58), the
skin depth scales with ω−1/2, which implies that the RF resistance of a conductor
increases with the square root of the frequency. One can therefore anticipate that
the power dissipated in the match-box should increase with the driving frequency.
But this is not quite the end of the story, because the RF currents also tend to be
higher at higher frequency. Figure 5.14 compares the various sources of power
dissipation in the total circuit of Figure 5.13, as a function of the driving frequency,
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for a fixed voltage amplitude, V0 = 200 V (upper), and for a fixed electron density,
ne = 1017 m−3 (lower).

In the upper graph, the voltage is held constant and the frequency is increased,
such that the electron density increases with the square of the frequency (this
corresponds to the case in Figure 5.12). The power deposited in electrons, Pe,
increases accordingly. The ion power also increases because at constant V0 the
time-averaged sheath voltage remains constant while the ion current increases
linearly with the electron density. Finally, notice that the power dissipation in the
match-box increases more rapidly than the other components. This is because the
loss resistance increases with the square root of the frequency while the RF current
increases; by contrast, the plasma resistance decreases with frequency because of
the very fast increase in the electron density. At very high frequency, most of the
power delivered by the RF generator is dissipated in the match-box and circuitry
external to the plasma.

In the lower graph of Figure 5.14, the electron density is held constant. This time,
the electron power and the RF current remain fairly constant (since ne is constant).
However, the power dissipated by the ion bombardment of electrodes decreases
dramatically. This is due to the decrease in the sheath voltage. Indeed, since the
sheath impedance is capacitive, the voltage drops when the frequency increases
at fixed current. This shows the advantage of increasing the frequency to increase
the coupling to the plasma, that is to increase the amount of power dissipated by
electrons against the power lost by accelerating ions in the sheath. Since the RF
current is fairly constant, the losses in the external circuit increase only through the
skin effect. Again, at high frequency, most of the power is dissipated outside the
plasma.

Q Explain the result shown in Figure 5.11, which indicates that the loss in the
match-box increases with the applied voltage faster than the power dissipated
by electron heating.

A In the equivalent circuit, the RF current flows through Rp, Rohm,sh and Rloss;
the last component also passes the current in the stray capacitance. Whereas
Rloss is independent of the applied voltage, the resistances accounting for
electron heating decay with 1/n0, and so decrease with increasing voltage.
Taken together, these factors account for the observed trends.

5.4 Other regimes and configurations

So far CCPs have been considered only in perfectly symmetrical arrangements and
at rather low pressure. Often the earthed electrode is electrically connected to the
walls of a vacuum vessel and therefore the area of grounded surface is much larger
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than that of the RF-powered electrode; the implication of electrode asymmetry is
discussed in the next section. Another interesting issue is related to higher-pressure
operation, in which secondary electrons emitted from electrodes may play a role in
the ionization processes and in the electron power balance. The final topic in this
section concerns the series resonance that occurs between the sheath capacitance
and the plasma inductance.

5.4.1 Asymmetric discharges

Consider an asymmetrical CCP, that is one between electrodes of different area:
Aa is the area of electrode ‘a’ and Ab is the area of electrode ‘b’. Since the areas
are different, the size and potential associated with sheaths ‘a’ and ‘b’ must be
different, otherwise the sheaths could not pass the same RF current – they must do
so since current flowing through the system is conserved.

For the constant ion density model, according to Eq. (5.3), the continuity of RF
current would require that

s0,aAa = s0,bAb.

Since in this model sm = 2s0, it follows that

sm,aAa = sm,bAb,

so the time-averaged sheath, that is the region from which electrons are swept out
once during each RF cycle, is smaller in front of the electrode of larger surface. The
voltage ratio is determined by using Eq. (5.12), and the DC component of (5.13)
to replace the sheath thicknesses. Rearranging the result:

V a

V b
=

(
Ab

Aa

)2

. (5.53)

Thus, the larger DC (and RF) voltage is adjacent to the smaller electrode. In fact,
the different sheath voltages mean that an asymmetric CCP develops a DC bias
between the electrodes – a symmetrical one does not. The DC bias is

V b − V a = V b

(
1 −

(
Ab

Aa

)2
)

.

In principle, at large asymmetry, this means that almost all the RF potential is recti-
fied by the larger sheath, through which ions reach the surface with a bombardment
energy almost equal to the RF amplitude. Figure 5.15 shows a sketch of potentials
in an asymmetric CCP.
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Figure 5.15 Potential V (x, t) between the electrodes for two different times during
the RF cycle, along with the time-averaged value, in the case of an asymmetric
capacitive discharge. V b − V a is the self-bias voltage.

Q The scaling between voltage and area from the constant ion density model is
unlikely to be perfect because of the unrealistic representation of ion space
charge. What other assumption(s) of the homogeneous CCP model might
affect its usefulness here?

A In setting up the current-driven CCP it was convenient to ignore the self-
consistent, self-bias voltage that properly balances the particle currents –
instead, the instantaneous sheath is supposed to vanish for an instant. In
the asymmetrical CCP, although this works well at the small area electrode
where there is a large RF current density and large voltage, it is not a good
assumption for the large area side where the current density is relatively
small. The lack of spatial structure in the plasma is another compromise –
the two electrodes may not be in exactly the same plasma.

Using the more realistic inhomogeneous sheath model, Eq. (5.28), the continuity
of RF current requires that

Ab

Aa
=

(
sm,a

sm,b

)1/3

. (5.54)
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Together with Eq. (5.51) this implies a fourth-power scaling between area ratios
and voltage ratios; however, experimental measurements generally reveal much
weaker scalings. Various important factors can reconcile the disparity.

� First, the neglect of particle currents is a serious omission, at least as far as the
larger area electrode is concerned. The RF-enhanced floating potential discussed
in Chapter 4 determines the DC voltage between the plasma and ground, though
to invoke the basic formula in terms of a modified Bessel function, one needs
to assume a sinusoidal RF plasma potential. At least one voltage-to-area scaling
calculation has been based entirely on particle currents [80], but the analysis
is flawed by an assertion that ion and electron loss rates are instantaneously in
balance, whereas the true balance is established over an RF cycle.

� Second, the inhomogeneous CCP features a symmetrical plasma volume with
central density n0 and densities at the boundaries given by hln0, but this cannot
be so for an asymmetric CCP. The easiest asymmetric CCP to think about would
be one between a pair of concentric cylinders – analysis shows that the densities
at the inner and outer sheath/plasma boundaries are not equal and one should
employ different hl terms for the two electrodes [2].

� Third, in practice the effective area of the grounded surface of a CCP in a
metallic vacuum chamber is difficult to quantify because of the presence of ports
and re-entrant, shielded-electrode structures.

� Fourth, there is only one proper earth point, and so-called grounded surfaces
are connected to it via distributed, inductive current paths. Indeed, in some
circumstances there may be some RF current that circulates through grounded
surfaces but without intercepting the earth point.

A universal scaling between the area ratio and the DC bias of an asymmetric
CCP is not available. Nevertheless, it is clear that ions will have higher energies
at the smaller electrode in strongly driven, highly asymmetric CCPs. This is the
archetype for reactive ion eching (RIE).

5.4.2 Higher-pressure regimes

The foregoing discussions have ignored aspects that may become important when
varying the neutral gas pressure from very low values (about a Pa) to fairly high
values (hundreds of Pa).

Electron energy distribution functions

To illustrate this, we start by examining the electron energy distribution function
changes, as measured by Godyak and Piejak [66] in a single-frequency capacitive
discharge in argon. Figure 5.16 shows how the semi-log plot of the so-called



5.4 Other regimes and configurations 169

0 5 10 15

13.2

26.3

39.5

132

263

395

electron energy/eV

ar
go

n 
pr

es
su

re
/P

a

E
E

P
F

/e
V

−3
/2

 m
−3

1016

1014

1012

Figure 5.16 Evolution of the electron energy probability function (EEPF) as a
function of pressure in a single-frequency capacitive discharge. From Godyak and
Piejak [66].

electron energy probability function (EEPF) changes as pressure is varied from 9.3
to 400 Pa (0.07–3 torr). The EEPF is the energy distribution function divided by
the square root of the energy (f (ε)/ε1/2) and for a Maxwellian this gives a single
straight line on a semi-log plot (see Chapter 10). The first striking observation is that
the distribution is never close to a Maxwellian distribution. In previous discussions
the electron population has always been presumed to have a Maxwellian energy
distribution – though convenient, that is clearly not strictly appropriate, so care
must be exercised in expressing absolute confidence in numerical results. A second
observation is that there is a clear transition in the middle of the range. The
distribution at low pressure has a high-energy tail superimposed on a cooler bulk.
At higher pressure the distribution becomes dome-shaped, with a distinct reduction
in the numbers of higher-energy electrons.

Godyak and Piejak attributed this effect on the distribution function to a transition
from a discharge dominated by stochastic heating at low pressure, to a discharge
dominated by ohmic heating at higher pressure [66]. This transition occurs at
around 65 Pa in their experiment, which is close to where the global model in
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Section 5.3 anticipates a change-over between stochastic and ohmic mechanisms
for a discharge in a symmetrical CCP chamber.

Secondary electrons

In DC discharges, secondary electrons are essential because ions produced in the
plasma cannot carry all the current in the cathode sheath. RF discharges, on the
other hand, do not in general require secondary emission to take place. Nevertheless,
Godyak and co-workers have shown that the electron energy distribution function
may be modified by the emission of secondary electrons at the electrode [81]. Even
when the sheath is collisional, ions reach the electrode with sufficient kinetic plus
internal energy to enable around 10% of the recombination of ions and electrons to
liberate bound electrons from the surface. These secondary electrons are accelerated
back into the plasma by the sheath electric field. The flux of secondary electrons is
written

�se = γse�i, (5.55)

where γse is the electron secondary emission coefficient and �i is the ion flux. Note
that at high frequency, although the ion flux is time-independent, the acceleration of
secondary electrons varies through the RF cycle such that their energy and density
fluctuates at the frequency of the generator.

The secondary electrons may participate in ionization and they may be respon-
sible for a significant fraction of the power dissipation [39,82,83]. This effect may
be included in global models of CCPs similar to the one described in this book
(see for instance [62, 82, 83]). In order for secondary electrons to be important in
the discharge power balance, two conditions must be fulfilled. First of all, these
electrons need to get significant energy in the sheath; the effect is going to be
larger at large sheath voltage, that is at large power. Second, they need to be able to
ionize (i.e., experience inelastic ionizing collisions) before escaping the discharge
or being thermalized; the effect is not significant at low pressure. To illustrate this,
Figure 5.17 shows the evolution of the plasma density as a function of the RF
voltage amplitude in a 3.2 MHz capacitive discharge in helium. The pressure was
400 Pa (3 torr) and the electrode spacing was 7.8 cm. The dashed line is an experi-
mental result obtained by Godyak and Khanneh [82], while the three other curves
are fluid calculations by Belenguer and Boeuf [84] with various values of γse. There
is a transition at around 400 V, corresponding to a threshold voltage above which
the discharge becomes sustained by secondary electrons. This is sometimes called
the γ -mode transition.

The above work was carried out at rather low frequency, for which voltages
tend to be larger, and at rather high pressure. In typical etching plasmas, with
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Figure 5.17 Plasma density as a function of RF voltage for different values of
γ (≡ γSE) showing the transition to the γ -mode. From Belenguer and Boeuf [84].

pressures around a few Pa and frequencies above 13.56 MHz, secondary electrons
are usually not dominant, unless they are deliberately enhanced [83]. However,
the next chapter explores reactors that operate with more than one frequency, with
the lower frequency sometimes significantly below the usual 13.56 MHz. In such
systems, secondary electrons may play a role.

5.4.3 Series resonance

It is clear from the analysis of the last two chapters that although one may choose
to excite the plasma at one particular frequency, the non-linearities of the sheaths
in particular give rise to harmonics that introduce a wide range of frequencies into
the system – under these circumstances it is important to check whether any of the
‘natural modes’ are likely to become excited. This final section looks briefly at the
consequences.

As widely discussed in this chapter, the equivalent circuit of a capacitive dis-
charge is composed of resistances, accounting for various dissipations, in series
with a capacitance, Cs, modelling the combination of the two sheaths (where the
electrostatic field energy is high) and an inductance, Lp, due to plasma electron iner-
tia. This equivalent circuit has a series resonance at a frequency ωres = (LpCs)−1/2;
the resonance couples the electrostatic field energy to the kinetic energy stored
in the RF oscillation of the electron population. From Eqs (2.82) and (5.30), it
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follows that

ωres =
(

dKcap

ω2
pesm

)−1/2

≈ ωpe

√
sm

d
. (5.56)

For a typical electron density of ne = 1016 m−3, and a symmetrical parallel plate
CCP, the series resonance is likely to be in the range 0.1 − 0.5 GHz and therefore
much larger than the driving frequency.

Although conventional plasma processing reactors do not operate at a funda-
mental driving frequency near the series resonance, it has been suggested that
enhanced power absorption might be achieved through deliberately addressing the
series resonance [85]. It is possible to meet the resonance conditions by running
at very low density, that is by decreasing the plasma frequency, but the series
resonance in the normal operating regime of a 13.56 MHz capacitive discharge
is expected to lie beyond 100 MHz. To reach the resonance at higher density one
must therefore increase the driving frequency, noting also the fact that at constant
electron density, sm decreases with increasing frequency, based on the scaling
sm ∝ ω−1 from Eq. (5.52).

In Figure 5.18, the electron density is plotted as a function of the RF voltage
when crossing the series resonance, as calculated by the global model. At low
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voltages, there are two solutions for the electron density at a given voltage. In
other words, when scanning the electron density by increasing the power out of
the generator, one passes a point of minimum voltage, which corresponds to the
series resonance. This was demonstrated experimentally by Godyak and Popov
[86]. As expected, the electron density at which the resonance occurs increases
with the driving frequency. At 10 times the traditional RF excitation frequency,
that is at 135.6 MHz, the resonance occurs around ne = 1016 cm−3, which is a
typical density for plasma processing. An interesting feature to note is that the
reactive part of the discharge impedance, X1, switches from positive to negative
values on crossing the resonance by increasing density, as shown in Figure 5.19.
This means that at low density, the discharge impedance is mostly inductive (the
electron inertia inductance dominates), while at high density it becomes capacitive
(the sheath capacitance dominates).

It is difficult to prevent energy from building up in the natural modes of a
system, so it is perhaps not surprising to discover that in practice the harmonics
generated by the non-linearities of the sheaths will almost inevitably excite the
series resonance to some degree [87], and this is the basis of a diagnostic method
described in Chapter 10. This self-excitation in turn has been found to contribute
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to an enhancement of electron heating in circumstances that at first sight might be
thought to be solely associated with currents and voltages at 13.56 MHz [88, 89].

5.5 Summary of important results
� A capacitive discharge can be modelled with an equivalent electrical circuit

that is composed of a capacitance in series with an inductance and several
resistances. Although each sheath is non-linear (i.e., generates harmonics of
the driving frequency), the combination of the two is nearly linear for a sym-
metrical system, this is why they can be modelled by a single capacitor. A
significant fraction of the power is dissipated in sheaths by electron heating
mechanisms and ion acceleration towards the electrodes. Electron heating in
the sheaths may exceed electron heating in the plasma in narrow gap dis-
charges. Collisionless (stochastic) heating is dominant in the pressure regime
of interest in etching plasmas (0.1–20 Pa). These dissipative effects are mod-
elled with resistances. The plasma does not generate harmonics and can be
modelled by the series combination of a resistance (due to electron–neutral
elastic collisions, responsible for ohmic heating) and an inductance (due to
electron inertia).

� At 13.56 MHz the impedance of the sheaths is much larger than the
plasma impedance and almost all the voltage drop takes place across the
sheaths.

� The equivalent circuit description allows the match-box to be included in
the global model. The fraction of the power dissipated in the match-box is
significant (it may easily exceed that delivered to the plasma), and strongly
increases with the applied voltage and the driving frequency.

� Increasing the output power of the RF generator increases both the plasma
density, which governs the ion flux to the electrodes, and the sheath voltage,
which governs the bombarding ion energy. Ion flux and ion energy cannot be
varied independently, which is a great limitation of single-frequency CCPs.
This issue is discussed further in the next chapter.

� Increasing the driving frequency allows the sheath voltage to be reduced, at
given plasma density, or the plasma density to be increased, at given sheath
voltage.

� Increasing the gas pressure or the electrode gap size increases the electron
density at fixed voltage and decreases the electron temperature.

� The sheath size increases with the voltage, significantly decreases with the
driving frequency, and only moderately decreases with the neutral gas pressure;
the typical scaling is sm ∝ (V0/pω4)1/5.
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� Asymmetric discharges, that is discharges with unequal electrode areas, have
a larger voltage sheath in front of the smaller electrode and a smaller voltage
sheath in front of the larger electrode.

� Secondary electrons play an important rôle in higher-pressure, high-voltage
CCPs.

� A CCP stores energy in electrostatic fields of the sheath and in the inertia of
electrons in the plasma bulk – resonances can occur as energy is transferred
between these energy reservoirs.



6

Multi-frequency capacitively coupled plasmas

In the previous chapter it was shown that single-frequency capacitive discharges
do not allow ion flux and ion energy to be varied independently. To overcome this
limitation, inductive discharges may be used, in which the plasma is produced by
an RF current in an external coil while the wafer-holder is biased by an independent
power supply. These discharges are studied in the next chapter.

It should also be possible to achieve a reasonable level of control of the ion flux
independently of the ion energy, by using dual-frequency CCP. Figure 6.1 shows
the inspiration for this assertion [90]: the ion energy is plotted as a function of
the ion flux at the grounded electrode of a symmetrical CCP for three different
single-frequency discharges. The symbols are measurements from a planar probe
and from a retarding field analyser inserted in the grounded electrode [75, 90, 91]
(see Chapter 10 for background on these measurements). The lines in the figure are
from a global model similar to that developed in the previous chapter. It appears
as expected that the trajectory in flux–energy space is a single line for each driving
frequency. At 13.56 MHz, there is a clear trend towards high ion energies and small
ion fluxes, while at 81.36 MHz the opposite arises. Etching often requires ions to
have energy in excess of 100 eV to enhance chemical reactions, but less than about
500 eV to avoid physical damage to the surface being etched, or to the photoresist
mask. It is clearly not easy to explore this process window with a single-frequency
CCP. Hence, it is worth investigating the idea that a dual-frequency excitation
might offer control of the ion energy with the lower frequency while controlling
the ion flux with the higher frequency. This was first proposed by Goto et al. [92],
but later it was shown that the ideal separation is not always achieved [93]. In this
chapter, it is shown that the two frequencies are indeed coupled via electron heating
mechanisms in the dual-frequency sheaths.

The outline of this chapter is as follows. In Section 6.1, dual-frequency capacitive
discharges are investigated with the same approach as in the previous chapter. The
aim is to establish a global model that can be used to predict the plasma parameters

176
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Figure 6.1 The flux–energy diagram for ions bombarding the electrodes in a
symmetrical single-frequency capacitive discharge in argon, from [90]. The gas
pressure was 2 Pa (15 mtorr). Symbols are experimental results, while solid lines
are results from a global model similar to that developed in Chapter 5.

for any given combination of input parameters. To shorten the analysis it is restricted
to the electrostatic regime and a full circuit model is not developed. The use of three
or more frequencies of excitation is also briefly considered. Section 6.2 addresses
the case of excitation by a single very high frequency in the electromagnetic regime,
that is when the wavelength of the RF excitation is comparable with, or less than, the
size of the electrodes. The electromagnetic analysis of dual (or multiple)-frequency
CCPs remains to be done.

Q When should one be concerned about electromagnetic effects in a system
with electrodes of diameter 30 cm?

A The free space wavelength that corresponds with 1 GHz is 30 cm – for fre-
quencies around and above 100 MHz it is not reasonable to suppose that RF
potential is uniformly distributed across a conductor of this size.
Comment: For a CCP at high frequency one must also consider effects of
skin depth.

6.1 Dual-frequency CCP in the electrostatic approximation

The global model for a dual-frequency capacitive discharge is based, as usual, on
a combination of particle balance and energy balance. The nature of the power
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source enters only into the latter. One must therefore consider the effect of using
dual-frequency excitation on the processes that transfer electrical energy into the
electron population.

The plasma bulk is again described by a resistance in series with an inductance,
i.e., linear components – as a result, the passage of current arising from two
independent frequency sources can be treated by simple superposition. It is more
complicated for the combination of the two sheaths, which, unlike in the single-
frequency case, do not behave like a simple capacitor because the inherent non-
linearity of the sheaths leads to a strong coupling of the two frequencies.

Experience from earlier chapters suggests that one should go straight to a current-
driven scenario, with the current expressed as the sum of a basic sinusoidal com-
ponent (at ω) and a higher sinusoidal component (at ωh):

IRF(t) = −I0 sin ωt − Ih sin ωht = −I0 (sin ωt + β sin αωt) , (6.1)

where α ≡ ωh/ω and β ≡ Ih/I0. If the higher frequency is an exact harmonic, α =
2, 3, 4, . . . the relative phase between the components of the current is important
but in general it is not; one particular case will be mentioned in Section 6.1.4.

The following definitions that were introduced earlier will again be used to
characterize the strength of the current and the range of the RF motion of electrons:

H = 1

πε0kTehln0

(
I0

Aω

)2

, (6.2)

s0 = 1

ehln0

(
I0

Aω

)
. (6.3)

6.1.1 Electron heating in the plasma bulk

The plasma bulk is again defined as that part of the space between the electrodes that
is always quasi-neutral; its spatial extent is l − 2sm. In that region the total current
transfers electrical energy into the electron population at a mean rate determined
by the resistance of the plasma bulk. The time-averaged power per unit volume is

SohmDF = 1

2

mνm(l − 2sm)

e2A2n0
I 2

0 (1 + β2), (6.4)

where the mean plasma density has been approximated by n0. There is no coupling
of the two frequencies in the plasma region – the ohmic heating term is averaged
over time so the product (sin ωt × sin αωt) averages to zero and neither frequency
appears in the final expression. As found in the single-frequency case, in conditions
that are typical of plasma etching, ohmic heating in the plasma bulk turns out to be
small compared with heating in the sheaths.
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6.1.2 Electron heating in the dual-frequency sheath

A model of a dual-frequency sheath is required so that the size of the plasma
(l − 2sm) and sheaths (s(t)) can be properly specified. The situation has been
studied by Robiche et al. [94] and by Franklin [43] in the limit when β/α � 1,
which corresponds with there being either a small fraction of current at a slightly
higher frequency or perhaps comparable current at a much higher frequency. In
this limit the effective RF Child–Langmuir law is found to be

sm

s0
= 2

(
1 + β

α

)
+ 5πH

12

(
1 + 9

5

β

α

)
which, in the limit of high current drive (H � 24/5π ), reduces to

sm

s0
≈ 5πH

12

(
1 + 9

5

β

α

)
. (6.5)

Q Look back at the two single-frequency cases of the previous chapter and then
identify the physical process that underlies the factor in brackets on the RHS
of Eq. (6.5).

A The process in question is the passage of current through the sheath. As with
the single-frequency analyses, the total current is related to the motion of
electrons at the plasma/sheath boundary so that

IRF(t) = ni(s)e
ds

dt
.

Given the form of Eq. (6.1), treating the boundary density as constant, a
simple integration of this would lead to a factor (1 + β/α) in sm. Comment:
The added complexity of the changing density at the instantaneous boundary
between quasi-neutral plasma and sheath introduces additional numerical
factors which can only be found through numerical analysis.

It has been shown also that a good approximation of the time-averaged potential
drop in the dual-frequency sheath is

eV

kTe
= 1

2

[
1 + πH

(
3

4
+ β

α

)]2

− 1

2
.

In the high-current-driven case this reduces to

eV

kTe
= π2

2
H 2

(
3

4
+ β

α

)2

. (6.6)



180 Multi-frequency capacitively coupled plasmas

Q Check that the single-frequency results of the previous chapter can be recov-
ered from Eqs (6.1) and (6.6).

A Setting β = 0 in each and substituting using Eqs (6.2) and (6.3) gives

sm = 5π

12

1

πε0kTe(hln0)

(
I0

Aω

)2 1

e(hln0)

(
I0

Aω

)
and

eV

kTe
= π2

2

(
3

4πε0kTe(hln0)

)2 (
I0

Aω

)4

.

Tidying up and inserting numerical factors, the results are readily shown to
be equivalent to Eqs (5.28) and (5.35).

If the lower frequency is significantly above the ion plasma frequency, then one
can neglect transit-time effects which lead to a complex ion–energy distribution
function. The mean ion energy at the electrode is then simply wi = eV .

Electron heating mechanisms in the dual-frequency sheath have been investi-
gated by Turner and Chabert [64, 95, 96]. Both collisionless (stochastic) heating
and collisional (ohmic) heating were calculated following the same procedure as
that described in the previous chapter. The calculations are somewhat complicated
and will not be detailed here. The result for collisionless heating is [95]

SstocDF,fluid = π

16
nsmveu

2
0

(
36H

55 + H

) (
1 + 1.1β2

)
. (6.7)

This expression is the dual-frequency extension of the fluid model described in the
single-frequency case; it reduces to Eq. (5.44) for β = 0 as it should. Similarly,
Kawamura et al. [69] have extended the hard-wall model to the dual-frequency
case and found that in the parameter range of interest,

SstocDF,fluid

SstocDF,hardwall
≈ 0.3, (6.8)

which is close to the ratio of 0.4 obtained in the single-frequency case. Again, the
scalings with the RF current (or voltage) were essentially identical for both models.
Therefore, the scaling of the important qualitative results presented below does not
depend upon the model used for collisionless heating. Examination of Eq. (5.44)
reveals that a dual-frequency sheath is not simply the sum of two separate terms
for high frequency and low frequency. The following question explores this point.
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Q Use Eq. (5.44) to write down the equivalent stochastic terms at frequencies ω

and αω if applied separately, with the latter component β times the amplitude
of the former. Then for H � 1 compare the sum of these terms with Eq. (6.7).

A The low-frequency term, Sstoc,l, is simply given by Eq. (5.44) (or Eq. (6.7)
with β = 0), while the higher-frequency term is

Sstoc,h = π

16
nsmveβ

2u2
0

(
36H (β/α)2

55 + H (β/α)2

)
. (6.9)

For sufficiently large H :

SstocDF,fluid

Sstoc,h + Sstoc,l
≈ 1 + 1.1β2

1 + β4/α2
. (6.10)

This number is typically greater than one, which shows that collisionless
electron heating within the sheath is enhanced by dual-frequency excitation.

For a given value of the ratio of frequencies, α, the maximum enhancement pre-
dicted by Eq. (6.10) is approximately (1 + α)/2, and occurs when β ≈ √

α. Taking
the example of α = 11 (for instance, 13.56 MHz combined with 149.16 MHz)
leads to a maximum enhancement of about 6 times. The effect is thus very
pronounced.

Ohmic heating in the dual-frequency sheath has been calculated in [64], resulting
in

SohmDF,sh = nsmu3
0

(νm

ω

)
F0(α, β, H ), (6.11)

where F0(α, β, H ) is a complicated function of the three parameters. Perhaps not
surprisingly, the non-linearity of the sheath again makes cross terms dominate, so
that ohmic heating is also enhanced by the combination of two frequencies.

Phase-resolved optical emission spectroscopy (PROES) experiments have been
used to demonstrate the coupling of the two frequencies and their combined effect
on electron heating [97,98], leading to the following qualitative insight into the heat-
ing enhancement in dual-frequency sheaths. The higher frequency alone produces
a significant heating through the faster sheath motion, but this heating is limited to a
small ion density range because the sheath size of a single high-frequency discharge
is small. In contrast, the lower frequency acting alone explores a larger range of ion
density because of the larger sheath extension (voltage) but does not produce a sig-
nificant heating because of the slow sheath motion. The dual-frequency excitation
provides a synergy between the larger sheath caused by the lower frequency and
the higher heating rates caused by the higher frequency. However, this coupling
between the two frequencies reduces the capability of dual-frequency discharges to
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Figure 6.2 Electron density as a function of the low-frequency current density
amplitude J0 = I0/A, for different values of the ratio β. The argon gas pressure
was 1.33 Pa, the electrode spacing was 5 cm, the low frequency was 13.56 MHz
and the high frequency was 149.16 MHz, i.e., α = 11.

provide independent control of the ion flux and the ion energy. This is investigated
in the next section.

6.1.3 Global model of a dual-frequency CCP

All the necessary ingredients of a global model of the dual-frequency capacitive
discharge are now ready. The particle balance remains similar to that detailed in
the single-frequency case:

ngKiz(l − sm) = 2hluB, (6.12)

where the sheath size is given by the dual-frequency Child–Langmuir law, Eq. (6.5).
The power balance is

SohmDF + 2SstocDF + 2SohmDF,sh = 2hln0uBεT(Te). (6.13)

The three equations, Eqs (6.5), (6.12) and (6.13), have been solved by Levif [99]
in order to calculate all the plasma parameters (n0, Te and sm). Given the relative
complexity of the heating power expressions, the calculation is not straightforward.
The strategy is similar to that detailed in the previous chapter, i.e., first choose a
sheath size, sm, then calculate Te using Eq. (6.12), and finally solve for H and n0



6.1 Dual-frequency CCP in electrostatic approximation 183

500 100 150 200
0.00

0.01

0.02

0.03

0.04

 = 0

 = 2

 = 4

s 
 /

 m
m

J  / A m
0

-2

 = 6

Figure 6.3 Sheath size as a function of the low-frequency current density ampli-
tude J0 = I0/A, for the same conditions as in Figure 6.2.

using Eqs (6.5) and (6.13). In Figure 6.2 the result of the calculation for the electron
density as a function of the low-frequency current density amplitude J0 = I0/A

is plotted, for different values of the ratio of higher to lower frequency current β.
The argon gas pressure is 1.33 Pa, the electrode spacing is 5 cm, the low frequency
is 13.56 MHz and the high frequency is 149.16 MHz, i.e., α = 11. The effect of
adding a high-frequency component to the RF current drive is clearly seen: at
a fixed value of j0, the electron density increases dramatically with β. The ion
flux to the electrode will consequently increase as well. Note that PIC simulations,
including secondary electron emission at the electrodes, have found that the plasma
density increases as the low-frequency current [100] or voltage [101] increases.

For the same conditions, the sheath size sm decreases with β, as shown in
Figure 6.3. This is because the electron density increases at fixed J0, which in turn
decreases the parameter H . However, the exact scaling is not so simple and will be
obtained later in the low-pressure limit.

Q Figure 6.4 shows that under the same conditions, the electron temperature
also decreases as β increases. Account for this observation.

A As a consequence of the decrease in the sheath size, the plasma bulk volume,
where ionization takes place, increases; so a smaller electron temperature
can sustain the plasma.
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Figure 6.4 Electron temperature as a function of the low-frequency current ampli-
tude J0 = I0/A, for the same conditions as in Figure 6.2.

These results have practical implications for plasma processing. Firstly, the
electron temperature is a very important quantity in determining the degree of dis-
sociation of molecular gases. Secondly, changing the sheath size changes the ratio
sm/λi (where λi is the ion–neutral mean free path), that is the sheath collisionality,
which is also of great importance in determining the ion energy distribution at the
electrode.

So far, the model has been analysed through input parameters J0 = I0/A and
β. In practice, RF currents are not the control parameters at the experimentalist’s
disposal. Experimentalists usually use the RF power delivered by the generator as
the control parameter. Unfortunately, as seen in the previous chapter, the power
supplied by the generator is not all delivered to the electrons. These considerations
make comparisons between theory and experiments quite complicated.

A useful way of looking at the model results is to plot the flux/energy diagram,
as done at the beginning of this chapter in the single-frequency case. This is
done in Figure 6.5 for the same conditions as in Figure 6.2. The curve for β = 0
corresponds to the 13.56 MHz single-frequency case, and can be compared to the
result obtained by Perret et al. in Figure 6.1. The slight difference observed between
the two plots has several origins: (i) the pressures are slightly different, (ii) the hard-
wall model for collisionless heating was used in Figure 6.1 while the collisionless
fluid model is used in Figure 6.5, (iii) the ion energy was calculated including the
DC floating potential limit at low RF voltage in Figure 6.1 while it was not included
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Figure 6.5 Mean ion energy as a function of the ion flux to the electrode, for the
same conditions as in Figure 6.2. The arrow pointing to the right represents
the trajectory for constant low-frequency current density J0 = 45 A m−2, while
the arrow pointing up represents the trajectory for constant high-frequency current
density βJ0 = 90 A m−2; α = 11.

in Figure 6.5. Nevertheless, the general trend is similar: 13.56 MHz alone does not
produce high ion fluxes at moderate ion energies.

Starting from a point determined by j0 on the single-frequency (13.56 MHz, β =
0) reference curve and then increasing the RF current provided by the 149.16 MHz
power supply, it is possible to explore most of the space in the diagram. However,
it is not possible to move horizontally or vertically in this space by changing only
one component of the RF current. This is shown in the figure by the trajectories
corresponding to a fixed low-frequency current of J0 = 45 A m−2 and by a fixed
higher-frequency component βJ0 = 90 A m−2. Both flux and energy change under
the influence of each control parameter. There is no clear decoupling of the effects
of the two frequencies in a dual-frequency capacitive discharge; if there were, one
trajectory would be vertical and the other horizontal.

To quantify this very important result, it is useful to analyse the scalings of
a simplified solution in which stochastic heating dominates, and the parameters
are such that 24/(5π ) � H � 55. This solution is typically valid at low pressure
(around 1 Pa) and at rather high power. In this limit the Child–Langmuir law and
the collisionless heating expressions can be manipulated, along with the definition
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of H and s0, to obtain

H = 1
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and
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(
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. (6.15)

Finally, combining these two expressions allows the electron density to be expressed
as a function of I0 and β:

ne =
[
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2
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I 4

0
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)]1/3

. (6.16)

Since the ion current density to the electrode is Ji = ehlneuB and the ion energy is
given by Eq. (6.6), the following scalings are obtained:

Ji ∝ I
4/3
0 ω−2/3

(
1 + 1.1β2

)1/3
, (6.17)

Ei ∝ I
4/3
0 ω−8/3

(
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4
+ β

α

)2 (
1 + 1.1β2

)−2/3
, (6.18)

sm ∝ I
1/3
0 ω−5/3

(
1 + 9

5

β

α

) (
1 + 1.1β2

)−2/3
. (6.19)

It appears that the three quantities are functions of I0 and β. The first expression
shows that the ion current (or flux) to the electrode depends on I0 and not only on
the high-frequency RF current βI0. Similarly, Eq. (6.18) shows that the ion energy
depends on β. Finally, Eq. (6.19) shows that the sheath size decreases with β at
fixed I0. These scalings are very well illustrated in Figures 6.5 and 6.3.

6.1.4 Further control of ion energy

One means of controlling the ion energy arriving at a surface is through direct
control of the voltage waveform between the plasma and the electrode. This is
most easily done using tailored voltage waveforms applied between the surface
and the plasma with an independent plasma source (such as an ICP or a helicon).
Having separated plasma production from the voltage across the sheath in this
way, one is free to choose waveforms that set the ion energy distribution. For
instance, it has been shown that a combination of a relatively long period (2 μs)
of steady ion-accelerating bias is interspersed with short positive pulses of 200 ns
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[50]. The latter pulse is too rapid for the ions to respond, while it gathers elec-
trons to neutralize the steady flux of ions. This achieves a near mono-energetic
IEDF.

Although ion energy and ion flux are not entirely decoupled by the use of
dual-frequency excitation, the additional variables (frequency ratio and amplitude
ratio) provide a useful means of addressing the parameter space. When the two
frequencies are harmonically related, then one also has the opportunity to use the
phase difference between the waveforms to obtain a further degree of control. A
deceptively simple effect occurs when the higher frequency is an even harmonic
of the lower frequency [102]. In that case when a temporally symmetric, multi-
frequency voltage waveform containing one or more even harmonics is applied
to a symmetric, parallel plate CCP, the two sheaths on the two electrodes are
necessarily asymmetric. To balance the charged particle fluxes, a self-bias voltage
has to develop (in much the same way as it does for an asymmetric electrode
configuration excited by a single frequency); the magnitude and sign of this self-
bias depend on the phase difference between the component waveforms. In the
simplest case using voltage waveforms at ω and 2ω the self-bias, and therefore
the ion energy, is almost a linear function of the phase angle between them. By
simply varying the phase between zero and 2π , the apparent asymmetry and bias
can be shifted from one electrode to the other. This remarkably simple result is
by no means obvious, but it emerges from extensive analytical modelling of a
dual-frequency, symmetrical CCP and it has been confirmed by experiments and
simulations [103].

6.2 Electromagnetic regime at high frequency

Warning: First, note that in the previous section J0 represented current density
whereas in this section J0(x) and J1(x) represent Bessel functions. Second,
in contrast to earlier chapters where the prime mark was used to indicate the
derivative of a quantity, in this section it will signify a quantity ‘per unit length’,
so Z′, etc. implies the impedance per unit length of a transmission line. As in
Chapter 2, when studying waves, kB is Boltzmann’s constant but k and kz are
wavenumbers.

The electrostatic model cannot be used for a CCP at an arbitrarily high excitation
frequency in pursuit of higher electron density since nonuniformities arise when the
excitation wavelength λ becomes comparable to the electrode radius, and the plasma
skin depth δ becomes comparable to the electrode spacing. These conditions define
the change-over from an electrostatic to an electromagnetic regime. This section
reviews electromagnetic effects [21, 63, 90, 91, 104–119].
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Figure 6.6 Schematic of wave propagation in a capacitive discharge operated in
the electromagnetic regime.

A schematic of a parallel plate discharge operated in the electromagnetic regime
is shown in Figure 6.6. In order to understand what follows, one should think
of the reactor as a waveguide (or cavity) loaded by a plasma, rather than two
parallel electrodes across which an oscillating voltage is applied. It is also very
important to realize that in the electromagnetic regime, the potential difference
between the electrodes is not constant in space, even though the electrodes are
made of conducting material. The arrows in the figure symbolize the propagation
of waves in the system. In vacuum and dielectric regions, the waves are mostly
transverse and propagate at the speed of light. For ω � ωpe (which is usually the
case of interest), waves will not propagate into the plasma, instead they propagate
along the surface between the sheath (a dielectric) and the plasma (a conductor),
with a characteristic decay length into the plasma which is typically the skin depth
derived in Chapter 2. Owing to the symmetry of the system, the waves propagate
radially inwards on the plasma-facing surfaces of the electrodes, establishing a
standing wave. It will be seen that when the electromagnetic fields do not fully
penetrate the plasma, i.e., when the skin depth is not infinite, the RF current does
not flow perpendicularly to the electrodes and therefore the electric field has a
component parallel to the electrode, Er. From the various phenomena described
briefly above, electromagnetic effects have been divided into three categories by
Lieberman et al. [108]: (i) standing wave effect, (ii) skin effect and (iii) edge effect.
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The origin of these will be explained in the following. The standing wave effect
is the most important from the processing point of view, as it appears in typical
operating conditions and it leads to severe non-uniformities.

The first step is to examine a parallel plate vacuum capacitor at high frequency.
This will be done initially using electromagnetic fields directly and afterwards by
constructing a circuit model. At high frequency one needs to allow for the time
it takes for the electromagnetic fields (or equivalently the voltages and currents)
to propagate through the system – for an electrode of radius comparable with the
wavelength of electromagnetic waves at a given frequency, the fields at the centre
lag behind those at the edge. That means that the circuit model here is more properly
called a distributed transmission line model, whereas in the previous chapter the
model was interpreted in terms of local circuit components. Introducing a low-
density plasma between the electrodes slows the electromagnetic waves, leading
to a standing wave becoming established on the scale of typical laboratory CCPs.
Finally, the more general case of high-density plasmas is treated, in which the skin
effect becomes important.

It should be noted that electromagnetic effects have also been studied in the
context of capacitive discharges for CO2-lasers [120,121]. Although the basic phe-
nomenon is similar to those considered here, CO2-lasers are operated at relatively
high pressure (of the order of 104 Pa), which results in different mechanisms of
power dissipation. Also, the discharges for lasers are essentially shaped like a
long rectangular prism, whereas plasma processing reactors are either cylindri-
cal or cuboidal. Finally, unlike in discharge-lasers, the electron density in plasma
processing reactors is such that skin effects may be important.

6.2.1 The capacitor at high frequency

Figure 6.7 shows a sketch of a cylindrical capacitor with a vacuum between the
plates. It is supposed that the plates’ diameter is much larger than the separation.
When an RF current transfers charge from one plate to the other through an external
circuit, an axial electric field, amplitude Ez, is established in the space between
them. Edge effects will be neglected. According to Maxwell’s equations there
must also be an azimuthal magnetic field, amplitude Bθ , such that the Faraday and
Ampère laws are satisfied in the vacuum:

curl E = −∂B
∂t

,

curl B = 1

c2

∂E
∂t

.



190 Multi-frequency capacitively coupled plasmas

B0 

z

r

E1 Jz VRF 

IRF 

IRF 

z

r
0

E0 

Figure 6.7 Electric and magnetic field between the plates (left), current in the
electrodes and voltage between the electrodes (right).

In the present situation, the cylindrical symmetry rules out azimuthal variations and
the short axial range means that the predominant variation is in the radial direction,
so these equations can be combined and simplified to give an equation for the axial
electric field:

c2

r

∂

∂r

(
r
∂Ez

∂r

)
= ∂2Ez

∂t2
. (6.20)

This is in fact an equation for radially propagating cylindrical waves. The solution
can include inward and outward travelling waves that interfere to create a standing
wave structure in the electric field.

Using exponential notation for the temporal variation of the fields, i.e.,

Ez = Re
[
Ẽz exp iωt

]
,

Eq. (6.20) simplifies to

∂2Ẽz

∂r2
+ 1

r

∂Ẽz

∂r
+ k2

0Ẽz = 0, (6.21)

which is a standard equation that has as its solution the zero-order Bessel function
of the first kind, J0(k0r), where here k0 = ω/c is the wavenumber in free space;
see Figure 6.8. So the electric field is

Ẽz = E0 J0(k0r). (6.22)

A simple two-term expansion of the Bessel function gives

Ẽz ≈ E0

(
1 − k2

0r
2

4

)
. (6.23)
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Figure 6.8 Zero-order and first-order Bessel functions.

The structure of the magnetic field can be found using either of the above
Maxwell equations, giving

B̃θ = −B0 J1(k0r), (6.24)

where B0 = E0/c and J1(k0r) is the first-order Bessel function (Figure 6.8). The
leading term in the expansion of the first-order Bessel function gives

B̃θ = −
( ωr

2c2

)
E0. (6.25)

The Bessel function that describes the amplitude of the axial electric field passes
through zero (a node) when k0r = 2.405; the two-term expansion in Eq. (6.23)
crosses zero slightly earlier at k0r = 2. By this stage the parallel plate arrangement
no longer has a pure (electrostatic) capacitance. Indeed, it ceases to be purely capac-
itive as soon as there is any significant non-uniformity of the electric field. To get
a sense of the frequencies at which non-uniformities become problematic, one can
identify the condition for a 10% edge-to-centre non-uniformity of the electric field.

Q For a parallel plate gap, in vacuum, between plates of diameter 2r0 = 30 cm,
estimate the frequency at which the electric field at the edge has fallen by
10% from the value on the axis.

A According to Eq. (6.23), the field falls to 90% of its axial value when

(πr0/λ)2 = 0.1. (6.26)

For plates with 15 cm radius, non-uniformities greater than 10% are expected
at frequencies above f0 = c/(10 × r0) ≈ 200 MHz.
Comment: This result is independent of the plate separation.
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Figure 6.9 Schematic of the transmission line model of a parallel plate capacitor
for VHF, showing the inductance and capacitance contributed by a radial element
between r and r + dr .

For 1 m electrode radius, the frequency limit goes down to about 30 MHz. It
is important to remember that the above calculation considers a vacuum between
the electrodes. It will be shown in the next section that when a plasma is present
between the electrodes, the wavelength is considerably shorter and hence the lim-
iting frequency is markedly lower.

The non-uniformity is described as the standing wave effect because in reality,
propagating waves enter the ‘capacitor’ from the sides and therefore establish a
standing wave, with an antinode (maximum magnitude) of the electric field in
the centre, and a node of the magnetic field in the centre. Equivalently, the RF
voltage between the electrodes exhibits an antinode in the centre, while the RF
current flowing in the electrodes has a node in the centre. Note that the RF current
circulates in a very thin layer, as shown on the RHS of Figure 6.7.

Circuit models use voltage and current in preference to electric and magnetic
fields. At VHF the circuit elements become distributed as inductance per unit
length and capacitance per unit length. The radial distribution of RF voltage and
RF current can then be viewed in terms of a transmission line, as described in
Figure 6.9 (a good description of transmission line theory can be found in [122]).
A short element dr is represented by an impedance Z′ and admittance Y ′, where
the prime indicates ‘per unit length’. The RF voltage drops across this section by
IZ′dr owing to the inductance and the current in the line is similarly reduced by
V Y ′dr , which passes through the capacitance. The following propagation equations
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therefore encapsulate the effect of a section of line of length dr:

dV

dr
= −Z′I, (6.27)

dI

dr
= −Y ′V. (6.28)

The impedance per unit length Z′ is due to the inductance encountered by the
current flowing (in opposite directions) in the two plates: electromagnetic analysis
gives

Z′ = iωμ0
l

2πr
. (6.29)

Similarly, Y ′ is due to the capacitance per unit length:

Y ′ = iωε0
2πr

l
. (6.30)

Note that this transmission line has no dissipation and that |Y ′Z′| = k2
0. Taking the

first derivative of Eq. (6.27) with respect to r , and inserting the result in Eq. (6.28),
gives the following (Bessel) equation for the voltage:

d2V

dr2
+ 1

r

dV

dr
+ k2

0V = 0, (6.31)

which has the following solution:

V (r) = V0J0(k0r), (6.32)

which satisfies the symmetry requirement that dV/dr = 0 at r = 0. This solution
is equivalent to that obtained with Maxwell’s equations with V0 = E0l.

On the basis of the above discussion, the modification induced by having a
plasma between the electrodes can now be explored. It seems likely that the voltage
non-uniformities due to the standing wave effect will still exist and that they will
affect the uniformity of the plasma parameters. However, radial non-uniformities
of the voltage are transferred to the plasma differently by the non-local power
deposition of the low-pressure regime compared with the local power deposition
that prevails at higher pressure.

6.2.2 The low-density CCP at VHF

The first case to consider is that of a plasma at a pressure sufficiently high that
the power deposition is local, i.e., in terms of the transmission line model the
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power balance is achieved in each plasma/sheath slab of width dr , and sheaths are
collisional. The electron density will also be presumed to be low enough for the
skin depth to be much larger than the electrode spacing. In this case, the magnetic
field is not perturbed by the presence of the plasma. Consequently, the electric
field and the RF current between the electrodes remain mostly perpendicular to the
electrodes (along the z-axis).

The series impedance per unit length of the transmission line, Z′, remains that
given by Eq. (6.29), since it is due to the passage of current in the electrodes and
the magnetic field is not changed by the presence of the plasma. However, the
parallel branch of the transmission line is profoundly modified. Each slab must be
described by an equivalent circuit based on that derived in the previous chapter,
shown in Figure 5.6. The simple capacitance of the vacuum case is now replaced by
the sheath capacitance, in series with resistances and the plasma inductance. The
plasma dissipates power, which means that the model becomes a lossy transmission
line. The plasma inductance is not of great importance, unless the system is driven
at extremely high frequency.

Although the resistances are essential to model the power dissipation and there-
fore to calculate the electron density, they do not play a significant role in deter-
mining the wavelength of the standing wave. Indeed, as in the electrostatic approx-
imation described in the previous chapter, the parallel admittance is essentially that
of the sheath capacitance. Using Eq. (5.30),

Y ′ = iωε0Kcap
2πr

sm
. (6.33)

For Kcap see Table 5.2. The wavenumber in the presence of plasma therefore
becomes k2 = |Y ′Z′| = k2

0Kcapl/sm, so

λ = λ0

(
sm

Kcapl

)1/2

. (6.34)

The wavelength in the presence of plasma is therefore significantly shorter than
the wavelength in vacuum, because the sheath size is generally much smaller
than the electrode spacing, sm � l. Typically, the wavelength is 3 to 5 times smaller
in the presence of a plasma.

Equation (6.34) captures the essential physics responsible for the wavelength
reduction – within the dependence on sheath size sm there is an implicit depen-
dence on the magnitude of the voltage across the plates, the frequency, electron
temperature and gas pressure. To express the wavelength as a function of external
parameters, one needs to couple the transmission line, Eqs (6.27) and (6.28), to the
particle and power balance, and to the Child–Langmuir law [63,111]. The parallel
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Figure 6.10 Wavelength in the presence of plasma as a function of the driving
frequency. The solid line refers to this model. The dashed line is for a homogeneous
model; from [63].

admittance per unit length may then be expressed as

Y ′ = iωε0
2πr

l
αV

−1/5
0 , (6.35)

α =
[

K2
capK

2
stocmT 2

e ω4l5

12.32 λieu
2
Bε2

T

]1/5

, (6.36)

if one considers collisional sheaths. Note that Y ′ is a function of V0 so that Eqs (6.27)
and (6.28) become two non-linear coupled differential equations. It is not possible
to obtain analytical expressions for V (r) and I (r) in this case (unlike in the vacuum
case). Nevertheless, using the appropriate values of all the coefficients in α, one
obtains the following practical formula for the scale of the standing wave (≡ 2π/k)
in the presence of plasma:

λ

λ0
≈ 40V

1/10
0 f −2/5l−1/2, (6.37)

where λ0 is the vacuum wavelength (in metres), V0 is the RF voltage at the electrode
centre (in volts), f is the driving frequency (in hertz) and l is the electrode spacing
(in metres). As anticipated, the wavelength in the presence of plasma is shorter
than the wavelength in vacuum (λ/λ0 < 1), becoming more so as the frequency
increases, as can be seen in Figure 6.10. Equation (6.37) also indicates that the
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Figure 6.11 Wavelength in the presence of plasma as a function of the RF voltage
at the discharge centre; from [63]

effect of wavelength shortening is enhanced as the electrode spacing increases.
Interestingly, increasing the voltage produces the opposite effect, as seen in Fig-
ure 6.11, since the sheath size increases with the voltage, tending to decrease the
extent of plasma in the gap.

Figure 6.12 shows results from a numerical solution of the transmission line
equations coupled to the power and particle balance and the Child–Langmuir
model for the RF sheath. The electron density, the sheath size and the electron
temperature are plotted as a function of the radius for a capacitive discharge in
argon, with an electrode spacing of 4 cm. The electrode radius is 20 cm, the driving
frequency is 80 MHz and the argon gas pressure is 20 Pa. The standing wave effect
is very pronounced, since the density and sheath size pass through a minimum (also
the voltage passes through zero and the current through a maximum) within the
radius of the electrodes. In this case, the power balance is completely local, and
the radial diffusion of particles and energy has been ignored.

Q Since the model considers local power balance and ignores radial diffusion
of particles, does the model overestimate or underestimate the radial non-
uniformities of the plasma density?

A The model overestimates the non-uniformities because energy and particle
radial transport would tend to level off the gradients.
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Figure 6.12 Electron density, electron temperature and sheath size as a function
of radius for a capacitive discharge in argon, with an electrode spacing of 4 cm.
The electrode radius is 20 cm, the driving frequency is 80 MHz and the argon gas
pressure is 20 Pa.

Comparison with experiments

The standing wave effect can be visualized experimentally by mapping the ion
flux across the electrodes [91]. The discharge was produced in argon gas at 20 Pa
between two square plates (40 cm × 40 cm) separated by a distance of 4.5 cm, con-
fined laterally by a 4 cm thick teflon barrier. The discharge was therefore virtually
symmetrical. The lower electrode was powered by three different RF generators,
operating at 13.56, 60 and 81.36 MHz. The ion flux variation across the electrodes
was measured by a matrix of 64 planar electrostatic probes inserted in the grounded
upper electrode. Figure 6.13 shows maps of the ion flux at low RF power (50 W)
corresponding to the three excitation frequencies. At this low power the skin depth
is large compared to the electrode spacing, which is assumed in the model above.
The ion flux is fairly uniform at 13.56 MHz (although it is slightly higher near the
edges), but for 60 MHz and 81.36 MHz the flux is maximal at the centre with a
dome-like distribution. The experiment is compared to the model in Figure 6.14,
which displays the radial profile of the plasma density. The symbols are measure-
ments, the dashed line is the transmission line model results, and the solid line is
the result when the calculation is done using the wavelength in vacuum for the
radial distribution of the voltage. The model overestimates the non-uniformity of
the electron density, as anticipated. The scale length of the standing wave structure
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Figure 6.13 Maps of the ion flux to the electrode at 28 Pa/50 W for 13.56 MHz,
60 MHz and 81.36 MHz. The electrode separation was 4.5 cm, the electrode dimen-
sions were 40 cm × 40 cm.
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Figure 6.14 Comparison between the transmission line model and experiment
for the non-uniformity of the electron density due to the standing wave effect
at 81.36 MHz. The symbols are measurements (obtained from a cross-section of
Figure 6.13(c)), the dashed line is the transmission line model result, and the solid
line is the result when the calculation is done using the wavelength in vacuum for
the voltage radial distribution.
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Figure 6.15 The lens concept employs a shaped electrode behind the substrate to
suppress the standing wave effect (left) and the equivalent transmission line model
(right).

in the presence of plasma is clearly much shorter than that based on the vacuum
wavelength, as predicted by the model.

Restoring uniformity with a dielectric lens

The standing wave effect is a severe problem for large-area, industrial plasma
processing at very high frequency owing to the inherent lack of spatial uniformity.
An ingenious solution to this challenge has been proposed involving a specially
shaped electrode to form a dielectric lens [109], as shown in Figure 6.15. The
idea behind this is to compensate for the radial fall-off of the electrode voltage by
matching it to a reduction in the effective gap so that the field remains constant.
The transmission line theory described above can be used to calculate the required
shape of the electrode [111]. The modification of the transmission line model is
shown on the RHS of Figure 6.15.

The dielectric lens adds admittance Y ′
lens in series with that of the plasma/sheath

slab (or vacuum), Y ′. In cylindrical geometry, and in the limit of no skin effect
(δ � l), the lens admittance and series impedance of the electrodes are given by

Y ′
lens(r) = iωε0εr

2πr

x(r)
, (6.38)

Z′(r) = iωμ0
ξ (r)

2πr
, (6.39)

where x(r) and εr are respectively the thickness and relative permittivity of the
lens, and ξ (r) = l + x(r) is the electrode separation. Note that we have considered
dξ/dr � 1 (i.e., the shaped-electrode curvature is weak). If VL(r) is the RF voltage
across the lens and V (r) remains the voltage across the electrodes:

V (r) = Vg(r) + VL(r), (6.40)
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where Vg(r) is the voltage across the gap l; this gap being loaded by the discharge
(plasma and sheaths) or vacuum. The admittance of the discharge slab may be
written

Y ′(r) = iωε0
2πr

l
f (Vg), (6.41)

where f is any function of the uniform potential Vg. For the vacuum case we simply
have f (Vg) ≡ 1, whereas for the plasma case we have f (Vg) = αV

−1/5
g .

Q What is the appropriate condition to use in order to obtain a radially uniform
discharge?

A The condition is a uniform radial discharge voltage Vg, which implies
dVg/dr = 0.

Inserting the expressions of the various admittances into the transmission line
equations and using the condition of constant discharge voltage, dVg/dr = 0, leads,
after some algebra [111], to the following differential equation for the electrode
separation ξ :

d2ξ

dr2
=

[
1

ξ

dξ

dr
− 1

r

]
dξ

dr
− εrk

2
0 ξ, (6.42)

which can be integrated to obtain

ξ (r) = l + x(r) = [l + x(0)] exp

(
−εrk

2
0r

2

4

)
. (6.43)

Hence, the dielectric lens should have a Gaussian shape in order to obtain a
uniform voltage across the discharge, and thus suppress the standing wave effect.
A comparable calculation using Maxwell’s equation was performed in [115]. The
lens profile and the voltages across the lens and across the electrodes are both
Gaussian, with or without plasma. In addition, the voltage across the lens is
significantly increased in the presence of a plasma. This is because the plasma
impedance is much lower than that of vacuum. In fact, VL(r) increases by a factor
of f (Vg) = αV

−1/5
g , a number much larger than one, in the presence of a plasma.

Hence, the voltage non-linearity of the sheath does not affect the electrode shape
but it changes the voltage amplitude across the lens. This rather high voltage
could be a problem if vacuum (or low-pressure gas) is used in the lens instead
of a dielectric material, because a parasitic plasma may be struck behind the
substrate.

Figure 6.16 reproduces results that demonstrate the effectiveness of the dielectric
lens [110]. The standing wave effect makes a clear imprint on the ion flux when
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Figure 6.16 Experimental evidence of the suppression of the standing wave effect
using the shaped electrode and lens concept. From [110].

using parallel electrodes, whereas the ion flux is uniform when using an electrode
that incorporates a dielectric lens.

Q The lens concept seems very promising for suppressing non-uniformities in
the context of moderate electron densities, e.g., in plasma-enhanced chem-
ical vapour deposition. Explain why it is less effective for high-density and
multiple-frequency sources.

A The lens concept will not be effective when the skin effects become sig-
nificant, that is at higher plasma densities, since then the electric field has a
component parallel to the electrode. The shape of the lens is determined by the
standing wave structure which is frequency-dependent – multiple-frequency
sources cannot be matched in the same way.
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6.2.3 The general CCP at VHF

In the previous section the plasma skin depth was large compared to the electrode
gap and the pressure was sufficiently high for the power balance to be localized.
These limitations are now relaxed to establish a more general model of the capaci-
tive discharge at very high frequency.

The main effect introduced by finite skin depth is that the electric field is no
longer perpendicular to the electrodes; it has radial and axial components. When
the electron density is small, the skin depth is large and the radial component
is negligible, but it becomes significant when the plasma density is high enough
for the skin depth to shrink below the size of the gap. Whereas the axial field
is electrostatic, at least at low frequency, the radial electric field is in essence
an electromagnetic induction field, associated with currents in the electrode; the
power transferred to the plasma electrons by this field can therefore be associated
with an inductive heating mechanism. As in inductive discharges, when the power
deposited by the inductively coupled current is larger than the power deposited by
current that is driven by the electrostatic field, the discharge can be said to be in the
H-mode. In the other limit, the discharge is in the E-mode. In this section it will be
shown that CCPs at VHF can undergo E to H transitions.

The effect of non-local power deposition at low pressure will also be introduced
into the model. When the pressure is low, there is a regime in which the electron
temperature and, consequently, the ionization rate are independent of space, even
though the electric field is strongly non-uniform in the radial direction. Such an
approximation has already been invoked in presuming that the electron temperature
is independent of the shorter dimension, z.

The principle of the modelling that follows is first to examine the form of the
electromagnetic fields in Maxwell’s equations, for a given, uniform electron density
and constant sheath size. Then the transmission line equations are adapted to the
more general regime and a dispersion relation for electromagnetic waves is found.
Finally, the power balance, the particle balance and the RF Child–Langmuir law
are used to obtain self-consistent solutions for the RF voltage, the RF current and
the plasma parameters.

Electromagnetic fields and the dispersion relation

The situation again involves two parallel circular electrodes of radius r0 separated
by a distance l, as shown schematically in Figure 6.17. The transmission line model,
to be discussed later, is shown on the RHS. The plasma (width d) is separated from
the electrodes by sheaths and is locally modelled as a uniform dielectric stationary
in time having a relative permittivity given by the complex relative permittivity
(Eq. (2.52)) εp = 1 − ω2

pe/(ω(ω − iνm)).
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Figure 6.17 Schematic of the transmission line model constructed from the elec-
tromagnetic model.

Q Is it appropriate to ignore the sheath motion, which is at the same frequency
as the electromagnetic waves – are the sheaths and plasma stationary in time?

A Although each sheath oscillates in width, the oscillations are 180◦ out-of-
phase. Therefore the total sheath width, and thus the sheath capacitance, is
roughly constant in time. One might suppose that in the interests of tractability
the volume occupied by the sheaths can be treated as being steady.
Comment: This model ignores the temporally non-linear sheath behaviour
that leads to harmonic generation.

Assuming an azimuthal magnetic field Bθ , the corresponding components of the
electric field, Ez and Er, are determined from Maxwell’s equations for harmonic
waves (which means that temporal variation is included as exp iωt as before), in a
medium with relative permittivity ε:

− ∂B̃θ

∂z
= iω

c2/ε
Ẽr, (6.44)

1

r

∂(rB̃θ )

∂r
= iω

c2/ε
Ẽz, (6.45)

∂Ẽr

∂z
− ∂Ẽz

∂r
= −iω B̃θ . (6.46)

Here Ẽz is the capacitive electric field (perpendicular to the electrodes) and Ẽr

is the inductive field (parallel to the electrodes). Substituting for Ẽr and Ẽz from
Eqs (6.44) and (6.45) into (6.46) yields a (2-D cylindrical) wave equation for B̃θ
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in the plasma and sheath regions:

∂2B̃θ

∂z2
+ ∂2B̃θ

∂r2
+ 1

r

∂B̃θ

∂r
+

(
ω2

c2/ε
− 1

r2

)
B̃θ = 0. (6.47)

In the sheaths there are so few electrons that for VHF one can set ε = 1 as in a
vacuum, but in the plasma ε = εp.

Relatively simple solutions for Eq. (6.47) can be found that combine independent
functions of r , z and t . These can be written

Bθ (r, z, t) = Re
[
H(

√
εωr/c)B̃θ (z) exp iωt

]
,

where H(
√

εωr/c) is a linear combination of Bessel functions of first and second
kinds which together with the time variation describe radially propagating waves,
much as exp i(ωt ± kz) does in planar geometry. In Section 6.2.1, where Bθ was
not a function of z, this is what gave rise to the standing wave profiles featuring
J0 and J1 for Ez and Bθ , respectively. A standing wave is indeed established and
the electric fields are not uniform along r (the Ez field is maximum in the centre
while the Er field is maximum away from the centre). The standing wave and the
radial non-uniformity will be introduced in the transmission line description. Edge
effects will be considered at the end of this chapter.

One needs to build solutions for the z-dependence in the plasma and in the
sheath that match at the plasma/sheath interface, using the boundary conditions
that Ẽr = 0 at z = 0 and z = ±l/2, and Ẽr, B̃θ and εẼz are all continuous at
z = ±d/2. The derivation is rather complicated, so it is simpler here to give the
results [21] – such solutions may be checked by differentiation. The fields in the
plasma are

Ẽr(z) = −Aαp cosh α0s

iωε0εp
sinh αpz, (6.48)

B̃θ (z) = μ0 A cosh α0s cosh αpz, (6.49)

Ẽz(z) = Ak cosh α0s

iωε0εp
cosh αpz. (6.50)

The fields in the sheath regions are

Ẽr = Aα0 cosh αpd/2

iωε0
sinh α0(l/2 − z), (6.51)

B̃θ = μ0 A cosh αpd/2 cosh α0(l/2 − z), (6.52)

Ẽz = Ak cosh αpd/2

iωε0
cosh α0(l/2 − z), (6.53)
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where A is an arbitrary amplitude. It is necessary to introduce k as the wavenumber
along r , and αp and α0 as the wavenumbers along z in the plasma and in the sheath,
respectively, with k2 − α2

p = k2
0εp and k2 − α2

0 = k2
0. These functions effectively

describe evanescent field structures in the z-direction. The continuity of B̃θ and
εẼz at the sheath/plasma boundary is already assured by these equations, but
the continuity of Ẽr is still to be used as a constraint. Imposing it now yields
a relationship between wavenumber and frequency that amounts to a dispersion
relation for the surface waves that are guided along the interface between the plasma
and the sheath and that are responsible for the standing wave effect:

α0εp sinh α0s cosh αpd/2 + αp cosh α0s sinh αpd/2 = 0. (6.54)

In the regime of interest, |α0s| � 1, |kc/ωp| � 1 and ω � ωp, whereupon the
dispersion relation of the surface wave can then be simplified to

k2

k2
0

= 1 + δ

s

(
1 − i

νm

ω

)1/2
tanh

[
d

2δ

1

(1 − iνm/ω)1/2

]
, (6.55)

where δ ≡ c/ωp, the inertial plasma skin depth. Equation (6.55) is valid if
(ωp/ω)2 � max (1 + d/2s, s/δ), a condition satisfied from small to large skin
depth. In the low-pressure limit, νm � ω, and the dispersion relation reduces to

k2 ≈ k2
0

[
1 + δ

s
tanh

d

2δ

]
. (6.56)

From this relation, one sees that in the limit of very large skin depth, the wavelength
becomes

λ ≈ λ0

[
1 + d

2s

]−1/2

≡ λ0

[sm

l

]1/2
. (6.57)

This expression is similar to Eq. (6.34), though Kcap is missing from Eq. (6.57),
because here the sheaths have been modelled simply as vacuum regions with no
periodic penetration by electrons which would be part of a more realistic model.
In the opposite limit of small skin depth, the dispersion relation is

k2 ≈ k2
0

[
1 + δ

s

]
. (6.58)

Q When δ → 0, it seems that the wavelength comes back to the wavelength of
vacuum. Explain this phenomenon.

A When the skin depth is infinitely small, the plasma behaves like a perfectly
conducting metal. In this case, the wave propagates in each sheath (electron-
free), as in a classical waveguide made of metal. The wavelength is that of
vacuum and is independent of the gap (sheath) size.
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Transmission line model

The transmission line model is derived from the fields (see the RHS of Figure 6.17).
Here Z′ = R′

ind + iωL′ and Y ′−1 = R′
cap + R′

i + (iωC ′)−1, where L′ is the series
inductance per unit length and C ′ is the parallel capacitance per unit length, and
R′

ind, R′
cap and R′

i are dissipative terms, which are small and shall be treated as
perturbations in the following.

It is more usual to express losses in the capacitive branch of Figure 6.17 in terms
of conductance per unit length. This means that whereas R′

ind is in ohms per metre,
R′

cap and R′
i are in units of (ohms−1 per metre)−1, that is ohm metres. Be careful to

consider this when checking dimensions.
For transmission line modes, the voltage and current in the transmission line are

generally calculated from the power flow of the travelling wave [122]. However, in
the regime of interest here, from Eqs (6.48)–(6.53) the electric field in the sheaths is
very nearly ‘transverse’, that is to say perpendicular to the direction of propagation,
and is much greater than that in the plasma. In that case, the voltage amplitude for
a single radially propagating wave is approximately

Ṽ = −2
∫ l/2

0
Ẽz(z) dz,

the current amplitude is

Ĩ = 2πrμ0B̃θ (z = l/2)

and the characteristic impedance of the line is

Ṽ /Ĩ =
√

L′/C ′.

In addition, k = ω
√

L′C ′, so that one can solve for L′ and C ′ using Eq. (6.56), to
obtain

L′ = μ0
s

πr

(
1 + δ

s
tanh

d

2δ

)(
1 − ω2

ω2
p

δ

s
tanh

d

2δ

)
(6.59)

and

C ′ = ε0πr

s

(
1 − ω2

ω2
p

δ

s
tanh

d

2δ

)−1

. (6.60)

The second terms in the last brackets of Eqs (6.59) and (6.60) will be neglected
in the following, since ω � ωp. When δ is large, Eq. (6.59) reduces to its value in
vacuum, as expected.
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Q Examining Eq. (6.60), it is evident that the value of C ′ may become ∞ at
a particular combination of frequency and plasma density. Account for this
phenomenon.

A The parallel branch of the transmission line was constructed in such a way
that the inductance due to electron inertia was not explicitly calculated, but
was buried in the expression for L′ and C ′. In other words, C ′ includes both
the sheath capacitance and the electron inertia inductance. When 1/ωC ′ = 0,
the discharge is driven at the series resonance described in Chapter 5.

The resistances in the transmission line are calculated from the power dissipation.
The power loss per unit length due to the inductive Ẽr(z) field is

Re

[∫ d/2

0
J̃r(z) · Ẽ∗

r (z) dz

]
2πr = 1

2
|Ĩ |2R′

ind,

(* implies complex conjugate) which yields the series transmission line resistance
per unit length:

R′
ind = 1

2πrσmδ

[
sinh(d/δ) − (d/δ)

1 + cosh(d/δ)

]
, (6.61)

where σm = e2ne/mνm is the plasma conductivity. When the skin depth is large
(ne → 0), R′

ind increases linearly with ne, whereas when ne → ∞, R′
ind decreases

as 1/n
1/2
e . This is similar to the plasma resistance of a classical inductive discharge

driven by a coil through a dielectric window (see Chapter 7).
The parallel resistance due to ohmic heating by the capacitive field Ẽz(z) is

found similarly:

R′
ohm = δ

2πrσm

[
sinh(2d/δ) + 2d/δ

1 + cosh(2d/δ)

]
. (6.62)

Unlike the inductive resistance, R′
ohm always decreases with ne. At low pressure,

ohmic heating is dominated by stochastic heating and ohmic heating in the sheath,
which are both independent of skin effects since they occur within the sheath region.
From expressions obtained in the previous chapter (see also [21] for details), we
introduce the following resistances to account for these power dissipations (for the
collisionless sheath case):

R′
stoc = 4Kstoc(mkBTe)1/2s2

e1/2ε0πr|Ṽ | , (6.63)

R′
ohm,sh = 2KcapKohm,shmνms3

eε0πr|Ṽ | , (6.64)
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where the constants are given in Table 5.2 (note that the maximum sheath expansion
is defined here as sm = 2sKcap). Here the stochastic resistance was calculated using
the hard-wall model. Finally, R′

cap = R′
ohm + R′

stoc + R′
ohm,sh.

The resistance due to power dissipation by ions flowing in the sheaths is also
included [63]:

R′
i = 4KvehlneuBs2

ω2ε0
2πr|Ṽ | . (6.65)

So far, L′, C ′, R′
ind, R′

cap and R′
i are functions of ne, s and |Ṽ |. In order to find a

self-consistent solution for the plasma parameters and the voltage, the transmission
line equations must be coupled to the particle and power balance equations, and to
the Child–Langmuir law for the RF sheath. Two limiting cases can be treated: (i)
non-local power deposition, when the electron energy relaxation length is greater
than the discharge radius (low pressure); (ii) local power deposition in the opposite
limit (high pressure).

Non-local power deposition: global E–H transitions

In the non-local case the radial profile of the electron density is not determined
by the power deposition profile, but rather by solving the transport equations
with constant ionization rate (cf. Chapter 3). In the low-pressure regime under
consideration here, Chabert et al. [21] suggested using the following radial electron
density profile:

ne(r) = ne0

[
1 − (1 − h2

r0)
r2

r2
0

]1/2

, (6.66)

which is a good approximation of the solution proposed by Godyak [39] in the
cylindrical geometry. Here, hr0 = 0.80(4 + r0/λi)−1/2 is the radial edge-to-centre
density ratio for a plasma with cold ions, from Eq. (3.83).

The density at the reactor centre, ne0, must then be determined from the global
power balance, Pe = Ploss, where

Pe = 1

2

∫ r0

0
R′

cap

∣∣∣∣dĨ

dr

∣∣∣∣2 dr + 1

2

∫ r0

0
R′

ind|Ĩ |2dr (6.67)

is the absorbed power, which includes capacitive heating (first term), that is heating
provided by the Ez field, and inductive heating (second term), that is heating
provided by the Er field. The loss power has its usual form, extended for a two-
dimensional cylindrical geometry:

Ploss = 2ne0uB
(
πr2

0hl + 2πr0dhr0
)
εT(Te). (6.68)
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The power loss is a function of Te, which is determined by the global particle
balance:

ngKizπr2
0d = uB

(
πr2

0hl + 2πr0dhr0
)
. (6.69)

For a symmetrically driven system, the boundary conditions are V (r = 0) = V0

and I (r = 0) = 0 (a standing wave with no edge effects at r = r0). In practice, the
model is solved as follows: for a given V0 and a set of ne0 values, (i) calculate Te

from the particle balance equation, (ii) insert ne(r) into the Child–Langmuir law,
Eq. (5.28), to obtain s(r, V ), (iii) solve the transmission line equations to obtain
V (r) and I (r), (iv) calculate Pe and Ploss, and plot both against ne0, the intersection
of the two curves being the equilibrium.

Typical power against ne0 graphs are shown in Figure 6.18 at 4 Pa, 200 MHz,
with electrodes of radius r0 = 15 cm spaced by l = 4 cm, for (a) V0 = 60 V and
(b) V0 = 800 V. This simple graphic way of analysing the discharge equilibrium
was introduced in Figure 5.9. This graph is the equivalent when inductive heating
is taken into account. At low voltage, capacitive heating dominates (E-mode)
whereas at high voltage the inductive heating takes over (H-mode), such that
the discharge experiences an E–H transition as the voltage is raised. Unlike in
inductive discharges, the transition is smooth and is not clearly defined. For the
sake of simplicity, one can define the E–H transition as the condition Pind = Pcap.

The E–H transition does not occur at a specific electron density, but also depends
on the frequency. To analyse the role of the driving frequency, one has to remember
that the voltage and the current are not radially uniform because of the standing
wave effect. The voltage is maximum in the centre, where the current is zero, and
decreases with radius. The radial position where the voltage reaches its minimum
(and the current its maximum) will be denoted r = r1 in the following. The standing
wave effect is weak if r1 � r0, and strong if r1 ≤ r0.

The ratio of inductive-to-capacitive power, Pind/Pcap, is plotted in Figure 6.19
as a function of ne0, at equilibrium (ne0 was varied by varying V0), for various
frequencies. Consider first the case r0 = 0.15 m, for which the standing wave
effect is moderate (r1 > r0). The inductive heating is barely seen at 27 MHz but
it increases significantly with frequency; E to H transitions are obtained for fre-
quencies above 170 MHz. The frequency dependence can be understood from a
simplified analytical solution obtained for r1 � r0, considering that the electron
density and the voltage are independent of r; ne(r) = ne0 and V (r) = V0. Assuming
that R′

cap ≈ R′
stoc, the ratio at equilibrium is given by

Pind

Pcap
∝ νmh

1/2
l r2

0ω

[
sinh(d/δ) − d/δ

1 + cosh(d/δ)

]
(6.70)
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Figure 6.18 Contributions to power absorption and the power loss term as a
function of central electron density, ne0, for a 4 Pa (30 mtorr), 200 MHz capacitive
discharge with electrodes of radius r0 = 15 cm separated by l = 4 cm, for (a)
V0 = 60 V and (b) V0 = 800 V. From [21].

in the limit of small inductive heating, Pind � Pcap [21]. This approximation
explains most of the variations shown in Figure 6.19(a). At given density, the
inductive heating indeed increases with the frequency and, if the frequency is
fixed, the ratio increases with ne0 at low density and saturates at high density.
Equation (6.70) also predicts that inductive heating will increase with the electrode
radius. This is well verified as long as the standing wave effect remains weak
(compare 60 MHz at r0 = 0.15 and at r0 = 0.25).

The situation becomes more complicated when the standing wave effect is
strong, r1 ≤ r0. For instance, in Figure 6.19(b) note that Pind/Pcap is smaller at
250 MHz than at 150 MHz, in contradiction with the above discussion. The regime
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Figure 6.19 Inductive-to-capacitive power ratio, Pind/Pcap, vs. ne0 at equilibrium,
for several frequencies and for (a) r0 = 15 cm and (b) r0 = 25 cm. The other
conditions are similar to that in Figure 6.18. From [21], where the frequency unit
should be MHz and R is equivalent to r0 in this text.

of a strong standing wave can be understood by plotting in Figure 6.20 the ratio
Pind/Pcap against frequency for a fixed equilibrium density ne0 = 5 × 1017 m−3.
The ratio increases with frequency while r1 ≥ r0, reaches its maximum when
r1 ≈ r0 (in fact a little after) and decays for r1 ≤ r0. This is because when r1 ≤ r0,
the voltage has a node and increases again for r ≥ r1, as does the capacitive heating,
and the current decreases for r ≥ r1, as does the inductive heating.

Local power deposition: spatial E–H transitions

When the pressure is higher, the energy relaxation length becomes smaller than
the discharge radius and the power deposition is local rather than global. In this
situation, the electron density profile is determined by the local voltage and current.
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Figure 6.20 Inductive-to-capacitive power ratio, Pind/Pcap, vs. frequency for ne0 =
5 × 1017 m−3. The dashed line is for r0 = 0.25 m and the solid line is for r0 =
0.15 m. The other conditions are similar to those in Figure 6.18. From [21], where
R1 is equivalent to r1 in this text.

The electron temperature also becomes a function of the radius, since the sheath
width varies. The local power balance is P ′

e = P ′
loss, with

P ′
e = 1

2
R′

cap

∣∣∣∣dĨ

dr

∣∣∣∣2 + 1

2
R′

ind|Ĩ |2 (6.71)

and

P ′
loss = 4πrhlneuBεT(Te), (6.72)

where the electron temperature is determined from the local particle balance
equation

ngKizd = 2hluB. (6.73)

Note that d , and therefore Te, varies with r since the RF voltage varies with r .
Figure 6.21 shows the electron density profile, normalized to the central density,

for a 200 MHz discharge at 20 Pa (the electrode radius is 15 cm). The profile
moves from being dominated by the standing wave effect at moderate density
(ne0 = 1.5 × 1017 m−3) to being dominated by the skin effect at higher density



6.2 Electromagnetic regime at high frequency 213

Figure 6.21 Electron density normalized to its central value ne0 vs. radius for
various RF voltages (and thus various ne0). The frequency is 200 MHz, the argon
pressure is 20 Pa and the electrode radius is r0 = 0.15 m. From [21].

Figure 6.22 Inductive-to-capacitive power ratio, Pind/Pcap, vs. radius for the same
conditions as in Figure 6.21. The spatial E–H transitions are clearly seen at high
voltage. From [21].

(ne0 ≈ 1018 m−3). This is more clearly seen in Figure 6.22, which shows the ratio of
inductive to capacitive power as a function of the radius for the same conditions. At
low voltage (50 V corresponding to the ne0 = 1.5 × 1017 m−3 case), the discharge
operates in the capacitive E-mode at almost all radial positions. At higher voltage,
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Figure 6.23 Ion flux mapping over the electrode for a 60 MHz discharge driven
at different powers. Inductive heating is observed near the edges. From [91].

inductive heating (H-mode) takes over at the discharge periphery while the centre
remains in E-mode. In this situation, the discharge undergoes a spatial E to H
transition when moving radially outward. This has been observed in numerical
simulations [123].

Spatial E–H transitions and inductive heating have been observed experimentally
by Perret et al. [91], as shown in Figure 6.23. At low power, the discharge is in
E-mode and the profile is dominated by the standing wave effect (dome-like). As
the power is increased, the inductive heating near the edges becomes significant.
The discharge is in E-mode at the centre and in H-mode at the edge.

6.2.4 Further considerations

The issue of ion energy uniformity

It has been shown that the flux of ions leaving a CCP is strongly non-uniform
when the frequency is high enough for the standing wave effect to occur. However,
under the same conditions, the ion energy may remain uniform according to Perret
et al. [90]. They measured the ion velocity distribution functions (IVDFs) using
retarding field analysers (the IVDF is equivalent to dN/dv – see Chapter 10). The
excitation frequency was 81 MHz and the gas was argon at 2 Pa, resulting in an ion
flux of about 3 A m−2 (ns ∼ 1016 m−3). Data from identical analysers at the centre,
the side and the corner of the electrodes of a square CCP were compared.
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Figure 6.24 Ion velocity distribution function at the centre, the side and the corner
of the grounded electrode of a capacitive discharge at 81.36 MHz. The horizontal
scale is effectively kinetic energy in eV, which is Mv2/2e. From [90].

Q IVDFs from Perret et al. [90] are shown in Figure 6.24. What can be inferred
from these data about the following?
(i) The collisionality of the sheath.
(ii) The time-averaged plasma potential.
(iii) The standing wave effect.
(iv) The variation of ion bombardment energy across the electrode.

A (i) The absence of low-energy ions implies a collisionless sheath.
Comment: The ion–neutral mean free path (λi ≈ 2 mm) is larger than the
sheath size (the calculated sheath size is s = 0.9 mm).
(ii) The highest energy at which ions are detected corresponds with the time-
averaged plasma potential one mean free path or so from the sheath/plasma
boundary and this potential is the same at all positions.
(iii) There is some evidence of density structure in the plasma – the area under
the IVDF in the centre is largest, that for the corner is smallest, suggesting
that there are more ions created in and leaving the central region, probably
because of the standing wave effect on the RF voltage across the electrodes.
(iv) Since the position of the IVDF peak (around 35 V) is independent of the
analyser location, it must be that ions gain more or less the same energy in
crossing the sheath, right across the surface, even though the RF voltage and
the ion flux are strongly non-uniform.
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The ion energy uniformity may at first sight be surprising since one might
perhaps anticipate a smaller time-averaged (DC) plasma potential near the edges
where the RF voltage is considerably smaller owing to the standing wave effect.
However, the plasma DC conductivity is much too high to maintain a large potential
difference and instead a significant radial current must flow in the plasma to short
it out. Perret et al. [90] estimated that the DC potential difference in the plasma,
�V , was ≤ 0.1 V at 2 Pa and ≤ 1 V at 20 Pa.

Having established that the time-averaged plasma potential must be uniform to
within a volt, the next question must be about what the absolute value should be.
There is still a requirement that in a steady-state CCP during one RF cycle the
net current to an electrode must be zero. Note first that the RF self-bias Eq. (4.15)
does not depend on the density of the plasma at the plasma/sheath boundary, so
the standing wave effect does not affect the boundary fluxes through its effect
on the local plasma density. However, the tendency of the standing wave is also
to set the amplitude of the RF to be maximum at the centre of an electrode,
so one expects that this would make the self-bias voltage largest here. To even
out the mean potential there must be a slight lessening of bias in the centre. A
slight local decrease in the magnitude of the self-bias would not fully suppress
the electron current, leading to a net local electron current – given the exponential
dependence of electron flux, small potential adjustments lead to large changes
in current. Elsewhere, a slight decrease in RF potential across the sheath would
allow a net positive ion current. Clearly the criterion that sets the total potential
across the electrode must be that the net current to the electrode is zero. This
requires a slight modification of the standing wave effect that arises when current
circulates from near the axis, radially across the plasma edge and back at larger
radii and from there radially inwards in the electrode surface. Of course if the
standing wave brings a potential node within the radius of the electrodes the
current flow will be more complicated. Howling et al. [114] have corroborated this,
showing that a DC current does indeed flow parallel to the surface in conducting
electrodes.

Q Suggest what would happen to the ion flux variation across an electrode of a
VHF CCP on which there was a dielectric substrate.

A A dielectric substrate would not allow the potential levelling DC current to
flow in the electrode, therefore the ion energy will not be uniform and will
be lower in the region of the nodes of the standing wave. See [114].

Edge effects and asymmetric discharges

In addition to standing wave and skin effects, one should also consider the effects
of finite geometry. The edge effects are difficult to study in a general way since
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they depend crucially on the strategy used to confine the plasma at the electrode
edge. Lieberman et al. [108] have incorporated edge effects in their electromagnetic
model by introducing evanescent waves at the radial interface between the plasma
and a dielectric (or vacuum). The role of these evanescent waves is to bridge the
propagating wave solution in vacuum and in the plasma. The assumption is that
all the RF current flows across the plasma, which in turn constrains the magnetic
field to be independent of z at the plasma edge, r = r0. As a result, the inductive
field Er is zero at r = r0, and the axial (capacitive) field exhibits a spike at this
position. Therefore, edge effects lead to a strong plasma production near the edge
which competes with the skin effect.

Howling et al. have examined the effect of edge asymmetry in a large area
reactor [112, 113]. They showed that the redistribution of RF current to maintain
current continuity near asymmetric side-walls causes a perturbation in RF plasma
potential to propagate radially inwards. This effect was termed the ‘telegraph
effect’, since the transmission line (telegraph) equations were used to calculate
the typical damping length of the perturbation. Asymmetry of the electrodes
requires an asymmetric field solution to be added to that for purely symmetric
electrodes, Eqs (6.48)–(6.53). This supplementary solution gives rise to a mode
associated with the telegraph effect [118]. This study was done in the context of
somewhat higher-pressure plasmas used for deposition, in which resistive effects
are important. Indeed, the plasma resistance may be large enough for the wave
to be absorbed when propagating inward. In the limit of very high resistivity,
the wave would not reach the centre of the discharge and therefore the standing
wave would not be established; the power deposition then falls from the edge to the
centre [118].

Multiple-frequency excitation and non-linear effects

The electromagnetic regime of the capacitive discharge has been explored so far for
the single-frequency case. The generalization of this model to multiple-frequency
excitation has not been done so far. Earlier in this chapter it was shown that low
frequencies generate larger sheaths. Since the scale of the standing wave varies with
(sm/l)1/2 for any given electrode size, adding a frequency would tend to suppress
some of the non-uniformity of a VHF CCP.

Miller et al. [119] have measured the RF magnetic field in a high-frequency
capacitive discharge. They found that the magnetic field does indeed start to
decrease from the edges to the centre, in line with the elementary analysis pre-
sented earlier. However, they also found that the waveform was far from a pure
sinusoid, as has been assumed here. Therefore, it seems that non-linearities of the
sheaths generate higher harmonics that should be included in more sophisticated
electromagnetic models.
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6.3 Summary of important results
� The independent control of ion energy and ion flux is not possible in a

single-frequency CCP because both quantities depend on the absorbed power.
Although ion flux and ion energy cannot easily be decoupled by using a sin-
gle frequency, the use of two well-separated frequencies provides additional
degrees of freedom through which the energy–flux parameter space can be
explored, even though perfect decoupling is not achieved.

� The use of VHF sources and/or large diameter CCPs requires one to consider
wave phenomena in describing how RF power enters the plasma-filled space
between the electrodes. Treating the system as a centre-fed radial transmission
line enables a circuit approach to the electromagnetic problem. This shows
that standing wave effects occur when the CCP exceeds a few percent of
the vacuum wavelength of electromagnetic waves at the source frequency,
leading to strong radial non-uniformity. The non-uniformity can be reduced
markedly by introducing a dielectric with radial structure that compensates for
the standing wave effect.

� The non-uniformity can also be understood in terms of spatial structure in the
RF fields that change the nature of the power coupling from being dominated
by the axial field (so-called E-mode) close to the axis to being dominated by
radial electric fields (so-called H-mode) at larger radii.

� Electromagnetic solutions can be constructed and combined with the fluid
equations to produce a global model of VHF discharges.
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Inductively coupled plasmas

Capacitively coupled plasma reactors have some natural limitations. Although very
high-frequency CCPs achieve high plasma density (typically ne ≈ 1017 m−3), this
is accompanied by major uniformity problems. Moreover, the ion flux and the
ion energy cannot be varied totally independently, even when multiple-frequency
excitation is employed. Inductively coupled discharges overcome these limita-
tions to some extent. They are used in plasma processing and for plasma light
sources.

Inductive discharges have been known since the end of the nineteenth century.
The principle is to induce an RF current in a plasma by driving an RF current in an
adjacent coil. From an electromagnetic point of view, the changing magnetic field
associated with the coil current induces an electromagnetic field similar to the H-
mode studied in the previous chapter. However, the coil is much more efficient than
a pair of parallel plates in exciting an H-mode. Interestingly, the coil also couples
to the plasma electrostatically, which means that an inductive discharge may also
operate in an E-mode and therefore it can experience transitions between E and
H-modes. These transitions are usually sharper than in VHF capacitive discharges,
with strong hysteresis effects [18] and instabilities when electronegative gases are
used [20, 124–126].

The energy of ions incident on a substrate electrode immersed in an induc-
tively coupled plasma can be adjusted independently of the ion flux using a
separate power supply for biasing. This is easily done using the self-bias effect
described in Chapter 4, to set the voltage between the electrode and the plasma with
the substrate holder capacitively coupled. The amount of power transferred to the
plasma electrons by the bias supply is usually such that the RF power from the
substrate-holder contributes only marginally to the plasma density (and thus to
the ion flux). It is the power supplied to the ICP coil that controls ion flux.

219
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Figure 7.1 Inductively coupled plasma reactors: (a) cylindrical source tube with
an expanding chamber, (b) planar coil geometry.

Inductively coupled plasma (ICP) reactors for plasma processing can be divided
into two main geometric designs, shown in Figure 7.1. On the LHS the plasma
is generated by a coil that surrounds the cylindrical dielectric wall of the source
region. Plasma expands from here into the processing chamber where the substrate
is placed. This configuration is similar to that used in helicon plasma processing
reactors described in the next chapter. On the RHS of Figure 7.1 is an alternative
arrangement that is much used in plasma etching in the microelectronics industry – a
flat spiral coil, separated from the plasma by a flat dielectric window. The distance
between this window and the substrate-holder is significantly smaller than the
chamber radius.

Warning:
� The short-cylinder geometry cannot be modelled using a single dimen-

sion which impedes insightful analysis. In this chapter, therefore, the long-
cylinder arrangement will be treated since the analysis can be done in 1-D
and consequently important scalings can be revealed. Most of the general
principles are equally valid for the flatter geometry.

� Since this chapter deals with electromagnetic waves, Boltzmann’s constant
is written kB so that k can be used as a wavenumber.

The RF current generated in the plasma, or equivalently the induced electromag-
netic field, flows in a skin depth δ, which is classically defined by Eq. (2.57) in a
collisionless plasma (when νm � ω) and Eq. (2.58) in a collisional plasma (when
νm � ω). It will be shown in this chapter that the skin depth is sometimes different
due to non-local effects, and that the electric field is also non-uniform owing to
geometric effects.
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Q In the absence of significant capacitive coupling, the sheath that forms at
the dielectric window develops a voltage defined by the floating potential,
eVs = e(Vp − Vf) ≈ 5kBTe, and is consequently only a few Debye lengths.
Compare the typical width of a floating sheath with the collisionless skin
depth.

A It was shown in Chapter 3 that λDe/δ = ve/c, so the skin depth is much larger
than the Debye length because the electron thermal speed is much smaller
than the speed of light. In addition.

In ICPs the boundary sheath size is necessarily much smaller than the skin depth
and, unlike in capacitive discharges, the physics occurring in the sheath is of minor
importance when the inductive discharge operates in its usual H-mode. However,
the systems are sometimes driven in a low-current (low-power) regime in which
electrostatic coupling between the coil and the plasma may dominate. In such a
regime, the sheath physics does play a role.

Inductive discharges are commonly modelled using a transformer analogy;
indeed, they are sometimes called TCPs (for transformer-coupled plasmas). The
transformer model will be analysed in Section 7.3. The analysis begins with an
electromagnetic description of the inductive discharge, following the early work
of Thompson [241]. By solving Maxwell’s equation in an idealized geometry, the
fields and the RF currents can be calculated in the system composed of the coil, the
dielectric tube and the plasma. Then the power absorbed in the plasma is calculated
and finally the total impedance of the system is determined.

Note: Section 7.1 requires an appreciation of Bessel functions of complex argu-
ments. Some of their useful properties are summarized here. If x is a real number,
then

J0(ix) = I0(x),

J1(ix) = iI1(x),

where I0(x) and I1(x) are modified Bessel functions, which increase exponentially
when x is large. In addition, when x → ∞

I1(x)

I0(x)
→ 1.

In the other limit when x → 0, the modified Bessel functions may be approximated
by

I0(x) ≈ 1,

I1(x) ≈ x

2
.



222 Inductively coupled plasmas

Unfortunately, when the argument has both real and imaginary parts, such simpli-
fications do not arise.

The transformer model is a decomposition of the electromagnetic model pre-
sented in the first section. The plasma RF current loop is seen as the secondary
of a transformer, the primary of which is the driving coil. This decomposition is
not unique and the electromagnetic model will serve as a guide to propose the
most appropriate choices. In Section 7.2, we study low-power operation, in which
capacitive coupling (i.e., the E-mode) dominates, and introduce E–H transitions.
The global model of the inductive discharge is then established by joining the
inductive electromagnetic model and the capacitive coupling model to the particle
and power balance. The most important results are summarized in Section 7.7.

At the end of the chapter, other designs for the suppression of capacitive coupling
and for better power coupling efficiency are discussed. Other regimes are also
considered in which the penetration of the fields is anomalous and the power
absorption is collisionless (stochastic inductive heating). Finally, non-linear effects
are introduced, resulting in harmonic generation and ponderomotive effects.

7.1 Electromagnetic model

The plasma is represented by a uniform, complex permittivity εp (i.e., a uniform
electron density), generated and contained in a dielectric tube of inner radius r0,
outer radius rc and length l � r0. The tube is surrounded by a coil having N turns
uniformly distributed, in which flows an RF sinusoidal current

IRF(t) = Re
[
ĨRFeiωt

]
,

where ĨRF is the complex amplitude. The schematic of this model is shown in
Figure 7.2. It is convenient to use H instead of B(= μ0H ).

Given the long cylindrical geometry, the magnetic field is along z and the electric
field is azimuthal, i.e., around θ . The fields must obey Maxwell’s equations, which
are

− ∂H̃z

∂r
= iωε0εẼθ , (7.1)

1

r

∂(rẼθ )

∂r
= −iωμ0H̃z, (7.2)

where ε = εp in the plasma and ε = εt in the dielectric tube. Combining these two
equations one obtains the Bessel equation for H̃z,

∂2H̃z

∂r2
+ 1

r

∂H̃z

∂r
+ k2

0εH̃z = 0. (7.3)
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Figure 7.2 Schematic of the inductive discharge. The discharge is contained in a
dielectric tube of inner radius r0, outer radius rc and length l � r0. The induced
electric field is azimuthal, while the induced magnetic field is axial. At high plasma
density, both fields decay within the skin depth δ.

7.1.1 Fields in the plasma

The following solution is obtained for the plasma:

H̃z = Hz0
J0(kr)

J0(kr0)
, (7.4)

Ẽθ = − ikHz0

ωε0εp

J1(kr)

J0(kr0)
, (7.5)

where Hz0 ≡ H̃z(r = r0), and k ≡ k0
√

εp is the complex wavenumber in the plasma
while k0 ≡ ω/c is the wavenumber in free space. Taking Hz0 to be a real number
defines the reference for the phase to be that of the magnetic field at the edge of
the plasma. The arguments in the Bessel functions J0 and J1 are complex numbers.
The modulus of the electromagnetic fields of Eqs (7.4) and (7.5) are plotted in
Figure 7.3 for various electron densities. At low electron density, the plasma skin
depth is large, δ � r0, and the magnetic field Hz is nearly constant across the
radius. This is close to the solution in free space. Note, however, that the electric
field Eθ is not uniform, falling linearly with r from the edge to the centre. At high
electron density, δ � r0, both fields decay nearly exponentially within the plasma
skin depth.
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Figure 7.3 Calculation of the electromagnetic field magnitude normalized to the
edge value at r = r0, as a function of the cylinder radius and for various electron
densities.

Q Explain why the electric field decays from the edge to the centre in the very
low-density plasma regime (or in absence of plasma), where the plasma skin
depth is infinite. Then propose a characteristic ‘geometric’ decay length for
the electric field.

A The symmetry of the problem requires the electric field to be zero at the
centre and finite at the edge. The characteristic ‘geometric’ decay length is
therefore the cylinder radius r0. It is interesting to note that the electric field
profile for the ne = 5 × 1016 m−3 case is not profoundly different from the
linear decay of the free space limit.

7.1.2 Fields in the dielectric tube

The fields in the dielectric tube are also solutions of the Bessel equation for H̃z

(Eq. (7.3)), with wavenumber k1 = k0
√

εt (real). The expressions for the fields are
quite cumbersome, but may be simplified drastically by noting that k1r0 � 1 for
the typical frequencies used in inductive discharges.

Q Calculate the value of k1r0 for 13.56 MHz with r0 = 6.5 cm and εt = 4.5 and
then describe the form of the RF magnetic field in the dielectric tube.

A First note that

k1r0 = 2π13.56 × 106

3 × 108
×

√
4.5 × 0.065 = 0.04.

Since the wavenumber k1 is real, one expects the solution to be of the form
H̃z ∼ J0(k1r). In fact, it is a little more complicated because the field must be
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continuous at the plasma/dielectric interface. However, as long as k1r0 � 1,
the Bessel function J0(k1r0) ≈ 1 and the magnetic field is nearly independent
of the radius.

The magnetic field is therefore nearly constant in the dielectric tube when
k1r0 � 1, and so

H̃z ≈ Hz0 r0 < r < rc. (7.6)

Note that it is not exactly constant because some displacement current flows in this
tube. The RF currents flowing in the coil, in the dielectric tube and in the plasma
are evaluated in the next section. If the magnetic field is constant in the tube,
then using the integral form of Faraday’s law

∮
Ẽθdl ≡ ∂/∂t

∫ ∫
B̃zdS, it follows

that

Ẽθ (rc) = Ẽθ (r0)
r0

rc
− iωμ0Hz0

(
r2

c − r2
0

2rc

)
. (7.7)

7.1.3 RF currents

The total current flowing in the plasma may be calculated from the integration of
the RF current density between the centre and the edge of the plasma at r = r0,

Ĩp = l

∫ r0

0
J̃θ dr. (7.8)

The RF current density is related in the usual way to the electric field, J̃θ =
iωε0εpẼθ , so with Eq. (7.5) the integral simplifies to

Ĩp = lHz0
1

J0(kr0)

∫ kr0

0
J1(kr) d(kr) = lHz0

[
1

J0(kr0)
− 1

]
. (7.9)

Note again here that k is a complex wavenumber and is a function of the electron
density. In the plasma density range of interest, the real and imaginary parts of Ĩp

are both negative, and the real part is much larger than the imaginary part. The
plasma current may also be calculated from Ampère’s theorem, following contour 1
in Figure 7.4:

Ĩp = lH̃z(0) − lHz0 = lHz0

[
1

J0(kr0)
− 1

]
. (7.10)

Similarly, the (displacement) current flowing in the dielectric tube, Ĩt, is obtained
using contour 2, while the current flowing in the coil, ĨRF, is obtained using
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3

Figure 7.4 Ampère contours for the current in the plasma (1), in the dielectric
tube (2) and in the coil (3).

contour 3:

Ĩt = lHz0 − lH̃z(rc), (7.11)

NĨRF = lH̃z(rc). (7.12)

Doing the sum of those three currents leads to

Ĩp + Ĩt + NĨRF = lHz0

J0(kr0)
. (7.13)

Note here that both Ĩt and ĨRF are positive (for Ĩt it comes from the fact that
H̃z(r = rc) > Hz0). Since, as discussed above, the magnetic field is nearly uniform
in the dielectric tube, the RF current flowing in this tube is negligible. From
now on, we will set Ĩt = 0. Combining Eqs (7.11) and (7.12) with Ĩt = 0 allows
the magnetic field at the plasma edge, Hz0, to be related to the current in the
coil, ĨRF:

Hz0 = NĨRF

l
.

Note that having neglected the current in the dielectric tube, ĨRF has become
a real number (due to the choice of phase reference), equivalent to Icoil, which
is the magnitude of the current in the coil. From now on in this chapter,
therefore,

Hz0 = NIcoil

l
. (7.14)
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Icoil

Rind

Lind

Figure 7.5 The equivalent circuit of the plasma load on the coil.

When the plasma density is high, kr0 � 1, the Bessel function of complex
argument grows exponentially and consequently,

Ĩp + NIcoil ≈ 0. (7.15)

The current induced in the plasma skin depth flows in the opposite direction to the
current in the coil and cancels the magnetic field produced by the coil in the bulk
of the plasma.

7.1.4 Poynting theorem for harmonic fields

The impedance of the system, composed of reactive and resistive components, may
be derived from the fields using Poynting’s theorem for harmonic time variations of
the fields [127]. The complex power input, which is the sum of the power dissipated
and the power stored by the electromagnetic fields in the cylinder of radius rc under
consideration here, is given by the quantity

P̃ = −1

2
Ẽθ (rc)H̃z(rc)2πrcl = 1

2
ZindI

2
coil, (7.16)

where Zind is the total complex impedance of the system. It follows immediately
that one can define dissipative and reactive components (see Figure 7.5):

Rind = 2Re
[
P̃
]

I 2
coil

, (7.17)

Xind = 2Im
[
P̃
]

I 2
coil

. (7.18)
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Figure 7.6 Absorbed power as a function of the electron density for fixed coil
current and for three values of the ratio νm/ω; Icoil = 3 A, r0 = 0.065 m and
l = 0.3 m.

Ignoring the displacement current in the dielectric tube and considering that
H̃z(r = rc) = Hz0, then the electric field at r = rc is given by Eq. (7.7). Using
also Eq. (7.14) it can be shown that

P̃ = i
πN2I 2

coil

l

[
kr0J1(kr0)

ωε0εpJ0(kr0)
+ 1

2
ωμ0

(
r2

c − r2
0

)]
. (7.19)

7.1.5 Power dissipation: resistance

Electromagnetic calculation

The time-averaged power dissipated in the system is the real part of Eq. (7.19):

Pabs = Re
[
P̃
] = πN2

lωε0
Re

[
ikr0J1(kr0)

εpJ0(kr0)

]
I 2

coil. (7.20)

The absorbed power Pabs for a coil current of 3 A is plotted as a function of
the electron density in Figure 7.6 for various values of the ratio νm/ω, which is
proportional to the gas pressure. The low-pressure limit νm/ω = 0.1 corresponds
approximately to 0.27 Pa in argon. The absorbed power increases linearly with
ne at low densities, goes through a maximum and then decays with n

−1/2
e at high

densities. This behaviour results from a transition from the very low-density regime,
for which the electromagnetic fields are not modified by the presence of the plasma,
to the high-conductivity regime, in which the electromagnetic fields are absorbed
by the plasma, in the skin depth, as ne increases.
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Q Compare the radius of the ICP with the collisionless skin depth for the electron
density that corresponds with the peak in the absorbed power (νm/ω = 0.1)
in Figure 7.6.

A The collisionless skin depth is given by Eq. (2.57):

r0

δ
= r0ωpe/c = 6.5

2.6
= 2.5.

Comment: It is perhaps not too surprising that the peak power absorption
should occur when the density is still low enough for most of the plasma
volume to be penetrated by the fields.

The scaling at high electron density will be discussed later, in Section 7.2.1. In
the opposite range at low electron density, note that the absorbed power increases
linearly with the collision frequency νm (this corresponds to a translation upwards
in the log scale of the figure) when νm/ω � 1, but then decays with νm in the
opposite limit of νm/ω � 1. This scaling with νm (or equivalently the gas pressure)
at low electron density is not immediately obvious from the somewhat complicated
expression in Eq. (7.20). However, as seen in the next section, it may be understood
by applying the analysis of a simple solenoid loaded by a lossy medium. Before
doing this analysis, the resistance is derived from the definition of the absorbed
power as

Rind = 2Pabs

I 2
coil

= 2πN2

lωε0
Re

[
ikr0J1(kr0)

εpJ0(kr0)

]
. (7.21)

Approximations in the low-density limit

At low electron density, the fields are similar to the case of a solenoid in free
space. From Faraday’s law, the circulation of the electric field along a circular
loop of radius r is equal to the time derivative of the magnetic flux within this
loop:

− d�

dt
=

∮
E · dl = 2πrEθ . (7.22)

Using complex notation, the magnetic flux is �̃ = μ0H̃zπr2 and the time derivative
is iω�̃. This gives the azimuthal electric field at any radius in the low-density limit
as

Ẽθ = −μ0r

2l
iωNIcoil. (7.23)

The current density in the plasma is related to the electric field by J̃θ = iωε0εpẼθ .
In the low-pressure regime, where νm/ω � 1, we have εp ≈ −ω2

p/ω
2 and
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consequently

J̃θ = −nee
2

m

μ0r

2l
NIcoil. (7.24)

The dissipated power is then

Pabs =
∫ 2π

0

∫ r0

0

∫ l

0

∣∣J̃θ

∣∣2
2σdc

rdφdrdz = nee
2νmμ2

0πr4
0

4ml
N2I 2

coil, (7.25)

such that

Rind = nee
2νmμ2

0πr4
0N2

2ml
. (7.26)

Thus the absorbed power increases linearly with ne at low density. This scaling with
the electron density is disguised in the more rigorous electromagnetic calculation
inside εp. Note also that the absorbed power is proportional to νm, that is to pressure,
as observed from νm/ω = 0.1 to νm/ω = 1.

In the high-pressure limit, εp ≈ −ω2
p/(iωνm). In this case

Pabs = nee
2ω2μ2

0πr4
0N2

4mlνm
I 2

coil, (7.27)

Rind = nee
2ω2μ2

0πr4
0N2

2mlνm
. (7.28)

At high pressure the absorbed power is seen to be inversely proportional to the
collision frequency νm, that is to the gas pressure. This is consistent with the results
of the exact calculation shown in Figure 7.6, where the power falls off as the
collisionality increases from νm/ω = 1 to νm/ω = 10.

7.1.6 Stored power: inductance

The imaginary part of the complex power allows the reactance of the system to
be determined. Within our approximation that the displacement current in the
dielectric tube is neglected, the reactance is essentially an inductance, Lind, such
that

Xind = Lindω = 2Im
[
P̃
]

I 2
coil

= πN2ωμ0

l

(
r2

c − r2
0

) + 2πN2

lωε0
Im

[
ikr0J1(kr0)

εpJ0(kr0)

]
.

(7.29)
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Figure 7.7 Total inductance Lind and magnetic storage inductance Lm as a function
of the electron density for νm/ω = 1. We have chosen N = 5, r0 = 0.065 m,
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Q What is the inductance of the coil itself?
A The coil inductance is defined as the magnetic flux per unit current in the

turns: Lcoil = μ0Nπr2
c Hz0/Icoil. Since Hz0 = NIcoil/l, it follows that

Lcoil = μ0πr2
c N2

l
. (7.30)

Using the expression of the coil inductance, the inductance of a cylindrical ICP
becomes

Lind = Lcoil

(
1 − r2

0

r2
c

)
+ 2πN2

lω2ε0
Im

[
ikr0J1(kr0)

εpJ0(kr0)

]
. (7.31)

This inductance combines the magnetic energy storage inductance, embedded in
both terms (not only in the first term), and a contribution due to electron inertia
(part of the second term). The inductance due to electron inertia is Rind/νm, such
that the magnetic energy storage inductance is

Lm = Lind − Rind

νm
. (7.32)

It is interesting to analyse the behaviour of Lind at low and high electron density.
In Figure 7.7, the inductance is plotted as a function of the electron density for
νm/ω = 1. In the low electron density limit, Lind ≈ Lcoil, i.e., the plasma plays
no role. In the high electron density limit, Lind = Lcoil

(
1 − r2

0/r2
c

)
. In this limit,
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the magnetic flux produced by the coil is partially cancelled by the magnetic
flux produced by the current flowing in the plasma loop. We anticipate that this
situation will be adequately modelled by a transformer, which will be done in the
next section. Finally, as can be seen in the figure, there is a significant contribution
of the electron inertia (which is the difference between Lind and Lm).

7.1.7 Review of the electromagnetic model

The electromagnetic fields can be calculated from Maxwell’s equations in a system
composed of a plasma contained in a cylindrical dielectric tube (of infinite length)
and excited by an RF current Icoil flowing in an N-turn coil surrounding the tube.
The following summarizes the findings so far.

� The magnetic field is nearly constant within the dielectric tube, and the displace-
ment current flowing in the tube is negligible. Consequently,

Hz0 = NIcoil

l
, (7.33)

where Hz0 is the magnetic field amplitude at the plasma edge.
� At low electron density, the magnetic field is nearly constant in the plasma while

the electric field decays linearly from the edge to the centre, where it is null.
� At high electron density, both fields decay nearly exponentially from the edge,

within a characteristic length: the skin depth δ.
� The power dissipated in the plasma increases linearly with the electron density at

low electron density, goes through a maximum and decays with the square root
of the electron density at high electron density. The maximum of the absorbed
power curve occurs when δ � r0.

� The equivalent lumped circuit of the system is constructed from the electromag-
netic fields using the complex Poynting theorem. It is composed of a resistance
and an inductance:

Rind = 2πN2

lωε0
Re

[
ikr0J1(kr0)

εpJ0(kr0)

]
,

Lind = Lcoil

(
1 − r2

0

r2
c

)
+ 2πN2

lω2ε0
Im

[
ikr0J1(kr0)

εpJ0(kr0)

]
,

which both depend on the electron density via k and εp. Simplified expressions of
Rind have been obtained in the low electron density limit. Simplifications are also
available in the high electron density limit, as will be seen in the next section.
[Note that to account for power dissipation in the coil itself an extra resistance,
Rcoil, should be added to Rind. This will be done later in this chapter.]
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At this point, all the required information is available to model the inductive
mode. One could proceed directly to Section 7.4. However, it is instructive first
to study the usual transformer analogy, detailed in several articles and in other
textbooks. This is the purpose of the next two sections.

7.2 Impedance of the plasma alone

It will be useful to have an expression for the impedance of the plasma alone,
with the contribution of the coil taken out of Zind. This is the first step towards
the decomposition of the transformer model of the next section. This is done by
assuming that the current flowing in the plasma loop, denoted Ĩp in Section 7.1.3,
exists on its own (a situation that cannot exist in reality). The resistance and
inductance of the plasma are determined respectively from the absorbed power and
from the magnetic flux produced by this current alone.

7.2.1 Plasma resistance

The plasma resistance is obtained from the plasma current (Ip) and the absorbed
power in the plasma (Pabs) so that

Pabs = 1

2
Rp|Ĩp|2.

Then, using Eqs (7.9), (7.14) and (7.20):

Rp = 2Pabs

|Ĩp|2
= 2π

lωε0
Re

[
ikr0J1(kr0)

εpJ0(kr0)

] ∣∣∣∣ 1

J0(kr0)
− 1

∣∣∣∣−2

. (7.34)

Figure 7.8 shows the plasma resistance and the modulus of the plasma current as a
function of the electron density for νm/ω = 0.1, as before with N = 5, Icoil = 3 A,
r0 = 0.065 m and l = 0.3 m. It appears that, unlike Rind, towards low electron
density Rp increases strongly. In terms of the mathematics, this comes about because
at low density the complex wavenumber k → 0 and so J0(kr0) → 1; physically it
can be understood because the conductivity goes to zero when the electron density
goes to zero. In the regime of high plasma density, for which J0(kr0) → ∞, the skin
depth is small, δ � r0, and the fields decay exponentially near the edge. The plasma
resistance decreases because the conductivity increases faster than the skin depth
shrinks. More meaningful expressions for the resistance at high plasma density will
be obtained below, in the low and high-pressure limits corresponding respectively
to νm � ω and νm � ω.

The plasma current is very small and initially increases with the electron density
at low electron density. When the density becomes sufficiently high, the current
localizes in the skin depth and consequently saturates to a value that may be
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Figure 7.8 Plasma resistance and plasma current as a function of the electron
density for νm/ω = 0.1. We have chosen N = 5, Icoil = 3 A, r0 = 0.065 m and
l = 0.3 m.

evaluated using Ampère’s theorem: Hz0 = Ip/l = NIcoil/l, such that Ip = NIcoil.
In this regime, note that the plasma resistance becomes proportional to the total
resistance defined previously:

Rp = Rind

N2
, (7.35)

which now looks like a relationship from the equivalent circuit of a transformer.
Before proceeding, note that Piejak et al. [128] have measured the plasma current
and the plasma resistance as a function of the discharge power, i.e., equivalent to
the trend with electron density, and found the same behaviour as that described
above: at low and moderate electron density, the resistance decreases while the
current increases with the electron density.

The plasma resistance at high electron density may be approximated by taking
the appropriate limits of the Bessel functions in the two limiting cases of low gas
pressure, νm � ω, and high gas pressure, νm � ω.

The low-pressure regime

At low pressure, νm � ω, and the square root of the plasma permittivity may be
approximated by

√
εp ≈ ±ωpe

ω

( νm

2ω
+ i

)
. (7.36)

Using the properties of Bessel functions with pure imaginary arguments and
their limits at large arguments, i.e., for kr0 → ∞ (see the introduction to this
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chapter):

Rp ≈ 2πk0r0

lωε0
Re

[
−1√
εp

]
. (7.37)

From Eq. (7.36):

Re

[
−1√
εp

]
≈ νm

2ωpe
. (7.38)

In terms of the collisionless skin depth δ = c/ωpe and the definition of the plasma
conductivity, Eq. (2.54), the resistance may be written in the following way:

Rp = πr0

σmlδ
. (7.39)

Q Noting that the RF current flows in a one-turn loop of cross-section lδ and
length 2πr0, one expects a plasma resistance given by Rp = 2πr0/σmlδ. Why
is the actual expression of Eq. (7.39) smaller by a factor of two?

A The power dissipation profile depends on the square of the current and
therefore scales with exp −2x/δ, halving the effective cross-sectional area.

The approximation of Eq. (7.39) is plotted (dash–dot line) in Figure 7.8. It
compares well, at high electron densities, with the exact calculation of Eq. (7.34).

The high-pressure regime

In the opposite high-pressure regime, νm � ω,

√
εp ≈ ωpe√

2νmω
(1 + i) = X(1 + i). (7.40)

At high density X is also large. The behaviour of the Bessel functions with large
and complex arguments in this case allows some simplification, though it is not
easily shown algebraically. This then leads to a high-pressure form for the plasma
resistance:

Rp = πr0 ωpe

σm l c

(
2ω

νm

)1/2

. (7.41)

Q Use Eq. (2.58) to show that this time the plasma resistance is given by
Rp = 2πr0/σmlδcoll.

A Starting with δcoll = √
2/μ0σmω, rewrite this as

δcoll =
√

2

μ0

mε0

ne2

νm

ω

so δcoll = δ(2νm/ω/)1/2, such that the substitution gives the required result.
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7.2.2 Plasma inductance

The current path in the plasma has both resistance and inductance. Some inductance
can be attributed to the electron inertia, Lp = Rp/νm, as seen previously (Eqs (2.82)
and (2.83)). The loop of current flowing in the plasma also generates a magnetic
flux and so gives rise to another inductance, denoted Lmp. The calculation of Lmp

is easy in the high electron density regime, for which the RF current is localized
in a narrow skin depth. The magnetic flux is then � = μ0H̃zπr2

0 = LmpĨp, and the
magnetic field is H̃z = Ĩp/l, so that

Lmp = μ0πr2
0

l
. (7.42)

This expression is not valid in the low electron density limit where the current is
not localized in the skin depth. The current is driven by the electric field so that it
decays linearly from the edge to the centre, at low density. In this limit, it turns out
that Lmp is about half the value given by the expression in Eq. (7.42).

Further analysis of the high electron density regime shows that

Lp

Lmp
= me

nee2μ0r0δ
, (7.43)

i.e., the inductance due to inertia becomes less important at high electron density.
Considering δ ≈ c/ωpe, with a discharge radius of 10 cm, then Linertia/Lmp ≈ 5.3 ×
106/(r0n

1/2
e ), which gives Lp/Lmp ≈ 0.5 at ne = 1016 m−3 and Lp/Lmp ≈ 0.17 at

ne = 1017 m−3.
It is also interesting to compare the inductive reactance of the plasma to its resis-

tance. In the high electron density regime, for which the electron inertia inductance
can be neglected,

Lmpω

Rp
= r0

δ

(
ω

νm

)
, if ω � νm, (7.44)

Lmpω

Rp
= r0

δ

(
2ω

νm

)1/2

, if ω � νm, (7.45)

where again δ ≡ c/ωpe is the collisionless skin depth. It appears that the plasma
resistance is small compared to the plasma inductive impedance at low pressure
and high frequency, i.e., for ω � νm. The opposite limit may only be reached when
ω � νm, because the skin depth is significantly smaller than the radius r0.

7.3 The transformer model

A transformer model of an inductive discharge has been proposed by Piejak et al.
[128]. The coil and the plasma form a transformer – the plasma is regarded as the
one-turn secondary coil of an air-cored transformer. The primary has an inductance



7.3 The transformer model 237

∼∼

Icoil

Vcoil
Rs

Ls

Icoil

Vcoil
Rcoil

Lcoil

Ip

M

Rp

LpLmp

Figure 7.9 The transformer model of an inductive discharge. On the right, the
secondary circuit has been transformed into its series equivalent in terms of the
primary circuit current.

Lcoil and a resistance Rcoil. These two quantities define the Q-factor of the coil,
Q ≡ ωLcoil/Rcoil. The coil resistance and the coil inductance, and therefore the
Q-factor, may be measured experimentally. It can also be evaluated theoretically.
The coil inductance was derived in Section 7.1.6.

Q Calculate the resistance, inductance and Q factor of a coil made of a cop-
per wire 2.75 m long and 6 mm in diameter, and driven at 13.56 MHz. The
conductivity of copper is σcopper = 59.6 × 106 �−1 m−1 and the coil is 0.3 m
long, formed from 5 turns of radius 0.08 m.

A The current flows in a cross-section of area 2π × 0.003 × δ = 0.0188 ×
δ, with δ = (2/ωμ0σcopper)1/2 = 1.77 × 10−5 m. The resistance is therefore
Rcoil = 2.75/(3.34 × 10−7 × σcopper) = 0.138 �. With N = 5, l = 0.3 m and
rc = 0.08 m, Lcoil = 2.1 μH, such that Q ≈ 1300.

The coil and the one-turn plasma loop are coupled through the mutual inductance
M . This takes account of the voltage induced in the secondary by changing current
in the primary and vice-versa. In this calculation, M is assumed to be real, an
assumption that will be discussed later. The coupled circuits shown on the LHS of
Figure 7.9 can be transformed into a single circuit composed of a resistance Rs and
an inductance Ls, as shown on the RHS of the figure. Applying Kirchoff’s laws to
the above circuits gives

Ṽcoil = iωLcoilIcoil + RcoilIcoil + iωMĨp, (7.46)

Ṽp = iωLmpĨp + iωMIcoil = −Ĩp

[
Rp + iRp

(
ω

νm

)]
, (7.47)

Ṽcoil = (iωLs + Rs) Icoil. (7.48)
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The transformation therefore leads to

Rs = Rcoil + M2ω2

⎛⎜⎝ Rp

R2
p +

(
ωLmp + Rp

(
ω
νm

))2

⎞⎟⎠ , (7.49)

Ls = Lcoil − M2ω2

⎛⎜⎝ Lmp + Rp/νm

R2
p +

(
ωLmp + Rp

(
ω
νm

))2

⎞⎟⎠ . (7.50)

In order for the transformer model to describe the inductive discharge accurately,
Rs must be set equal to Rcoil + Rind, and Ls to Lind, in the entire density range (where
Rind and Lind are obtained from the electromagnetic model). In the previous section,
by investigating the impedance of the plasma alone, expressions for Rp and Lmp

have been found so that in principle M remains the only unknown in the problem.
From Eq. (7.47) it can be seen that the mutual inductance obeys the following
relation:

M2ω2 =
[
R2

p +
(

ωLmp + Rp

(
ω

νm

))2
]

|Ĩp|2
I 2

coil

. (7.51)

Substituting this expression into Eqs (7.49) and (7.50) leads to

Rs = Rcoil + Rp
|Ĩp|2
I 2

coil

, (7.52)

Ls = Lcoil −
(

Lmp + Rp

νm

) |Ĩp|2
I 2

coil

. (7.53)

To provide a global model of an ICP the transformer model must correctly account
for the power absorption. This imposes the following relation, Rp|Ĩp|2 = RindI

2
coil,

which leads to

Rs = Rcoil + Rind, (7.54)

Ls = Lcoil − Lmp

(
Rind

Rp

)
− Rind

νm
. (7.55)

In this way, the resistance Rs perfectly matches the electromagnetic model, as
indeed it must. However, it turns out that Ls is not equal to Lind in the whole electron
density range, although they have the same limits at the extremes of electron density.
At high electron density, Rind = N2Rp, and the inertia term Rind/νm is small so that
the inductance reduces to

Ls ≈ Lcoil
(
1 − r2

0/r2
c

)
, (7.56)
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Figure 7.10 Inductance of the transformer model, Ls, along with the inductance
derived from the electromagnetic model, Lind, as a function of the electron density
for νm/ω = 1. We have chosen N = 5, r0 = 0.065 m, rc = 0.08 m and l = 0.3 m.

as observed in Figure 7.7. In the low electron density limit, Rind → 0 so that
Ls ≈ Lcoil, as also observed for Lind in Figure 7.7. The comparison between the
transformer model inductance Ls and the electromagnetic model inductance Lind

is shown in Figure 7.10 for the entire range of electron density. The discrepancy is
significant at intermediate density.

Q (i) What is the implication of the incorrect modelling of the inductance?
(ii) What would be required to fix the discrepancy between Ls and Lind?

A (i) There is no consequence on the global model results presented later
because the principle requirement for a correct plasma model is the absorbed
power. However, it would be a problem if one needs to evaluate the volt-
age across the coil, which depends directly upon the reactive part of the
impedance.
(ii) To fix this problem, it is necessary to consider a complex mutual induc-
tance, i.e., M should have an imaginary part.

In the following, the definition of M as a real quantity is retained. This mutual
inductance is a function of the electron density, which implies that the coupling
coefficient of the transformer also varies. The coupling coefficient of the trans-
former is defined by M2/LcoilLmp. It is small when the mutual inductance is weak,
and goes to unity for perfect coupling. In the case of a transformer made of two
nested, long solenoids, this coefficient is the ratio of the radius of the internal coil,
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Figure 7.11 Coupling coefficient as a function of the electron density.

r0, to the radius of the external coil, rc. Figure 7.11 shows the coupling coeffi-
cient of the inductive discharge transformer as a function of the electron density,
calculated using the definition of M given in Eq. (7.51). At high electron density,
M2/LcoilLmp → r0/rc because the current flows in the skin depth and the plasma
indeed behaves like a one-turn internal coil. At low electron density, the coupling
is poorer because the current induced in the plasma is distributed across the radius.

Note that at high electron density, Ls ≈ Lcoil
(
1 − (r0/rc)2

)
. If the dielectric

window were to be infinitely thin, then (r0/rc)2 ≈ 1 and consequently Ls ≈ 0.
This is the situation of an ideal transformer, for which the inductive reactance of
the secondary totally offsets the reactance of the primary such that the primary
circuit appears purely resistive. For good coupling, it is therefore necessary to keep
the dielectric window thin so the distance between the coil and the plasma is as
small as possible and the coupling is maximized.

7.3.1 Review of the transformer model

The inductive discharge may be modelled using the transformer analogy. The
plasma is regarded as the one-turn secondary coil of an air-cored transformer, the
primary of which is composed of the coil itself. For this model, it is necessary to
decompose the full system into two parts: (i) the coil itself and (ii) the plasma loop,
in which an RF current flows, distributed in a way that depends on the electron
density. The decomposition was accomplished by choosing the mutual inductance
M to be purely real. It has been found that:
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� The plasma resistance is a continuously decreasing function of the electron
density, while the plasma current increases at low electron density to saturate at
Ip = NIcoil.

� Once transformed to the primary circuit, the resistance Rs has to increase at
low ne, go through a maximum, and finally decay at high ne (like Rind in the
electromagnetic model).

� To satisfy the above, the mutual inductance in the transformer model must be a
function of the electron density.

� Strictly, a complex mutual inductance (M with real and imaginary parts) is
required to model the resistance and the inductance of the transformed circuit
in the whole electron density range. Here M was assumed to be purely real
at the expense of an approximate form of the inductance. Nevertheless, this is
acceptable since the resistance is correct so that the power absorption is correct.

� As a general conclusion, one might say that the transformer analogy is satisfying
at high electron density, but should be examined more carefully at low and
intermediate electron density.

7.4 Power transfer efficiency in pure inductive discharges

From this point, we go back to Rind and Lind defined in the electromagnetic model.
The power delivered by the RF generator is the sum of the power dissipated by the
coil, Pcoil, and the power dissipated by the plasma electrons, Pabs:

Pcoil = 1

2
RcoilI

2
coil, (7.57)

Pabs = 1

2
RindI

2
coil. (7.58)

A very important quantity to evaluate is the power transfer efficiency, which is
defined as

ζ ≡ Pabs

Pcoil + Pabs
=

(
1 + Rcoil

Rind

)−1

. (7.59)

The maximum power coupling efficiency is reached when Rind is at its maximum.
The effective resistance of the ICP, Rind, may be written in terms of the Q-factor
of the coil and the structure of the fields as

Rind = Rcoil

(
2Q

k0r0

r2
0

r2
c

)
Re

[
iJ1(kr0)√
εpJ0(kr0)

]
, (7.60)
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such that

Rcoil

Rind
= X

(
2

Q

r2
c

r2
0

)
, (7.61)

where we have introduced the quantity

X = k0r0

(
4Re

[
jJ1(kr0)√
εpJ0(kr0)

])−1

, (7.62)

which is a function of the electron density. The efficiency may thus be written

ζ =
[

1 + X

(
2

Q

r2
c

r2
0

)]−1

. (7.63)

For a given coil design, the power transfer efficiency depends upon electron density
(via X), which in turn depends upon the RF current amplitude. The maximum
efficiency is reached when the quantity X reaches its minimum, denoted Xmin.

In the low-frequency, high-pressure limit (νm � ω) typical of fluorescent lamps,
it can be shown that Xmin ≈ 1, independent of the νm/ω ratio, and consequently
the power transfer efficiency becomes

ζm,hp =
[

1 + 2

Q

r2
c

r2
0

]−1

. (7.64)

Since the product Q r2
0/r2

c is usually very large compared to 1, the efficiency can
be very high (the efficiency goes to unity when the coil resistance is small and the
Q-factor tends to infinity). In addition, it is clear that r0/rc has to be as close as
possible to unity for high efficiency.

In the lower-pressure inductive discharges used for plasma etching νm � ω, so
Xmin ≈ 2ω/νm and the power transfer efficiency becomes

ζm,lp =
[

1 + 4

Q

r2
c

r2
0

(
ω

νm

)]−1

. (7.65)

It is easy to see that ζm,lp < ζm,hp. The efficiency of these discharges is typically
between 50% and 80% lower than that of those used at higher pressure for fluores-
cent lamps, which may reach 98%, particularly when enhanced by ferrite cores, as
will be described later in this chapter. This can be understood by the fact that when
ω/νm is large, the ratio of reactive-to-resistive power is high, requiring higher RF
currents to maintain a specific level of power absorption in the plasma. This leads
to higher dissipation in the coil.

Piejak et al. [128] have developed the full analysis for the maximum power
transfer efficiency, obtaining the following formula, which agrees well with the
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above observations:

ζm =
[

1 + 2

Q

r2
c

r2
0

(
ω

νm
+

(
1 + ω2

ν2
m

)1/2
)]−1

. (7.66)

7.5 Capacitive coupling

As with the previous chapters on RF plasmas, one of the goals is to build a global
model that links external currents and voltages to spatially averaged quantities that
characterize the plasma. For this it is necessary to consider not only inductive
current in the plasma, but also a capacitive component of current. To generate the
RF current it is necessary to apply an RF voltage across the coil. This voltage may
be large enough for the high-voltage point on the coil to drive a capacitive RF
current through the dielectric tube (or window), the sheaths and the plasma and
from there to ground.

Q What is the typical voltage amplitude that develops across the coil?
A The voltage amplitude is approximately Vcoil ≈ ωLindIcoil. Considering

Lind ≈ Lcoil and using a five-turn coil with rc = 0.08 m and l = 0.3 m,
gives Lcoil = 2.1 μH (using Eq. (7.30)) and consequently Vcoil ≈ 1800 V for
Icoil = 10 A and a driving frequency of 13.56 MHz.

This capacitive coupling is responsible for a fraction of the power deposition.
However, it was shown in Chapter 5 that the power deposited in this way decays with
1/ne at the given current. Therefore, capacitive coupling will only be significant at
low electron densities. As in very high frequency capacitive discharges, inductive
heating will dominate at high electron density. Capacitive discharges are designed to
excite the capacitive (or electrostatic E) mode, but may operate in the inductive (or
electromagnetic H) mode when driven at very high frequencies, and consequently
at high electron densities. By contrast, inductive discharges are designed to operate
in the H-mode, at high electron density, but may operate in the E-mode when driven
at low power and consequently at low electron density. Both discharges are subject
to mode transitions.

The complex geometry of the ICP means that the voltage distribution within the
coil is not uniform, so the capacitive coupling is very difficult to model properly,
unless performing 3-D numerical calculation of the fields, and is also very design-
dependent. To illustrate the physics, the simplified model proposed in [125] is used.
This model is shown in Figure 7.12. The inductive branch is modelled with the
components discussed above. In parallel with the inductive branch, the capacitive
branch is modelled by a capacitance in series with a resistance accounting for ohmic



244 Inductively coupled plasmas

∼
C

IRF Icap

Icoil

Vcoil Lind

RcapRind + Rcoil

Figure 7.12 Simplified lumped element circuit model of an inductive discharge
with capacitive coupling. From [125]. Rcap accounts for capacitive heating of
electrons (both ohmic and stochastic).

and stochastic heating of electrons. The capacitance is the series combination of the
dielectric tube capacitance (a fixed value) and the sheath capacitance, which varies
with the plasma parameters. In many instances, the capacitance of the dielectric
tube (or window) is smaller than that of the RF sheath and hence it dominates.

The impedance of the capacitive branch is always larger than the impedance
of the inductive branch, so Icoil ≈ ĨRF ≈ Ṽcoil/iωLind. Then, in almost all operat-
ing regimes, Rind + Rcoil � ωLind and the resistance in the capacitive branch is
small compared to the impedance of the capacitor, so ωRcapC � 1. So the power
absorbed by the electrons in the inductive discharge with capacitive coupling is

Pabs ≈ 1

2

[
Rind + (ω2LindC)2Rcap

]
I 2

coil. (7.67)

Q Why is the coil resistance not included in Eq. (7.67)?
A The resistance of the coil should be considered if one needs to evaluate

the power dissipated in the system. However, here attention is focused on
the power absorbed by the electrons, in preparation for the global model
developed in the next section. Thus, the power dissipated by the coil has not
been included in Eq. (7.67).

The two resistances in Eq. (7.67) are functions of the electron density. The
inductive part, Rind, has been discussed above and is given by Eq. (7.21). The
capacitive part, Rcap, is not easy to model precisely but is composed of an ohmic
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Figure 7.13 Absorbed power as a function of the electron density for a fixed coil
current in a pure inductive discharge (dashed line), and in an inductive discharge
with capacitive coupling (solid line). kBTe/e = 2.47 V.

and a stochastic part, and scales with 1/ne. From [20, 125]:

Rohm = meνmlcap

e2neAcap
, (7.68)

Rstoc =
(

meve

e2neAcap

)(
eVcoil

kBTe

)1/2

, (7.69)

Rcap = Rohm + Rstoc. (7.70)

Here, lcap and Acap are respectively the length and area in which the capacitive RF
current flows. These quantities are not easy to evaluate and are strong functions of
the reactor design.

The absorbed power is plotted in Figure 7.13 for a fixed coil current as a
function of the electron density for a pure inductive discharge (dashed line), and
for an inductive discharge with capacitive coupling (solid line). Here again the
situation is that of a five-turn coil of radius rc = 0.08 m around a cylinder of inner
radius r0 = 0.065 m and length l = 0.3 m. The argon gas pressure is p = 1.33 Pa
and the 13.56 MHz RF current flowing in the coil is 3 A. The total capacitance
(dielectric+sheaths) has been fixed to C = 10 pF, which means that sheath size
variations with the RF current in the coil and the electron density need not be
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taken into account. The capacitive coupling parameters are Acap = 0.15 m2, lcap =
0.15 m. The inductive power increases linearly with the electron density at low
density, passes through a maximum and then decays with the square root of the
density, as established earlier in this chapter. The capacitive coupling is dominant at
low electron density, but rapidly becomes insignificant since the capacitive power
decays with 1/ne.

7.6 Global model

To establish the global model of the inductive discharge with capacitive coupling
it is necessary to solve simultaneously the particle balance and the power balance
for the two variables, ne and Te.

Q In previous chapters the RF Child–Langmuir law was used to establish global
models. Why is this law not needed here?

A It has already been established that the sheath facing the coil is narrow, and
that the physics of this sheath is not dominant in the calculation of the power
absorbed by electrons. The sheath size is therefore not a crucial variable for
the global model.

The particle balance in cylindrical geometry is

ngKizV = 2uB
(
hlπr2

0 + hr0πr0l
)
, (7.71)

where V = πr2
0 l is the plasma volume and the other quantities have their usual

meaning. This equation can readily be solved to calculate the electron temperature.
Once the electron temperature is found, the loss power is expressed as

Ploss = 2neuB
(
hlπr2

0 + hr0πr0l
)
εT(Te), (7.72)

where all quantities have, again, their usual meaning. The power balance,
Pabs = Ploss, where the absorbed power Pabs is given by Eq. (7.67), allows
the equilibrium electron density to be calculated. The full expression for Rind

(Eq. (7.21)) is too complicated to yield an explicit analytical expression for ne.
However, as in previous chapters, the solution can be found graphically by plotting
the absorbed power and the loss power as a function of the electron density on the
same axes. This is done in Figure 7.14 for the same conditions as in Figure 7.13.
At a pressure of 1.33 Pa, the electron temperature kBTe/e = 2.47 V. The equilib-
rium electron density is located at the intersection of the two power curves, where
ne ≈ 6 × 1016 m−3.
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Figure 7.14 Absorbed power and power loss as a function of the electron density
for the same conditions as in Figure 7.13.

7.6.1 Electron density as a function of the coil current

Using the procedure described above to solve for the electron density, the equi-
librium electron density can be followed while the coil current is scanned. The
result is shown in Figure 7.15 for the parameters used in the previous figures. The
pressure is kept at 1.33 Pa and consequently the electron temperature remains at
kBTe/e = 2.47 V.

Transition between E and H-modes

One can clearly distinguish three regions. At low coil current, the discharge is in
the E-mode, that is the intersection between the absorbed power and the power loss
curves occurs before the minimum of the absorbed power. At high coil current, the
intersection occurs after the maximum of the absorbed power, i.e., in the inductive
mode. In the region delimited in grey (between 1 A and 3 A), the intersection
occurs between the minimum and the maximum of the absorbed power; this is the
E–H transition region. Note that in this region the increase in the electron density
is much faster than in the other two modes because the equilibrium intersection
occurs in a region where the slopes of both lines in Figure 7.14 are positive and quite
similar.
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Figure 7.15 Electron density at the equilibrium as a function of the coil current
for the inductive discharge with capacitive coupling. The dashed line is the density
when capacitive coupling is reduced to zero. The region in grey, between 1 A and
3 A, corresponds to the E–H transition region.

The dashed line in the figure represents the electron density calculated with no
capacitive coupling. As already mentioned, there is no equilibrium in this case at
low coil current. A current in excess of 1.2 A is required to sustain the inductive
mode. The electron density in the inductive mode rapidly exceeds a few 1016 m−3.
Capacitive coupling plays no role at high electron density, which allows a simpli-
fication of the global model to gain further insight into the physics of the inductive
mode.

The low-pressure, high-frequency limit at high density

Suppose that the density is high enough for the capacitive coupling to be neglected.
It has been shown that in this high-density regime the skin depth is small and
the resistance of the inductive branch is Rind = N2Rp. Then the power balance
becomes

1

2
RindI

2
coil = 1

2
N2RpI

2
coil = 2neuB

(
hlπr2

0 + hr0πr0l
)
εT(Te). (7.73)

Using the approximate expression of Rp given in Eq. (7.39) leads to the following
expression for the electron density as a function of the coil current in the inductive
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mode:

ne =
[

πr0N
2νm(m/ε0)1/2

4uB
(
hlπr2

0 + hr0πr0l
)
eεT(Te)l c

]2/3

I
4/3
coil . (7.74)

This reveals that at fixed current the electron density increases with the number of
turns and with the gas pressure. Indeed, νm increases linearly with the gas pressure,
and both hl and hr0 decrease with the gas pressure. Interestingly, there is no explicit
effect of the driving frequency.

The high-pressure, low-frequency limit at high density

In the opposite limit of ν � ω, the resistance Rp is now given by Eq. (7.41). There-
fore, when considering the high-density regime with Rind = N2Rp, the electron
density is

ne =
[

πr0N
2(2ωνm)1/2(m/ε0)1/2

4uB
(
hlπr2

0 + hr0πr0l
)
eεT(Te)l c

]2/3

I
4/3
coil . (7.75)

Again at fixed coil current the electron density increases with the number of turns
and the gas pressure (with a weaker scaling in pressure). In this high-pressure limit,
one can observe a frequency dependence: the electron density increases slightly
with the frequency at fixed coil current.

Frequency effect

The scalings derived at high electron density show that the driving frequency plays
a very minor role in the physics of the inductive mode. This is very different from
what has been demonstrated in capacitive discharges. In order to investigate the
effect of frequency in the entire range of electron densities, Figure 7.16 shows the
electron density at the equilibrium as a function of the coil current for three different
driving frequencies, 4 MHz, 13.56 MHz and finally 60 MHz. The calculation was
done with other parameters the same as in Figure 7.15. The scalings predicted
above are verified: the frequency has almost no effect at high electron density,
where the inductive discharge really works as a transformer. By contrast, the effect
of frequency is more marked in the capacitive mode. The capacitive coupling is
drastically reduced at low frequency, as might be expected from the two previous
chapters.

What experiments show

First of all, many experiments have shown that at moderate power (or density), the
coil current does not vary with power or may even decrease when the power (or the
density) increases [129]. This is in apparent contradiction with the scaling derived
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Figure 7.16 Electron density at the equilibrium as a function of the coil current
for three different driving frequencies.

above. In fact, Eqs (7.74) and (7.75) describe the large current limit of Figure 7.15.
In this regime, the RF current in the coil increases with the power delivered
by the power supply. It turns out that many experiments actually operate in the
regime corresponding to the grey area in Figure 7.15. When capacitive coupling
is ignored (the dashed line in the figure), the electron density increases drastically
(because the power increases) but the RF current remains almost unchanged. In
fact, in this regime Rind ∝ ne, as does the power loss, so that the power balance
requires that the RF current is independent of the electron density, as observed in
experiments.

7.6.2 Power transfer efficiency

When capacitive power coupling is included, the power transfer efficiency becomes

ζ = Pabs

Pcoil + Pabs
≈ Rind + (ω2LsC)2Rcap

Rcoil + Rind + (ω2LsC)2Rcap
. (7.76)

The power transfer efficiency is plotted in Figure 7.17 for a 1.33 Pa discharge,
with the same conditions as before. The coil inductance is Lcoil = 2.1 μH, the coil
resistance is Rcoil = 0.137 �, the angular frequency is ω = 2π × 13.56 MHz, and
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Figure 7.17 Power transfer efficiency as a function of the coil current for the
inductive discharge with capacitive coupling. The dashed line is the efficiency
when capacitive coupling is reduced to zero. The region in grey, between 1 A and
3 A, corresponds to the E–H transition region.

Q ≈ 1300 and r0 = 0.81 rc. Again marked in grey is the region of E–H transition,
the region of capacitive coupling being to the left (at low RF current) and the region
of inductive coupling to the right. The maximum power transfer efficiency occurs
at the beginning of the inductive mode and thereafter decreases at higher RF current
(or RF power). The maximum efficiency occurs when the equilibrium is reached at
the maximum of the inductive discharge resistance Rind. The maximum efficiency
predicted by Eq. (7.65) is ζm = 0.988, in good agreement with the value observed
in Figure 7.17.

Comment: The efficiency calculated above is unrealistically high, when
compared with experiments, mostly because the Q-factor has been overestimated.
In reality, Rcoil is larger than the estimations presented here because of so-called
proximity effects between the turns of coil. More realistic values of Q lie between
100 and 300. Taking Q = 200 leads to a maximum efficiency of ζm = 0.927, much
closer to experimentally measured values. The general form of the dependence
of the efficiency on the electron density remains similar and is observed in
experiments.
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It can also be seen from the figure that the minimum power transfer efficiency is
located at the lower boundary of the E–H transition region, that is when the equi-
librium is reached at the minimum of the absorbed power curve. In the capacitive
mode, the inductive resistance is nearly zero and Lind ≈ Lcoil, so that the efficiency
may be approximated by

ζ ≈
[

1 + Rcoil

(ω2LcoilC)2Rcap

]−1

. (7.77)

Since Rcap ∝ 1/ne, the efficiency decreases as the electron density increases in the
capacitive mode.

Q Is any power dissipated by ions in an inductive discharge?
A There must indeed be some power dissipated by ions in the sheath in front of

the coil.
Comment: This was not included in the power transfer efficiency calculations
presented here, mainly because it is relatively small compared with that in
capacitive discharges. Note also that the energy of ions arriving at a substrate
can be controlled by including a third electrode that is biased by, for instance,
an independent RF power supply (cf. Chapter 4).

Q Is there any need for a match-box in inductive discharges?
A A match-box is indeed required since the plasma impedance is not 50 �.

The match-box can be incorporated in the circuit, in the same way as for
capacitive discharges.
Comment: Losses in the match-box can be large, in particular when the
coupling efficiency is small.

7.7 Summary of important results
� Inductive discharges are generated by RF current in a coil separated from the

plasma by a dielectric window. They can be modelled starting from Maxwell’s
equation to calculate the electromagnetic fields, leading to an equivalent circuit
model based on the Poynting theorem. They are more commonly modelled as
a transformer, in which the plasma loop current is the secondary.

� Inductive discharges may have a very high power transfer efficiency, specifi-
cally when νm � ω. In the limit of νm � ω, the efficiency is reduced because
the reactive power is larger and consequently higher coil currents (leading
to more losses) are required to maintain the same plasma density. For high
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coupling efficiency, the distance between the plasma and the coil, i.e., the
thickness of the dielectric window, must be small.

� Although inductive discharges are designed to excite the electromagnetic H-
mode, they may operate in the E-mode at low RF current (or power). Con-
sequently, they are subject to E to H-mode transitions. These transitions are
more pronounced than in very high frequency capacitive discharges.

� The effect of the driving frequency is not important at high electron density,
when the inductive discharge works as a transformer. However, the frequency
has a strong effect on capacitive coupling.

� In principle, ICPs allow ion energy and ion flux to be varied quasi-
independently, because the plasma is generated by a coil and the substrate
holder is biased independently.

7.8 Further considerations

The discussion has so far missed out some very important aspects of inductive
discharges which are considered in this last section. Technological aspects will be
dealt with first and a discussion of more subtle physical mechanisms will conclude
this chapter.

7.8.1 Strategies to minimize capacitive coupling

The reduction of capacitive coupling is useful for many reasons. It may avoid
instabilities at the E–H transition (see Chapter 9) and it reduces the sputtering of
the dielectric window by ions accelerated across the sheaths. From a scientific point
of view, it reduces the RF fluctuations of the plasma potential, which complicates
electrical diagnostics of the discharge.

There are several ways to reduce the capacitive coupling. One may drive the coil
at lower frequency. An alternative is to introduce a capacitor between the coil and
the ground, as shown in Figure 7.18. In the figure, the coil inductance has been
artificially divided into two parts for the sake of the demonstration. One can see
that the resistance of the coil and that due to plasma load have been ignored to
simplify the argument, and because they do not dominate the total impedance. The
voltage that develops across the capacitor introduced between one end of the coil
and the ground is 180◦ out-of-phase with the voltage that develops across the coil
itself. Therefore, if the capacitor is chosen so that

LcoilCω2 = 2, (7.78)
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∼

IRF = I0 cosωt

VRF

+VRF

+VRF

−VRF

Lcoil/2

Lcoil/2

C

virtual ground

Figure 7.18 Schematic of a design with a capacitor between the coil and the
ground. The coil inductance has been artificially divided into two parts for the
sake of the demonstration.

Aluminum coil Faraday shield

Figure 7.19 View of a Faraday shield for a planar coil, seen from the side of the
dielectric window. From [130].

then there is a voltage node (a virtual ground) in the centre of the coil, as shown in
the figure. Consequently, for the same current in the coil, the voltage at both ends
of the coil is half that in the absence of a capacitor.

Another classical way of reducing capacitive coupling is to introduce a ‘Faraday
shield’ between the coil and the plasma, as seen in Figure 7.19. The rôle of this
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B
B

(a) (b)

Figure 7.20 Schematic diagram describing the effect of the use of a ferromagnetic
core on the magnetic field lines. (a) Large RF field loop created by the coil alone,
(b) RF field channelled by the ferromagnetic core. From [131].

shield is to localize the electrostatic field between the coil and the shield, without
affecting the induced electromagnetic field. The shield is grounded to provide a path
for the capacitive current that does not pass through the plasma. The spacing and
openings in the shield shown in the figure are designed to prevent the circulation of
azimuthal RF current. The induced electromagnetic field is consequently weakly
affected. Faraday shields are very efficient in reducing the capacitive coupling.
Actually, in plasma processing, a strong reduction of capacitive coupling may be
problematic because discharge ignition then becomes almost impossible.

7.8.2 Enhanced inductive coupling with ferromagnetic cores

The coupling efficiency of inductive discharges may be increased by using ferro-
magnetic cores. While electrical transformers have ferromagnetic cores and oper-
ate at low frequency (industrial or audio frequencies), conventional inductive dis-
charges used in plasma processing usually do not have them and operate at higher
frequency (typically 13.56 MHz). In contrast, many compact fluorescent RF lamps
are based on ICPs with internally located coils, enhanced by ferrite cores. These
operate at 2.65 MHz, a frequency especially allocated for lighting.

Ferromagnetic cores have a high magnetic permeability, which acts as a mag-
netic flux concentrator, as shown in Figure 7.20, reproduced from [131]. The
ferromagnetic core concentrates magnetic flux where it enters the plasma load. In
terms of the transformer analysis developed in this chapter, the mutual inductance
between the coil and the plasma is thereby increased. The transformer model has
been revisited by Lloyd et al. [132] to include ferromagnetic core enhancement.
The main effect is a reduction of the coil current, and consequently of the losses,
as shown in Figure 7.21. The relative inductor loss with a ferrite core is an order
of magnitude lower and, at large discharge power, the power transfer efficiency
reaches 99%.

The benefit of ferromagnetic cores is mostly visible at low and moderate frequen-
cies (typically below 4 MHz), because the magnetic permeability of these materials
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Figure 7.21 Relative inductor loss as a function of the discharge power with and
without ferrite core. From [133].

drops at higher frequencies. The trend in inductive discharges, unlike in capacitive
discharges, may therefore be frequency reduction rather than frequency increase.
This has the great advantage of avoiding the standing wave effects described in the
previous chapter.

7.8.3 Anomalous skin depth and collisionless heating

As in capacitive discharges, there is a regime at low pressure in ICPs where ohmic
power absorption is not the dominant process. In capacitive discharges, electrons
pass within the RF sheath in a time that is shorter than the period of the sheath
motion. Similarly here, the induced electric field is localized in a skin layer, so if
an electron traverses this layer in a time that is shorter than the RF period, then it
will gain net energy from the field. The related condition is [134, 135]:

ω δ ≤
(

kBTe

me

)1/2

. (7.79)

Under such conditions, a change in the electric field at one particular location, and
time, affects the current everywhere in the plasma, and at all later times, because
of the rapid thermal motion of electrons. Consequently, the current density in the
plasma is not related to the electric field by the usual law, i.e., J̃θ �= iωε0εpẼθ .
The spatial distribution of the electric field and of the RF current is not the usual
exponential decay within the traditional skin depth, and the phase between these
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Figure 7.22 Spatial distribution of the electric field (left) and the RF current
density (right) in a 0.133 Pa ICP in argon. Also shown is the phase distribution
(the phase reference here is that of electric field in vacuum).

two quantities may virtually take any value. This ‘anomalous skin effect’ implies
a variety of interesting phenomena such as collisionless heating or negative power
absorption, which have been studied intensively in the late 1990s and more recently.
A good review of these effects has been published by Godyak [136].

In Figure 7.22 the spatial distributions of the electric field and the RF current
density are shown, as measured by Godyak and Piejak [137, 138] in a 0.133 Pa
inductive discharge in argon. The measurement method involved mapping out the
magnetic field changes detected by a small loop of wire. This experiment used
a planar ICP (see Figure 7.1b). As expected from earlier discussion of ICPs, the
electric field decays exponentially away from the dielectric window in the absence
of plasma; i.e., there is a geometric decay length of the field. When a plasma is
struck, the decay length becomes shorter, as expected from the classical plasma skin
effect. However, at powers above 100 W, the electric field decays rapidly to reach
a first minimum (a little after 6 cm for 100 W), and then increases again on going
deeper into the plasma. This is a typical signature of anomalous field penetration,
also observed by Cunge et al. [139] and recently calculated by Hagelaar using a fluid
approach [140]. The RF current (shown on the right) also exhibits an anomalous
structure, with different positions for the minima and different phase evolution. It
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therefore appears that the propagations of the electric field and of the RF current
are not correlated, which results in somewhat arbitrary phases between these two
quantities, and in turn leads to regions of negative power absorption [141] which
means electromagnetic fields take power out of the local plasma.

Although the field penetration is anomalous, and therefore the decay is not
exponential, it is possible to define an anomalous skin depth, which is an effective
penetration length, given by [2, 135]

δeff ≈
(

ve c2

ω ω2
pe

)1/3

. (7.80)

Q Is the anomalous skin depth larger or smaller than the collisionless skin depth
defined as δ ≡ c/ωpe? Show that it depends on the driving frequency.

A The condition for δeff ≤ δ is equivalent to ve/ω ≤ c/ωpe. For excitation at
13.56 MHz ω = 8.5 × 107 s−1, a plasma having ne = 1017 m−3 and kBTe/e =
3 V (so ve ≈ 106 m s−1 and ωpe ≈ 1.8 × 1010 s−1) has δeff ≤ δ. Doing the
full calculation shows that δ = 1.67 cm while δeff = 1.48 cm, a small but
significant difference.

The anomalous field penetration regime is often a regime in which collisionless
heating is dominant (this may not be true at very low frequency, where the field
penetration may be anomalous and yet collisionless heating may be negligible).
This has been demonstrated experimentally by Godyak et al. [142], who measured
the power deposited to the plasma and compared it with the calculated ohmic
power. It appears that at low pressure, the collisionless power may easily be an
order of magnitude larger than the ohmic power. A convenient way of accounting for
collisionless heating is to define an effective collision frequency due to stochastic
interaction between the plasma electrons and the skin depth electric field. This
stochastic frequency has been evaluated by Lieberman and Lichtenberg [2], and is

νstoc ≈ ve

4δeff
. (7.81)

It is then easy to define an effective collision frequency, νeff = νstoc + νm. The high
electron density plasma resistance under these circumstances becomes

Rp = πr0

σefflδeff
, (7.82)

where σeff ≡ nee
2/meνeff is the new expression for the conductivity. Finally, for

completeness, it is noted that the shape of the electron energy distribution function
can be distorted profoundly by collisionless heating in inductive discharges [143].
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7.8.4 Non-linear effects

The final topic in this chapter concerns the non-linear effects that occur in inductive
discharges. The non-linearities mostly come from the Lorentz force on the electron
fluid, which is produced by the RF magnetic field. Momentum conservation for
electrons has to include this force and becomes

nm

[
∂u
∂t

+ (u · ∇) u
]

= nq (E + u × B) − ∇p − mu [nνm + S − L] . (7.83)

It is clear that the Lorentz force, which is proportional to the product of the electron
drift velocity and the magnetic field, FL ∝ u × B, introduces a non-linear response
which manifests itself by the generation of second-harmonic currents, and a DC
component known as the ponderomotive force. It has also been suggested that the
RF-induced field reduces the plasma conductivity leading to a non-linear skin depth
[144], though it was shown later that this effect does not in fact exist [145].

Q How many different skin depths have been introduced in this chapter?
A Many! The classical skin depth has two expressions depending on pressure:

Eq. (2.57) at low pressure and Eq. (2.58) at high pressure. Then, at low
pressure, non-local (collisionless) effects lead to anomalous skin penetration
given by Eq. (7.80). Finally, one should also note that even in the absence
of plasma, the electric field always decays away from the antenna due to
geometric effects.

It has been shown that the second-harmonic currents do not contribute signif-
icantly to the electron heating. The DC ponderomotive force has a considerable
effect on the plasma density profile. This force pushes cold electrons away from the
skin layer. Since it acts differently on cold and hot electrons, the EEDF is affected;
the EEDF tends to be depleted of cold electrons within the skin layer.

These non-linear effects become important at low pressure and at low driving fre-
quency, when the Lorentz force becomes comparable to the electric force. Godyak
[136] showed that for a flat coil, the main component of the magnetic field is
directed radially while the RF drift velocity is directed azimuthally: Br = −Eθ/δω

and uθ ≈ eEθ/m(ω2 + ν2
eff)

1/2. Consequently, the Lorentz force, which is propor-
tional to the product Bruθ , scales in the following way: FL ∝ E2

θ /δω(ω2 + ν2
eff)

1/2.
Since the electric field is only a weak function of the driving frequency and the
gas pressure, the Lorentz force increases when these quantities decrease. Typi-
cally, non-linear effects are not significant for 13.56 MHz discharges at a few Pa.
However, they are considerable at the lower frequency of 0.45 MHz [136].
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Adding a static magnetic field to an RF-excited plasma has two major conse-
quences. Firstly, the plasma transport is reduced in the direction perpendicular
to the magnetic field lines; this will be discussed in the next chapter. It will
be shown that the magnetic field reduces the transverse plasma flux and may
therefore be used to increase the plasma density at given power. More generally,
the addition of a static magnetic field can be used to adjust the uniformity of
the plasma flux, and to modify the electron temperature or the electron energy
distribution function. This is achieved by changing the magnetic field topology.
Some of these properties are used in magnetically enhanced reactive ion etching
(MERIE) reactors, which are capacitively coupled reactors with a magnetic field
parallel to the electrodes. In some instances, this magnetic field is designed to
rotate at low speed in order to average out modest asymmetries of the plasma
parameters.

Secondly, a static magnetic field enables the propagation of electromagnetic
waves at low frequencies, that is at ω � ωpe; a class of such waves, known as
‘helicons’, are of particular importance in plasma processing and in space plasma
propulsion. Helicons are part of a bigger group of waves called ‘whistlers’. The first
report of whistlers, that is whistling tones descending in frequency from kilohertz
to hundreds of hertz in a few seconds, was in the early twentieth century. A possible
origin of these signals was given later when the first theories of propagating waves
in a magnetized plasma were proposed by Hartree [146] and Appleton [147]. The
atmospheric lightning flashes at one location of the Earth generates a localized
impulse of electromagnetic disturbance. A broad spectrum of electromagnetic
waves subsequently propagates along the Earth’s magnetic field lines at a speed
that depends on the frequency (lower frequencies propagate at slower speed). The
signals received at the other end of the magnetic field line arrive over a period of a
few seconds and, when converted into acoustic waves, mimic a descending whistle
as lower-frequency components arrive later.

260
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The word helicon was first proposed by a French scientist, Aigrain, to describe an
electromagnetic wave propagating in the free electron plasma within a solid metal
[148]. The propagation of equivalent waves in gaseous plasmas was subsequently
studied in the 1960s. In 1970, Boswell proposed using them as a source of energy
to sustain a plasma [149]. The content of this chapter is largely inspired by a review
published in two papers by Boswell and Chen [150] and Chen and Boswell [151],
charting the subsequent development of the field. The name ‘helicon’ comes from
the fact that the wave rotates during its propagation in the z-direction, carrying the
electrons in a helical motion. The electric and magnetic fields of the wave have the
following form:

E,B ∼ exp j (ωt − kzz − mϕ) (8.1)

where m is the azimuthal mode number, kz is the longitudinal wavenumber, and ϕ

is the azimuthal angle. Throughout the analysis in this chapter, the static magnetic
field B0 is along z. The radial structure of the helicon wave fields will be discussed
in Section 8.2.2.

In a plasma produced by a helicon wave, energy is transferred from it to the
plasma electrons to produce heating by collisional or collisionless mechanisms.
The propagating character of the wave implies that heating penetrates deeper in the
plasma than inductive heating (localized in the skin depth) or capacitive heating
(mostly localized in the RF sheaths). This achieves high ionization efficiency in
large plasma volumes and/or long plasma columns. Since the antenna is excited
by an RF voltage, helicon plasmas may also operate in capacitive (E) mode at
low power. In addition, the RF current flowing in the antenna induces fields near
the antenna that tend to excite an inductive (H) mode – cf. Chapter 7. The H-
mode usually dominates at intermediate power. The plasma eventually operates
in the W-mode (where W signifies the propagating helicon wave mode) when the
power is large enough to provide the required plasma density to support helicon
wave propagation. Therefore, helicon plasmas are subject to E–H–W transitions.
Further mode transitions are also observed within the W-mode, because of resonant
coupling to the antenna. All these phenomena lead to abrupt variations of the
electron density with the input power, which is inconvenient for plasma processing,
unless the source is appropriately designed to control these mode jumps.

Q Capacitive discharges are driven by parallel plates while inductive discharges
are driven by coils. Explain why the word ‘antenna’ is used here.

A An antenna has a specific design in order to launch propagating electromag-
netic waves. The shape can be chosen to select specific wavelengths and
modes.
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Figure 8.1 A schematic of a helicon plasma processing reactor where the source
tube, surrounded by the helicon antenna, sits on top of an expansion chamber at
the bottom of which is placed a wafer holder. The numbers are radial and axial
distance markers in cm.

The combination of efficient wave heating and increased plasma confinement
make helicon reactors attractive for highly ionized plasmas [152,153], with applica-
tions in plasma thrusters [15–17]. Helicon reactors have also been used in various
plasma processing applications, such as silicon dioxide deposition [154] or fast
etching of silicon [155] and silicon carbide [9, 11]. A typical configuration of a
helicon processing reactor is shown in Figure 8.1. The source tube, surrounded by a
helicon antenna, sits on top of an expansion chamber at the bottom of which a wafer
holder is placed. When the amplitude of the static magnetic field (along the z-axis)
is maximum in the source region, the plasma is mostly generated in that region and
expands into the bottom chamber with a strong decay of the plasma density in the
diverging magnetic field. The wafer-holder area exposed to the expanding plasma
may be significantly larger than the cross-section of the source tube. The uniformity
across the wafer may also be adjusted by varying the magnetic field shape and/or
by adding a multipole confinement based on arrays of strong permanent magnets.
Alternatively, the magnetic field amplitude may be kept constant along z, or even
larger in the bottom chamber to concentrate the field lines, in which case the plasma
density is very high at the wafer-holder position. This, however, is at the expense
of uniformity. In the case of a diverging magnetic field, it has been found that the
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plasma expansion may be associated with complex transport phenomena includ-
ing double-layer formation and instabilities. This will be described in the next
chapter.

In this chapter, the properties of helicon waves will be studied in a growing
level of complexity. The propagation parallel to the static field B0 is first studied
in an infinite plasma with uniform density. The general dispersion relation is
given, various waves are described and helicon waves are defined. These waves are
compared to the simple case of electromagnetic waves in non-magnetized plasmas,
discussed in Chapter 2. Off-axis propagation and waves contained in a cylinder are
then studied, leading to boundary conditions and eigenvalues for the wavenumbers;
the assumption of uniform plasma density is retained and its validity is discussed in
a dedicated section. The antenna coupling is treated in a simple and idealized way
that then allows the conditions for the existence of helicon modes to be derived.
Having defined the wave properties, the absorption of wave energy is discussed,
leading to wave heating of the electron population. The E–H–W transitions are
described at the end of the chapter.

Warning:

� The word ‘mode’ is used to describe several phenomena in this chapter.
Careful attention should be paid to the context in which this word is used.
The wave rotates as it propagates, introducing an azimuthal structure to the
wave fields described by a mode number m. There are transitions between the
various energy coupling mechanisms: the capacitive (E) mode, the inductive
(H) mode, and the helicon (W) modes. Finally, resonant coupling between
the antenna and the helicon wave occurs at discrete longitudinal wavelengths
(or equivalently densities). Therefore, within the W-mode, there are several
longitudinal wave modes described by the mode number χ .

� Since this chapter is about waves, Boltzmann’s constant is written kB so that
k can be used as a wavenumber.

� Since m is used as an azimuthal mode number, the electron mass will be
written me to avoid any confusion.

Unlike in previous chapters, a global model of helicon plasma processing reac-
tors will not be developed. The reason for this is twofold: (i) the power balance is
complicated and the heating of plasma electrons by helicon waves is still not fully
understood, (ii) the particle balance is complicated because of the geometry of the
reactor which involves complex transport phenomena. A global model has been
proposed by Lieberman and Boswell [156], in which collisionless power absorption
was ignored and the geometry was simplified.
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8.1 Parallel propagation in an infinite plasma

The subject of waves in magnetized plasmas (see, for example, Stix [157]) will not
be treated here in detail. The principal aim is to obtain the electromagnetic modes
in a magnetized plasma, following the approach in Chapter 2 for the simpler non-
magnetized case. The linearization of the fluid equations for electrons and ions leads
to an expression for plasma permittivity. When a static magnetic field is applied to
the plasma, the response of the medium to the fields becomes anisotropic and one
has to define a plasma permittivity tensor. The dispersion of electromagnetic waves
then depends on the direction of the wave vector with respect to the magnetic field.
The anisotropy comes from the Lorentz force that acts in a direction perpendicular to
the particle motion. Charged particles therefore tend to rotate around magnetic field
lines at their respective cyclotron frequencies, defined by ωce ≡ eB0/me (electron
cyclotron frequency) and ωci ≡ eB0/M (ion cyclotron frequency). Note that ions
rotate at a much slower frequency since ωci/ωce = me/M � 1.

Q Calculate the cyclotron frequency for electrons and for argon ions in a field
of 5 mT.

A ωce = 8.9 × 108 s−1 and ωci = 1.2 × 104 s−1.

To account for the anisotropy, it is convenient to divide the waves into two classes:
waves propagating along the magnetic field, and waves propagating perpendicular
to the magnetic field. Helicon waves propagate mostly along the magnetic field
lines. Suppose the magnetic field is along the z-axis. For the collisionless (low-
pressure, non-resistive) case with the wave vector parallel to the direction of the
static field B0 (so that the wavenumber is k ≡ kz), considering the cold plasma
approximation (Te = Ti = 0) and neglecting terms of order me/M compared to
unity, it turns out that there are two types of waves having the following dispersion
relations:

n2
ref,R = k2c2

ω2
= 1 + ω2

pe

ωωce

(
1 + ωci

ω
− ω

ωce

) , (8.2)

n2
ref,L = k2c2

ω2 = 1 − ω2
pe

ωωce

(
1 − ωci

ω
+ ω

ωce

) . (8.3)

The first wave (dispersion relation given by Eq. (8.2)) is called the right-hand
polarized (RHP) wave, since the wave electric field rotates clockwise when the static
magnetic field B0 is seen from behind. The second wave (dispersion relation given
by Eq. (8.3)) is called the left-hand polarized (LHP) wave, since the wave electric
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Figure 8.2 Square of the refractive index as a function of frequency for the LHP and
RHP waves propagating parallel to the direction of B0 in an infinite magnetized plasma;
ωce � ωpe.

field rotates anti-clockwise when the static magnetic field B0 is seen from behind.
The dispersion diagram is sketched in Figure 8.2 for the case where ωce � ωpe.

Q In Chapter 2, the plasma permittivity, εp, and the associated plasma refractive
index, nref = √

εp, were obtained in the case of a non-magnetized plasma.
It was found that the plasma refractive index was isotropic (independent of
the direction in space) and that it was given by n2

ref = 1 − ω2
pe/ω

2 (when
dissipations due to electron–neutral collisions are neglected). Subsequently,
ωpe was shown to be a cut-off frequency since waves cannot propagate for ω <

ωpe. First, check that the non-magnetized case is recovered by setting B0 = 0
in Eqs (8.2) and (8.3). Second, identify cut-off frequencies in Figure 8.2. Will
waves ever propagate below those frequencies?

A When B0 = 0 in Eqs (8.2) and (8.3), ωce = ωci = 0 and consequently
n2

ref,R = n2
ref,L = 1 − ω2

pe/ω
2; the non-magnetized case is recovered. Two

cut-off frequencies, ωco,R and ωco,L, are identified for the RHP wave and
the LHP wave, respectively. The RHP wave does not propagate (it becomes
evanescent) when ωce ≤ ω ≤ ωco,R, and similarly the LHP wave does not
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propagate when ωci ≤ ω ≤ ωco,L. However, note that at frequencies below
ωce and ωci, respectively, the waves do propagate because there are other
solutions with real values of refractive index.

Imaginary values of refractive index (n2
ref < 0) indeed indicate that the waves

are evanescent, i.e., they are not propagating waves, and the cut-off frequencies are
at n2

ref = 0. From Eqs (8.2) and (8.3), the cut-off frequencies are

ωco,R = 1

2

[
ωce +

√
ω2

ce + 4
(
ω2

pe + ωceωci

)]
, (8.4)

ωco,L = 1

2

[
−ωce +

√
ω2

ce + 4
(
ω2

pe + ωceωci

)]
, (8.5)

for the RHP and LHP wave, respectively. These frequencies are close to the electron
plasma frequency in the case ωce � ωpe under consideration here.

Q What happens when n2
ref → ∞?

A Resonances are obtained for n2
ref → ∞, that is when the phase velocity goes

to zero. At the resonance, charged particles rotate at the same frequency as the
waves so that they experience a quasi-constant field. This leads to resonant
energy absorption.

The electric field for the LHP wave rotates in the same direction as ions around
the magnetic field, thus the resonance is at ωci. By contrast, the electric field for
the RHP wave rotates in the same direction as electrons around the magnetic field,
and therefore its resonance is at ωce. As shown on the diagram, the waves become
evanescent above their respective resonance frequencies. As ω approaches ωpe, the
waves become propagating again and when ω goes to infinity, the phase velocity
approaches the speed of light in vacuum (since n2

ref → 1). In this limit, charged
particles do not respond to the wave fields and the medium behaves as a dielectric
(eventually as a vacuum when nref ≈ 1). Note again that since nref ≤ 1 the phase
speed is greater than the speed of light.

A helicon is in fact the low-frequency RHP wave; we therefore restrict further
discussion to Eq. (8.2) in the domain ω < ωce. Then taking ωce � ωpe and ω � ωpe

gives the following dispersion relation:

n2
ref,R = ω2

pe

ωωce

(
1 + ωci

ω
− ω

ωce

) . (8.6)
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In this frequency domain, there are three types of waves that are important in
various subfields of plasma physics: space science, magnetic fusion energy science
and plasma processing science. The frequency domain can be refined further by
examining different dominant terms in Eq. (8.6). From now on, nref will be used in
place of nref,R for simplicity.

8.1.1 Alfvèn waves

Considering frequencies below ωci so that ω/ωce � 1, the dispersion relation
becomes

n2
ref = ω2

pe

ωce (ωci + ω)
. (8.7)

At very low frequencies (ω � ωci) this gives the so-called Alfvèn waves that are
non-dispersive since the phase velocity is independent of frequency. The phase
velocity is called the Alfvèn velocity and is given by

vϕ = c

nref
= vA = c

ωpe

√
ωciωce = c

ωci

ωpi
. (8.8)

Alfvèn waves are used in Tokamak reactors for ion heating and they are also
observed in the Earth’s magnetosphere.

8.1.2 Electron cyclotron waves

For frequencies near ωce, the dispersion relation with ωci/ω � 1 becomes

n2
ref = ω2

pe

ωωce

(
1 − ω

ωce

) . (8.9)

The index n2
ref passes through a minimum at ω = 0.5 ωce (where the phase speed

is maximum), as shown in Figure 8.2. The wave nature is different depending on
whether ω > 0.5 ωce or ω < 0.5 ωce (see [150, 151, 157] for details). The electron
cyclotron waves (at ω > 0.5 ωce) are used for electron heating in Tokamaks. At the
resonance (ω = ωce), the electrons rotate around the magnetic field line in synchro-
nism with the wave electric field and consequently experience a quasi-constant field
that accelerates them over many cyclotron orbits. This results in a very efficient
resonant heating. The ECR (electron cyclotron resonance) is also used in some
plasma processing reactors. The excitation frequency used is usually 2.45 GHz,
which requires a magnetic field of 0.0875 T for resonance. From a plasma pro-
cessing point of view, there are several drawbacks with ECRs. Firstly, the required
static magnetic field is rather high. Secondly, the electron energy distribution
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function becomes anisotropic with a tail of very energetic electrons (those effi-
ciently interacting with the wave). These energetic electrons are problematic in
etching because they induce charge-effect damages in the microelectronic ‘ultra
large scale integrated’ circuits. Finally, the operating pressure must remain fairly
low because collisions inhibit the resonance.

Q The electron–neutral elastic collision for an argon plasma having an electron
temperature of 5 eV is about νm � 1.5 × 10−13 × ng s−1, where ng is the
density of neutrals. What is the condition on gas pressure for efficient ECR
operation?

A The pressure must be such that the electron–neutral collision frequency
is much smaller than the electron cyclotron frequency, νm � ωce/2π =
2.45 GHz. Then, the condition is ng � 1.6 × 1022 m−3; the related condi-
tion on pressure is p � 60 Pa at 300 K. Typically, plasma processing ECR
reactors operate at p ≤ 1 Pa.

8.1.3 Helicon waves

Helicon waves are at the low-frequency limit of electron cyclotron waves (i.e.,
ω < 0.5 ωce). The frequency is sufficiently high so that ions do not respond to the
field, and sufficiently low so that electron inertia is small, i.e., ωci � ω � ωce. The
dispersion relation of helicon waves is given by

n2
ref = ω2

pe

ωωce
. (8.10)

Helicon reactors are designed to allow helicon wave propagation with a frequency
of 13.56 MHz and the typical conditions of operation in argon are ne = 1018 m−3

and B0 = 5 mT. The important frequencies are consequently

ωci = 1.2 × 104 s−1,

ω = 8.5 × 107 s−1,

ωce = 8.9 × 108 s−1,

ωpe = 5.7 × 1010 s−1,

such that the conditions ωci � ω � ωce � ωpe are satisfied.

8.2 Helicon wave propagation in a cylinder

In a helicon reactor, the plasma is spatially limited and the wave propagation is
more complex than has been described above. The boundary conditions impose
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both standing waves and off-axis propagation, that is the wave does not propagate
parallel to the direction of B0. In this section the wave propagation is analysed at
an angle θ �= 0 relative to the magnetic field. The boundary conditions imposed on
the fields, and the way the waves are launched by various types of antenna, are also
discussed.

8.2.1 Off-axis propagation in an infinite plasma

The dispersion relation for helicon waves propagating at an angle θ relative to the
magnetic field in an infinite magnetized plasma [150] is

n2
ref = ω2

pe

ω (ωce cos θ − ω)
. (8.11)

Note that with θ = 0 and ω � ωce the dispersion relation established earlier (see
Eq. (8.10)) is recovered. It appears that when θ �= 0 there exists a limiting angle
for propagation, defined as follows:

θres = arccos

(
ω

ωce

)
, (8.12)

at which a resonance occurs (since n2
ref → ∞). The wave vector is therefore

restricted to a cone of angles θ < θres. Using the above example with a driving fre-
quency of 13.56 MHz and an electron cyclotron frequency of ωce = 8.9 × 108 s−1

defines a phase velocity resonance cone at θres = 1.4748 rad (or equivalently
θres = 84.5◦). The refractive index is plotted as a function of θ in Figure 8.3.
As θ approaches θres the refractive index goes to infinity (the resonance). Above
θres the index becomes imaginary and the waves are evanescent. However, as dis-
cussed below, another condition constrains the wave energy to an even smaller
angle.

The energy flow in a lossless medium propagates along the group velocity
vector, which does not necessarily coincide with the direction of the wave vector
[157]. The direction of the group velocity vector is called the ‘ray direction’. As
with the wave vector direction, there is a limiting angle for the ray direction,
defining a cone in which the wave energy will be restricted (Figure 8.4). To find
the relationship between the various angles, first let ψ be the angle between the
ray direction and the static magnetic field. Stix ([157], chapter 4) shows that
the angle between the wave vector direction and the ray direction, denoted α, is
defined by

tan α = 1

nref

∂nref

∂θ
. (8.13)
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Figure 8.3 Refractive index as a function of θ in radians; the propagation is
restricted within the phase velocity resonance cone of angle θres. The following
conditions were used: f = 13.56 MHz, B0 = 0.005 tesla and ne = 1018 m−3.
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Figure 8.4 Schematic representation of the wave and group velocity vectors,
limited in their respective resonance cones, of angle θres for the phase velocity and
ψres for the group velocity.
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Figure 8.5 The angle between the ray direction (group velocity vector direction)
and the magnetic field direction, ψ , as a function of θ . A maximum angle ψres ≈
0.33 is reached when θ ≈ 0.95. The angular limitation of the ray direction accounts
for the tendency of helicon waves to follow the magnetic field lines.

Q Show, with reference to Figure 8.4, that with the approximation ωce cos θ �
ω we get

ψ = θ − arctan

[
tan θ

2

]
.

A In this limit,

n2
ref = ω2

pe

ωωce cos θ
,

so that

tan α = 1

nref

∂nref

∂θ
= 1

2
tan θ.

Using ψ = θ − α gives the appropriate result.

The ray direction angle ψ is plotted as a function of θ in Figure 8.5. This angle
passes through a maximum ψres ≈ 0.33 rad (which corresponds to approximately
20◦), at θ ≈ 0.95 rad. This defines a resonance cone for the group velocity. There-
fore, the direction of the wave energy flow is limited to small angles, ψ � 20◦. It
has indeed been observed that helicon waves (and more generally whistlers) tend
to propagate along the magnetic field lines. Figure 8.4 summarizes the above; the
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Figure 8.6 Schematic of the helicon antenna around the source tube, with
wavenumbers.

wave and group velocity vectors are restricted within their respective resonance
cones, of angle θres for the phase velocity and ψres for the group velocity.

Before proceeding, note that in the limit considered above, ωce cos θ � ω, the
dispersion relation may also be written as follows:

kkz = eμ0neω

B0
, (8.14)

if the electron plasma frequency and the electron cyclotron frequency are expressed
as functions of the electron density ne, and if k = kz/ cos θ . This form will be used
later in the chapter.

8.2.2 Fields and boundary conditions in a cylinder

In a finite system, k and kz must satisfy boundary conditions on the electromagnetic
fields; at a given plasma density, the propagation angle depends on the size of the
system. Maxwell’s equations have been solved to obtain the radial structure of the
helicon wave fields in a cylinder of radius r0, for a uniform plasma density and a
constant static magnetic field along the z-axis. The results are as follows (see for
instance [153]):

B̃r = A [(k + kz) Jm−1(krr) + (k − kz) Jm+1(krr)] , (8.15)

B̃ϕ = iA [(k + kz) Jm−1(krr) − (k − kz) Jm+1(krr)] , (8.16)

B̃z = −2iAJm(krr), (8.17)

where A is an arbitrary amplitude, m is the azimuthal mode number, k is the
magnitude of the wave vector, kz and kr are the magnitude of the axial (longitudinal)
and radial wave vectors, respectively (see Figure 8.6) and

k2
r + k2

z = k2 ; (8.18)
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Figure 8.7 Transverse electric field lines as they evolve during the propagation
for (a) m = 0 and (b) m = +1. Reproduced from Lieberman and Lichtenberg [2],
after [153].

Jm is the mth-order Bessel function. As shown in Figure 8.7, reproduced from
[153], the transverse structure of the electric field is very complicated and depends
strongly on the azimuthal mode m. For the m = 0 azimuthal mode the field structure
evolves during propagation as sketched in Figure 8.7(a). The first pattern, on the
left, shows a phase when the electric field lines are purely radial; the field is purely
electrostatic. By contrast, at the later phase shown in the third pattern the field lines
are circular, indicating that the electric field is purely electromagnetic. In between
these two cases, the electric field lines follow spirals. Note that the electrostatic
field changes sign between the first pattern (on the left) and the second pattern
(on the right), separated by half a wavelength. The pattern of the m = +1 mode
(Figure 8.7b) is even more complicated, but note that this one does not change
form as it propagates, though it does rotate. There is a strong electrostatic radial
component in the centre that changes sign at half a wavelength.

The boundary conditions at r = r0 depend on the electrical nature of the chamber
walls. An insulator would require the tangential component of the magnetic field
to be zero, while at a conducting boundary the tangential electric field is zero,
Ẽϕ = 0. It turns out that in this problem, both conditions are equivalent to B̃r = 0,
which subsequently imposes the following relation [153]:

mkJm(krr0) + kzJ
′
m(krr0) = 0. (8.19)

This sets eigenvalues for kz and kr. In this equation J′
m is the first derivative of Jm

with respect to its argument. It turns out that for the m = 0 mode, the condition
defines a unique value for the radial wavenumber, krr0 = 3.83, whatever the value
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of kz. However, for higher-order azimuthal modes, Eq. (8.19) has to be solved
numerically to find a condition on the perpendicular wavenumber kr, for each value
of kz. For the m = 1 mode, it is found that the radial wavenumber is limited to
values satisfying 2.4 < krr0 < 3.83, with krr0 ≈ 3.83 when kz � kr and krr0 ≈ 2.4
when kz � kr.

Q The wave propagates at a finite angle compared to the cylinder axis so that
it must eventually encounter the radial boundary, at least for a long cylinder.
What happens when the wave reaches the boundary?

A The wave is likely to be reflected from the cylindrical boundary and to then
propagate further down the cylinder of plasma.

8.2.3 Non-uniform plasma density

Q Is the assumption of uniform plasma density realistic?
A Probably not. It has been shown in Chapter 3 that in a confined, actively

sustained plasma, the density is usually maximum in the centre and decays
towards the edges.

The effect of non-uniform plasma density on the fields and on the dispersion
of helicon modes was first considered by Blevin and Christiansen [158] and more
recently revisited by Chen et al. [159] and Breizman and Arefiev [160]. As might
be expected, it was found that the wave tends to be guided by the density gradients,
even before the boundaries are reached, i.e., the fields are more concentrated in
the centre, where the density is peaked. Breizman and Arefiev [160] have also
proposed that this wave localization is responsible for enhanced collisional power
absorption.

8.2.4 Antenna coupling

Several types of antennas have been used in laboratory experiments and plasma
processing reactors. A schematic of the antennas most commonly used for launch-
ing helicon waves is presented in Figure 8.8. The simplest is a loop that excites the
azimuthally independent m = 0 mode. The azimuthal electromagnetic field pro-
duced by the one-turn antenna (very similar to that of inductive discharges) then
couples to the wave electromagnetic field (the circular pattern in Figure 8.7a). In
practice, there is also a quasi-electrostatic field generated at the ends of the one-turn
antenna (the ends are not shown in the idealized drawing of Figure 8.8) that may
also couple to the radial field of the wave (the radial pattern in Figure 8.7a). The
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Figure 8.8 Schematic of the most common types of helicon antennas. The top left
is a single-loop m = 0 antenna whereas the other three antennas are designed to
excite the m = 1 mode.

three other antennas shown in the figure are designed to excite the m = ±1 modes.
It has been found that the m = −1 mode is poorly coupled and does not propagate
far out of the forcing region (near the antenna). By contrast, the m = +1 mode
has excellent coupling and leads to very efficient plasma production. The double-
saddle antenna was introduced by Boswell in 1970 [149], while the plane-polarized
Nagoya antenna is a simplified scheme introduced in 1978 [161]. A twisted version
of this antenna was used by Shoji at Nagoya University in the 1980s [162].

Although antennas are not easy to model in detail, one characteristic can be
simply anticipated: the length of the antenna is critical in selecting discrete longi-
tudinal wavelength or wavenumbers kz. For example, to impose an axial wavelength
(λ = 2π/kz), the m = 0 antenna can be excited by a pair of single-loop coils with
equal, but oppositely directed currents in each loop, axially separated by half the
chosen wavelength. The axial lengths, dA, of the various m = 1 structures in Fig-
ure 8.8 are chosen in a similar way to set kz [2]. Higher-order modes that match
antenna length to any odd number of half wavelengths are also possible, so there
is a longitudinal mode number, χ , defined by

kz = (2χ + 1)
π

dA
. (8.20)

As mentioned at the beginning of this chapter, χ is different from m, the azimuthal
mode number.
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Table 8.1 Characteristics of the longitudinal χ modes for the azimuthal m = 0
mode, with B0 = 0.005 T, f = 13.56 MHz and r0 = 6.5 cm

χ kz/m−1 λz/m kr/m−1 k/m−1 θ /◦ ne/m−3

0 20.9 0.3 58.92 62.53 70.43 3.82 × 1017

1 62.8 0.1 58.92 86.14 43.16 1.58×1018

2 104.7 0.06 58.92 120.16 29.37 3.67×1018

3 146.6 0.043 58.92 158 21.9 6.76×1018

4 188.8 0.033 58.92 197.49 17.36 1.09×1019

All the necessary information is now available to calculate the characteristics of
each longitudinal mode χ excited by the antenna.

8.3 Conditions for existence of the helicon modes

In the following, the characteristics of each mode χ will be calculated for the
following reference conditions: a static magnetic field of B0 = 0.005 tesla, a driving
frequency of 13.56 MHz, a plasma radius of r0 = 0.065 m and an antenna length
of dA = 0.15 m.

The external parameters that are at the disposal of the designer are B0, ω, r0

and dA. The ‘unknowns’ are k, kz, kr, ne, which can be determined using the
dispersion relation Eq. (8.14), the relationship between magnitudes of the wave
vectors Eq. (8.18), the cylindrical boundary condition at r = r0 Eq. (8.19) and the
wavenumber of the axial mode kz Eq. (8.20).

8.3.1 The m = 0 case

First of all, kz is imposed by the antenna length, according to Eq. (8.20). For the
given parameters, kz = 20.9 m−1 for χ = 0, kz = 62.8 m−1 for χ = 1, etc. For
the m = 0 azimuthal mode, the radial wavenumber is independent of kz and then
Eq. (8.19) is satisfied by krr0 = 3.83, leading to kr = 58.92 m−1. The value of the
total k then follows from Eq. (8.18). Finally, the dispersion relation, Eq. (8.14), is
used to calculate the electron density. The characteristics of the different χ modes
are summarized in Table 8.1. The first helicon mode appears for an electron density
of ne = 3.82 × 1017 m−3, and higher densities are required for higher-order modes
(χ ≥ 1). Note the large jump in density between the χ = 0 and χ = 1 modes.
For electron densities below ne = 3.82 × 1017 m−3, the discharge will most likely
work in the inductive H-mode because the conditions for helicon wave propagation
are not met. It should, however, be noted that this density depends upon the static
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Table 8.2 Characteristics of the longitudinal χ modes for the azimuthal m = 1
mode, with B0 = 0.005 T, f = 13.56 MHz and r0 = 6.5 cm

χ kz/m−1 λz/m kr/m−1 k/m−1 θ /◦ ne/m−3

0 20.9 0.3 53.3 57.2 68.5 3.5×1017

1 62.8 0.1 47.4 78.7 37 1.44×1018

2 104.7 0.06 46.1 114.4 23.7 3.5×1018

3 146.6 0.043 45.7 153.3 17.3 6.6×1018

4 188.8 0.033 45.5 194 13.6 1×1019

magnetic field B0. If one wants to excite the first helicon mode at lower density,
then B0 should be smaller. On the other hand, to operate at higher density, one
should increase B0. The value of θ given in the table is the angle between the wave
vector and the static magnetic field. Note that the wave vector is better aligned
with the magnetic field for higher plasma densities (higher χ ). As indicated in
Section 8.2.1, the wave energy propagates within a different angle because the
direction of the group velocity vector is different from that of the wave vector.
It was shown that the angle of propagation of the wave energy is always smaller
than 20◦.

8.3.2 The m = 1 case

In this case, the only difference lies in the cylindrical boundary condition Eq. (8.19),
which now constrains the relationship between kz and kr. Table 8.2 summarizes the
characteristics of each mode χ for m = 1.

Having defined the condition for helicon wave propagation, it is necessary to
consider how the wave energy may be absorbed by the electron population. Efficient
electron heating is required for efficient ionization and consequently for efficient
plasma production. When the characteristic length for wave absorption is short, the
heating efficiency can be described as being particularly high.

8.4 Wave power absorption: heating

It was reported in earlier chapters that in capacitive and inductive discharges at
low neutral gas pressure the heating of electrons is predominantly by collision-
less mechanisms. The same is true in plasmas sustained by helicon waves at
low gas pressure and moderate plasma density (typically the conditions for the
χ = 0 mode), since the collision frequencies are too low for efficient ohmic heat-
ing of electrons [150, 151]. Before discussing possible heating mechanisms, the



278 Helicon plasmas

characteristic absorption length along the z-axis, αz, will be calculated for an effec-
tive collision frequency νeff that incorporates all possible dissipations (collisional
and collisionless).

Q For a 0.5 m long plasma column (cf. Figure 8.1) to be sustained by the helicon
waves, what can be said about the absorption length?

A To produce efficient electron heating, the wave energy must be absorbed in a
characteristic length that is comparable to, or shorter than, the experimental
arrangement: αz ≤ 0.5 m.

Q What would happen if the absorption length were much larger than the system
size and the end boundaries did not absorb wave energy?

A A standing wave could become established if the wave were reflected at the
ends.
Comment: This has indeed been observed by Boswell [149]; see also [163]
for a more recent observation of this phenomenon.

8.4.1 Characteristic absorption length of the wave

To calculate αz, one needs to include an effective collision frequency, νeff , in the
helicon wave dispersion relation. This can be done by modifying Eq. (8.11) in the
same way as in unmagnetized plasmas, giving

n2
ref = − ω2

pe

ω (ω − ωce cos θ − iνeff)
. (8.21)

The unmagnetized case, given by Eq. (2.52), is easily recovered for ω � ωpe by
setting B0 = 0, i.e., ωce = 0. When considering the regime of helicon waves, for
instance with ω, νeff � ωce cos θ , Eq. (8.21) reduces to

n2
ref = ω2

pe

ωωce cos θ

(
1 − iνeff

ωce cos θ

)
, (8.22)

which may also be written

kkz = eμ0neω

B0

(
1 − iνeffk

ωcekz

)
. (8.23)

Because of the dissipation term, the wavenumbers will now be complex quantities
so let kz = kreal − ikimag. The characteristic absorption length along the z-axis can
then be identified with the imaginary part: αz ≡ k−1

imag. It can be expected that the
wave will be absorbed over a distance of several wavelengths, so the absorption
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length can be presumed to be large compared to the wavelength, αz � λz, which
is equivalent to kimag � kreal.

To calculate αz, one should substitute the complex wavenumbers into the disper-
sion relation and solve for real and imaginary parts. This is difficult in the general
case but it is relatively easy in asymptotic regimes. First consider the case where
kr � kz, such that k ≈ kz. Then

k2
real − k2

imag = eμ0neω

B0
(8.24)

and

2krealkimag = eμ0neω

B0

(
νeff

ωce

)
, (8.25)

which, using kimag � kreal and consequently kreal ≈ kz, leads to

αz ≡ k−1
imag = 2ωce

kzνeff
. (8.26)

Using the same approach in the opposite limit of kr � kz leads to

αz = ωce

krνeff
. (8.27)

Not surprisingly, it appears that the characteristic absorption length is mainly
governed by the effective collision frequency; the larger the collision frequency, the
shorter the absorption length. It is the purpose of the next two sections to evaluate
the relative contribution of collisional and collisionless processes to the effective
collision frequency νeff .

Exercise 8.1: Effective collision frequency Use the reference conditions
given at the start of Section 8.3 and Tables 8.1 and 8.2 to estimate the order of
magnitude of νeff that is required for efficient helicon wave heating in a plasma
column that is 0.5 m long.

The example shows that νeff � 2 × 107 s−1 is the necessary condition for effi-
cient wave absorption in a half-metre long system. The electron–neutral elastic
collision for an argon plasma having an electron temperature of 5 eV is about
νm � 1.5 × 10−13 × ng s−1, where ng is the neutral argon gas density in m−3. At
a neutral gas pressure of 0.133 Pa at room temperature, νm = 4.8 × 106 s−1, which
is significantly smaller than the requirement for efficient heating by helicon waves
so unless other mechanisms are present, wave modes will not be effective. It turns
out that the helicon modes are effective here, so the next task is to try to understand
why this is so.
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Table 8.3 Characteristic absorption length for the χ modes of Table 8.2

χ ne/m−3 νc/s−1 ξ νw/s−1 νeff/s−1 αz/m

0 3.5×1017 5.7 × 106 6.1 � 1 5.7 × 106 2.9
1 1.44×1018 8.55 × 106 2.03 4 × 107 4.9 × 107 0.38
2 3.5×1018 1.39 × 107 1.22 1.24 × 108 1.37 × 108 0.12
3 6.6×1018 2.2 × 107 0.87 9.4 × 107 1.15 × 108 0.1
4 1×1019 3.25 × 107 0.68 5.9 × 107 9.2 × 107 0.1

8.4.2 Collisional wave absorption

Q Are there other types of collisions to consider in high-density plasmas in
addition to the usual electron–neutral collisions considered so far?

A In high-density plasmas, the collisions between pairs of charged particles
(electrons colliding with ions) will be more frequent than collisions between
charged particles and the neutral gas.
Comment: Collisions between pairs of charged particles are called ‘Coulomb
collisions’.

A calculation of the frequency of electron–ion collisions may be found in many
plasma physics textbooks (see for instance [2]) and will not be detailed here. Chen
[153] gives a simple result that applies for singly charged ions:

νei ≈ 2.9 × 10−11ne

(
kBTe

e

)− 3
2

s−1, (8.28)

where the quantities are to be specified in SI units. Choosing again kBTe/e = 5 V
leads to νei � 2.6 × 10−12 × ne s−1, while the electron–neutral collision frequency
in the same conditions is about νm � 1.5 × 10−13 × ng s−1. The ratio of electron–
ion to electron–neutral collisions is therefore

νei

νm
� 17.3 × ne

ng
, (8.29)

which shows that electron–ion collisions dominate as soon as the ionization fraction
ne/ng is greater than 6%. This condition can be met in helicon-sustained plasmas,
in particular because low-pressure, high-density plasmas are subject to depletion of
the neutral gas, that is a lowering of the particle density, ng, owing to gas heating, as
discussed in Chapter 9. The total collision frequency, νc = νm + νei, which includes
both electron–neutral and electron–ion collisions, can be calculated for each of the
χ modes, for instance those listed in Table 8.2. This is done in Table 8.3, with
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νm = 4.8 × 106 s−1. For the first longitudinal mode, χ = 0, the electron–neutral
collisions still dominate, because the electron density is still too low for electron–
ion collisions to be significant. For higher-order modes, the electron–ion collisions
take over; for instance, for χ = 4, they are almost six times more frequent than
electron–neutral collisions.

Q Check to see if the assumption that the absorption length is large compared
to the wavelength, αz � λz, is valid.

A It is indeed the case, as can be checked by inspecting Tables 8.2 and 8.3.

The introduction of electron–ion coulomb collisions does not make a difference
at moderate electron densities (typically the χ = 0 mode). Collisionless energy
exchange mechanisms have therefore been invoked to explain the experimentally
observed wave absorption. In the next section, a wave–particle interaction mecha-
nism is considered as a means of transferring energy into the electron population
without collisions between particles.

8.4.3 Collisionless wave absorption

When a helicon mode passes through the plasma, charged particles are oscillated by
the electric field of the wave as the disturbance moves by. The wave propagates at the
phase speed, vφ = ω/kz, which depends on the static magnetic field and the electron
density. For the electrons, the periodic displacement adds to the background thermal
motion at speeds characterized by ve = √

kBTe/me. Under typical conditions, vφ ∼
ve. It is tempting therefore to imagine that any electrons moving at exactly the
same speed as a helicon wave, and in the same direction, are barely affected by
it. Furthermore, electrons moving slightly faster than the wave will drive into the
back edge of the crests while those moving more slowly will be swept forward
by the leading edge of the crests. Although that image is a poor visualization
of the interaction, it does suggest that energy could be transferred between the
wave and the electrons and that the energy transfer is likely to be a function of
particle velocity. So, to take this wave–particle interaction into account one must
integrate the interaction over the electron velocity distribution. The most significant
contributions to the result will come from those particles that have a speed close to
the phase speed of the wave.

Q In a velocity distribution that falls off monotonically at higher velocity (as
with a Maxwellian, for instance), what will be the net effect of the wave–
particle interaction?
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A The bell shape of the velocity distribution means that the group of particles
that have a velocity close to the phase velocity of the wave will contain more
electrons that have a lower speed than have a higher speed. The net effect is
therefore a damping of the wave and a heating of the particle distribution.
Comment: This process is sometimes referred to as ‘Landau damping’, but
that term was originally used to name a related but non-dissipative phe-
nomenon, so it has been avoided here.

The wave–particle damping mechanism is ‘collisionless’ but it is nevertheless
convenient to find a means of including the effect in the algebra as an additional
‘equivalent’ collision frequency νw. Chen [153] has carried out the necessary inte-
grations over a Maxwellian velocity distribution to derive the equivalent frequency
for this mechanism:

νw = 2
√

πξ 3ω exp
(−ξ 2

)
, (8.30)

with ξ = √
2 vφ/ve. This expression is an approximation, valid when ξ > 1. In

Table 8.3, νw is calculated for the different χ modes, and the sum of the collision
frequency and the equivalent frequency νeff = νc + νw is then used to calculate the
characteristic absorption length αz for each mode.

This procedure shows that the χ = 0 mode is still not efficiently absorbed,
even when damping by wave–particle interaction is introduced, since the typical
absorption length of 2.9 m is much larger than any experimental arrangements.
In fact, the wave–particle mechanism is completely negligible in this condition
(νw ≈ 0) because the phase speed is much larger than the electron thermal speed.
Consequently, the number of electrons interacting with the wave is extremely small.
For higher-order modes, χ ≥ 1, the phase speed of the wave becomes comparable
to the electron thermal speed.

In the previous section it was concluded that collisional damping is inefficient
for χ = 0 because both the plasma density and the neutral gas density are too small.
It becomes gradually efficient for χ ≥ 1, as the electron density increases (due to
electron–ion collisions). Neither collisional nor collisionless energy damping seem
to explain the observed absorption of the χ = 0 mode. Exactly how the energy
is transferred from the χ = 0 mode remains a puzzle. Degeling et al. [164] have
shown that electron trapping in the helicon wave may be responsible for the wave
energy absorption. Other mechanisms, such as the excitation of other wave modes,
have also been proposed [151]. Breizman and Arefiev [160] have proposed that the
strong electron density gradient in the radial direction leads to wave guiding and
enhanced heating in the longitudinal direction.
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Figure 8.9 Gas pressure measured at the wall of a SF6 plasma produced in a helicon
reactor. The E–H and H–W transitions are identified as the power increases.

8.5 E–H–W transitions

It has been shown that helicon wave propagation requires a minimum plasma
density. However, a helicon plasma reactor can operate at low electron density (or
low injected power), in a regime where the helicon wave is not launched. There
is nevertheless a substantial voltage across the antenna, so a capacitive current is
driven in the plasma and a fraction of the discharge power is therefore deposited
capacitively. Moreover, the RF current flowing in the antenna (which behaves as
a non-resonant inductive coil) results in plasma generation in the vicinity of the
antenna by the induced RF electric field. The discharge can therefore exist in three
different modes: the capacitive mode (E-mode), at low power, the inductive mode
(H-mode), at intermediate power and finally the helicon mode (W-mode), at high
power. As the power is increased, transitions from capacitive to inductive to helicon
modes (E–H–W) are observed.

Q Figure 8.9 displays the pressure measured by a capacitance manometer (an
absolute pressure gauge) located at the wall of the diffusion chamber of the
helicon plasma processing reactor shown in Figure 8.1. The feedstock gas
was SF6. Explain why an abrupt increase in pressure is an indication of mode
transition.
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Figure 8.10 Schematic power representation of the E–H–W transitions in a helicon
discharge.

A From the previous chapters, one expects E–H–W mode transitions to result
in an abrupt increase in the electron density. In a molecular gas like SF6,
an increase in the electron density will lead to higher dissociation of the
molecules and consequently to an increase in total pressure (if the pumping
speed remains constant, which was the case in this experiment). Another
effect arises: depletion of neutral gas in the centre, which in some instances
may lead to neutral gas accumulation at the wall and consequently to an
increase in the measured pressure.
Comment: Neutral depletion in high-density plasmas is treated in the next
chapter.

The mode transitions in a helicon reactor may be understood by looking at
the power–electron density space, as done in the previous chapter and shown in
Figure 8.10. The solid lines represent the absorbed power curves, whereas the
dashed line is the power loss curve which, as discussed extensively, is a straight
line (for an electropositive gas with single-step ionization only). The lower curve of
absorbed power, for low RF current in the antenna, intersects the loss curve in the
capacitive branch at very low electron density, around ne ≈ 1014 m−3: the discharge
operates in E-mode. As the current in the antenna increases, the inductive peak
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takes over and the discharge runs in the inductive H-mode, with an intersection
at ne ≈ 8 × 1016 m−3 in this example. Finally, at higher current in the antenna,
a new peak in the absorbed power, centred around ne ≈ 1018 m−3, arises. This
peak corresponds to the density at which the first longitudinal (χ ) helicon mode
propagates. This corresponds to operation in the χ = 0 helicon mode, which in this
example occurs at higher electron density than that in Tables 8.1 and 8.2 because
the parameters are slightly different. The discharge therefore experiences E–H–W
transitions as the RF current in the antenna (or the output power of the generator)
increases.

Q Is it possible to control the position of the helicon peak and consequently to
control the abruptness of the H–W transition?

A It is indeed possible to change the position of the helicon peak by changing the
magnitude of the static magnetic field. From the dispersion relation it appears
that the longitudinal wavelength is mostly governed by the ratio B0/ne. Thus,
to keep the same wavelength selected by the antenna, an increase in B0 will
result in the same increase in ne. If one chooses a modest magnetic field, the
helicon peak will merge with the inductive peak and the H–W transition will
be smooth. However, the helicon mode will run at moderate density. If one
chooses a strong magnetic field, the H–W transition will be more abrupt and
the helicon mode will run at higher density. The first case may be preferable
for plasma processing, whereas the second case may be more appropriate for
plasma thrusters.

Q Why is there only one peak in the helicon mode in Figure 8.10?
A There should be several peaks corresponding to higher χ modes, as shown in

Tables 8.1 and 8.2. The higher-order modes will appear successively as the
power is increased.
Comment: Lieberman and Boswell have proposed a simplified global model
of a helicon discharge able to describe E–H–W transitions, including higher-
order χ modes [156].
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8.6 Summary of important results
� The addition of a static magnetic field to an RF plasma has two major conse-

quences: (i) the plasma transport is modified (see next chapter), (ii) electro-
magnetic waves can propagate at low frequencies; the helicon waves studied
in this chapter are low-frequency waves such that ωci � ω � ωce � ωpe.

� Helicon waves tend to propagate along the static magnetic field line. When
confined in a cylinder, eigenvalues of the radial and longitudinal wavenumbers
are obtained.

� Antennas may be designed to select specific longitudinal wavenumbers (or
wavelengths). For a given magnetic field, this in turn defines a typical electron
density for efficient helicon wave propagation.

� The helicon wave energy is absorbed efficiently by the plasma electrons by
collisional and collisionless mechanisms. This leads to efficient ionization in
a long plasma column.

� Helicon reactors are subject to E–H–W transitions. They operate in the E
(capacitive) mode at low power, in the H (inductive) mode at intermediate
power, and eventually in the W (helicon) mode at high power. The W-mode
encompasses several azimuthal (m) and longitudinal (χ ) modes.
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Real plasmas

The plasma systems treated in this book have been simplified to enable analysis
and insight. So far the discussion of plasmas and sheaths has considered an ideal
low-temperature plasma that contains only singly ionized species formed from
an atomic gas. Etching plasmas, deposition plasmas and plasmas in thrusters all
involve more complex phenomena than have been included in the sheath and
transport models.

Q With reference to Sections 1.2.1 and 2.1.3, identify three species that can be
expected in fluorocarbon plasmas (for semiconductor processing) that were
not included in Chapter 3.

A (i) The (fluorocarbon) gas is not atomic and so a fluorocarbon plasma may
contain radical species as well as the parent molecules; (ii) fluorine and
fluorinated radicals are electronegative so in addition to molecular species one
can anticipate that negatively charged ions might also occur in fluorocarbon
plasmas; (iii) various positive ions of fragmented molecules will also be
present.

Here are some of the issues. When plasmas are formed in molecular gases,
electron–molecule collisions, chemical reactions in the gas phase and interactions
of reactive species with surfaces (the reactor walls or the substrate) together deter-
mine the plasma composition. In some instances, the reactions in the gas phase lead
to the formation of macro-molecules which may then agglomerate to make fine
particles and hence ‘dusty plasmas’. As more and more energy is coupled into a
plasma, the fraction of the gas that is ionized rises. Eventually this leads to another
class of complication when the plasma pressure becomes comparable with that
of the gas, in which case the plasma dynamics and the neutral gas dynamics are
coupled. When a static magnetic field is also present, such as in helicon systems,
the transport of charged particles is modified by the field. High-density plasmas

287
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used for surface treatments may be generated in a source region from where they
expand into a larger interaction chamber, but the expansion is sometimes found
to be associated with non-linear structures in the plasma profile. Finally, electrical
discharge plasmas may be unstable or chaotic.

This chapter will examine the impact of some of these non-ideal issues on
plasma transport and plasma/sheath boundaries, as well as on plasma stability.
First, the effect of neutral gas depletion in high-density plasmas will be analysed.
Then, attention moves to the effect of a static magnetic field on the fluxes of
particles crossing a plasma, before re-examining theories of sheaths and transport
in the presence of negative ions, i.e., in electronegative plasmas. After considering
plasmas that are allowed to expand from a source region into expanding plasmas,
the final topic concerns instabilities observed at the E–H transition of inductive
discharges. Not all of these scenarios are thoroughly understood.

9.1 High-density plasmas

In high-density plasma sources, such as inductively coupled and helicon reactors,
at high power per unit volume the plasma density, n, may be sufficiently high
for the plasma pressure nk(Te + Ti) to become comparable to that of the neutral
gas ngkTg. In this situation, the density of the neutral gas cannot be taken to be
a constant value everywhere, set by the original gas pressure. Instead, the fluid
models of Chapter 3 require additional conservation equations for a third fluid that
represents the neutral gas. In experiments, high plasma pressure has been found
to cause depletion of neutral gas in the reactor centre. In the following, attention
will be focused on the effect of this on plasma transport, as analysed by Fruchtman
et al. [165] and by Raimbault et al. [44]. In this section, for the sake of simplicity,
neutral dynamics will be added only to the Schottky solution, first assuming that
the gas temperature remains fixed and then with gas heating included. The analysis
of the intermediate and low-pressure cases can be found elsewhere [44].

9.1.1 Neglecting gas heating: isothermal gas

The conservation equations, including neutral dynamics for a high-pressure,
isothermal gas, become

(nu)′ = nngKiz, (9.1)

(ngug)′ = −nngKiz, (9.2)

0 = neE − nuMngKg, (9.3)

0 = −kTgn
′
g + nuMngKg, (9.4)

0 = −neE − kTen
′, (9.5)
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where ug is the speed of the fluid that represents the neutral gas, Tg is the gas
temperature and Kg ≡ σivi, with σi the cross-section for ion–neutral momentum
transfer collisions. The ionization rate depends on the electron temperature; see
Eq. (2.27).

Q Equation (9.1) is a steady-state continuity equation for the ions. It balances
the divergence of flux out of a vanishingly small volume against the ionization
happening within it. Ionization transforms gas atoms into ions at a rate that
depends on gas density, electron density and a rate constant for the process.
Account for the second equation in a similar way.

A Equation (9.2) is a continuity equation for the gas. The divergence of the flux
is locally balanced by the loss of gas atoms caused by the ionization process.
Comment: Notice that the loss of density from the neutral gas fluid is equal
to the gain in density of the ion fluid.

Equation (9.3) is a force balance equation for the ions. The electric force is bal-
anced by a friction term arising from collisions with the gas that transfer momentum
out of the ion fluid into the neutral gas. Compared with these two terms, the rate
of change of momentum arising from the pressure gradient in the ion fluid is neg-
ligible. Equation (9.4) is the force balance for the neutrals. Since there can be no
direct electric force on the gas, the momentum gained from collisions with the ions
must be balanced by a pressure gradient. Finally, Eq. (9.5) is the force balance for
the electrons. The electric force is balanced by a pressure gradient; integrating this
equation leads to the Boltzmann equilibrium.

Compared to the three transport equations used to solve the standard Schottky
model, the inclusion of gas temperature and gas density requires two further trans-
port equations and a specification of the constant gas temperature. The above system
of equations can be integrated analytically, with different boundary conditions for
neutrals. The case treated here will fix the neutral density at the reactor walls,
which means that the total number of neutrals is not conserved. This is appropriate
when the gas pressure is controlled at the reactor wall. Another limiting case would
be to consider a fixed number of neutrals (see Fruchtman et al. [165]). Before
looking at the full solution, note that simply adding the force balance equations
for the three fluids and then integrating from the wall where ng = ngw and n = 0,
leads to

n(x)kTe + ng(x)kTg = ngwkTg. (9.6)

Since the electron (plasma) pressure is maximum at the reactor centre and decays
towards zero at the wall, this shows that the neutral pressure has to fall towards the
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centre. The neutral gas density depletion at the plasma centre is therefore

ng0

ngw
= 1 − n0kTe

ngwkTg
. (9.7)

Since Te � Tg, only a few percent of ionization leads to severe neutral depletion.

Q Show that taking an ionization fraction in the centre of only n0/ng0 = 0.01,
given a temperature ratio Te/Tg = 100, leads to a neutral gas depletion of
ng0/ngw = 0.5.

A The pressure ratio in Eq. (9.7) can be written

n0kTe

ngwkTg
=

(
n0

ng0

Te

Tg

)
ng0

ngw
.

Inserting the given values and combining with Eq. (9.7), gives ng0/ngw = 0.5.

Setting γg ≡ Te/Tg and N0 ≡ n0/ngw, Raimbault et al. [44] obtained the fol-
lowing condition for the electron temperature (which is now disguised in γg and in
the functional dependence of Kiz and uB):

ngwl = 4uB(
KgKiz

)1/2

1(
1 − (

γgN0
))1/2 arctan

[(
1 − (

γgN0
))1/2

1 − γgN0

]
. (9.8)

When the degree of ionization is low, γgN0 → 0 and this reduces to

ngwl = πuB(
KgKiz

)1/2 ; (9.9)

there is no gas depletion, so ng(x) = ngw = ng. Noting that Da ≡ u2
B/ngKg, one

can see that Eq. (9.9) is identical to Eq. (3.72), as indeed it must be. The full
expression for the plasma density profile in this situation is found to be

n(x) = n0

tan2
(
K
√

1 − (γN0)2
)

− tan2
(

2K
√

1 − (γN0)2x/l
)

tan2
(
K
√

1 − (γN0)2
)

+ tan2
(

2K
√

1 − (γN0)2x/l
) , (9.10)

with K ≡ (ngwl)
(
KiKg

)1/2
/(4uB). The neutral gas density profile can then be

deduced from pressure conservation and the plasma density profile.

Q Noting that when γN0 → 0 then Eq. (9.9) applies, show that the plasma
density profile reduces to n(x) = n0 cos(πx/l), as obtained in the classical
Schottky model.



9.1 High-density plasmas 291

A When γN0 → 0, Eq. (9.9) gives K → π/4. Putting both these limits simul-
taneously into Eq. (9.10) gives

n(x) = n0(cos2 πx/2l − sin2 πx/2l)

and using standard trigonometric identities recovers the expected result.

Equation (9.8) sets a condition on the electron temperature, but unlike in the
simpler cases of earlier chapters, this condition now depends on the plasma density
through N0. The consequence of the coupling between the plasma fluid and the
neutral gas fluid is therefore that the electron temperature depends on the plasma
density, i.e., on the amount of power deposited into the plasma. It turns out that
increasing the plasma density increases the neutral depletion and increases the
electron temperature. In other words, the particle and power balances are no longer
independent.

9.1.2 Including gas heating: non-isothermal gas

The isothermal neutral approximation is not satisfactory because of the coupling of
energy between the plasma and the neutral gas that leads to significant gas heating
[26, 166–168]. Gas heating results from collisions between charged particles and
neutrals. In the preceding analysis, this energy transfer has not been included. To do
so requires one further equation. This has been included in sophisticated numerical
simulations (see for example [169, 170]), and was studied more specifically by
Liard et al. [171], who added the neutral energy conservation to the model of
Raimbault et al. In place of a set gas temperature, a heat flux balance is needed to
link its value to the local energy density and collisions. Taking account of the fact
that in binary collisions between disparate masses, m � M , no more than 2m/M

of the incident kinetic energy can be transferred from the lighter to the heavier
species, the energy flux balance can be approximated by(

κT ′
g

)′
= nngk

[
3

m

M
Ke(Tg − Te) + 3

4
Kg(Tg − Ti)

]
, (9.11)

where κ is the thermal conductivity of the gas (which in turn depends on gas
temperature), Ke is the rate coefficient for electron–neutral elastic collisions and
Ti is the ion temperature. Within this model, the gas heating term on the RHS is
mostly dominated by electron–neutral collisions, so it is reasonable to set ion and
gas temperatures equal and thereby avoid the further complexity of following the
development of the ion thermal energy. In molecular gases some other mechanisms,
such as vibrational excitation followed by vibration–translation transfer, also need
to be included and may even dominate the gas heating [26].
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Figure 9.1 Neutral and plasma density profiles for the classical Schottky model,
the neutral depletion model of Raimbault et al. and the model of Liard et al. that
includes gas heating.

Results of the different models are shown in Figure 9.1, where the neutral
gas density profile ng(x) and the plasma density profile n(x), normalized to the
gas density at the wall, are plotted as a function of x. Each figure has three
curves: the solid line represents the classical Schottky model (i.e., with uniform gas
density and gas temperature), the dashed line represents the result of the model of
Raimbault et al. (which includes neutral dynamics but within the isothermal neutral
approximation) and finally the dotted line represents the model by Liard et al., i.e.,
including neutral gas heating. All these curves have been calculated for the reduced
parameters P l = 3.9 Pa m and N0 = n0/ngw = 0.005 (which corresponds to a few
percent of ionization at the discharge centre). The neutral gas depletion at the
centre is about 25% if gas heating is ignored, but reaches 70% when gas heating is
included. The neutral gas temperature is high, about 1000 K at the centre, in good
qualitative agreement with previously published experimental results.
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The depletion of neutral gas at the discharge centre and the flatter plasma density
profiles are due to enhanced plasma transport, and consequently to higher edge-to-
centre plasma density ratio, the so-called hl factors [172]. This enhanced transport
(or plasma deconfinement) leads to an increase in the electron temperature.

9.2 Magnetized plasmas

Q Charged particles rotate around magnetic field lines at the cyclotron fre-
quency. What is the radius of gyration (or ‘Larmor radius’) for electrons
with the average speed ve = (8kTe/πm)1/2? Compare the Larmor radius for
electrons with that for ions.

A Since charges tend to rotate around field lines at the cyclotron frequency
ωce ≡ eB0/m, the Larmor radius is rLe = ve/ωce ≡ mve/(eB0).
The ratio of ion-to-electron Larmor radius is: rLi/rLe ≡ √

MTi/mTe � 1.

Charged particles tend to spiral around magnetic field lines. This motion must
perturb the plasma transport, though as for wave propagation, the effect will be
different for motion parallel and perpendicular to the magnetic field lines.

Q Describe the process of charged particle transport in a magnetized plasma in
the absence of collisions.

A In the absence of collisions the motion perpendicular to the magnetic field
cannot extend farther than a Larmor radius, because the particles are trapped
in the cycloidal orbits. Therefore, there should be no plasma flux in the
perpendicular direction, resulting in perfect plasma confinement. Along the
magnetic field lines, the charged particles move freely, resulting in the same
type of transport as that described by Tonks and Langmuir.

The transport along the magnetic field lines being essentially unaffected, the
discussion focuses on transport perpendicular to the field, which requires collisions.
The schematic motion of a charged particle perpendicular to the magnetic field lines
is shown in Figure 9.2. A collision allows the particle to shift the cycloidal motion
from line to line, globally resulting in perpendicular transport. On average, the shift
is of one Larmor radius. In the following, this is implemented in the fluid model of
plasma transport studied in Chapter 3. The particle conservation equation remains
unchanged, but the momentum conservation equation needs to include the Lorentz
force, proportional to u × B:

nm

[
∂u
∂t

+ (u · ∇) u
]

= nq (E + u × B) − ∇p − mu [nνm + S − L] . (9.12)
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B

Figure 9.2 Schematic of electron transport perpendicular to magnetic field lines.
The large grey sphere symbolizes neutral atoms while the small black sphere
symbolizes electrons. Without collisions, electrons cannot travel farther than a
Larmor radius.

The magnetic field reduces the flux perpendicular to the field lines, resulting in
better confinement. It consequently decreases the edge-to-centre density ratio, hl,
and the electron temperature required to sustain the plasma.

9.2.1 Ambipolar diffusion with transverse magnetic field

This section is about how the static magnetic field modifies the ambipolar diffusion
of Schottky. The plasma is assumed to be infinite in the z-direction (all quantities
are uniform in z) and the static magnetic field is along the y-axis. In the steady state,
neglecting the small contribution of the source and loss terms, the conservation of
momentum, Eq. (9.12), written for electrons and projected on the x and z-axes
becomes

0 = −nee
(
E − uezBy

) − kTe
dne

dx
− neuexmνe, (9.13)

0 = −neeuexBy − neuezmνe, (9.14)

where νe is the electron–neutral collision frequency. Note that in the z-direction
the gradients and the electric field are zero. Eliminating the components along z,

−neeE − kTe
dne

dx
− neuexmνe

(
1 + ω2

ce

ν2
e

)
. (9.15)
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It therefore appears that the equation takes the same form as the non-magnetized
case, with an effective collision frequency defined as

ν∗
e = νe

(
1 + ω2

ce

ν2
e

)
. (9.16)

Using quasi-neutrality, ne = ni = n, and doing the same calculation for the ions
leads to the following system of equations:

nu = −nμ∗
eE − D∗

e n
′, (9.17)

nu = nμ∗
i E − D∗

i n
′, (9.18)

where the diffusion and mobility coefficients have their usual definition with ν∗
e,i

instead of νe,i. The rest of the analysis is straightforward and follows from that
developed in Chapter 3. The effective ambipolar diffusion coefficient,

D∗
a = μ∗

i D
∗
e + μ∗

eD
∗
i

μ∗
i + μ∗

e

, (9.19)

will be used to evaluate the flux exiting the discharge and in turn the electron
temperature.

In the absence of magnetic field, the ion mobility and diffusion coefficients
are much lower than those for electrons, leading to an approximate form of the
ambipolar diffusion coefficient given by Eq. (3.67). However, in the presence of
magnetic field, this approximation is no longer satisfactory. It is even the case
that the electron mobility becomes smaller than the ion mobility because the
‘magnetization’ (a term used to describe the strong inhibition of the perpendicular
flux due to the cycloidal motion) of electrons is much more efficient.

Q Why are the electrons more easily ‘magnetized’ than the ions?
A As mentioned previously, the Larmor radius is much smaller for electrons

than for ions, which suggests the above statement.
Comment: A more precise analysis consists of comparing the ratios ωce/νe

and ωci/νi, which will be done later.

Q Show that ωce/νe ≡ λe/rLe and ωci/νi ≡ λi/rLi.
A Combining the previous definitions for the Larmor radius, rLe,Li ≡ ve,i/ωce,ci

and for the collision frequency νe,i ≡ ve,i/λe,i gives the required result.
According to Figure 9.2, the particles should not be magnetized when the
mean free path for elastic collisions is much smaller than the Larmor radius,
i.e., λe,i/rLe,Li � 1.
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A very common regime of operation of helicon plasma processing reactors is
such that electrons are magnetized (ω2

ce/ν
2
e � 1) while ions are not ( ω2

ci/ν
2
i � 1).

In that case, the following approximations apply:

ν∗
e = νe

(
1 + ω2

ce

ν2
e

)
≈ ω2

ce

νe
, (9.20)

ν∗
i = νi

(
1 + ω2

ci

ν2
i

)
≈ νi, (9.21)

which leads to

μ∗
e = eνe

mω2
ce

, D∗
e = kTeνe

mω2
ce

, μ∗
i = e

Mνi
, D∗

i = kTi

Mνi
.

Note that μ∗
i D

∗
e � μ∗

eD
∗
i because Te � Ti, such that, after some algebra, the

ambipolar diffusion coefficient takes the following approximate form:

D∗
a ≈ kTe

Mνi
(1 + δB)−1 (9.22)

with

δB ≡ mω2
ce

Mνiνe
= ωciωce

νiνe
. (9.23)

When there is no magnetic field, i.e., δB = 0, this expression reduces to Eq. (3.67)
established in Chapter 3. As the magnetic field increases, δB increases and therefore
D∗

a decreases. The flux perpendicular to the magnetic field is therefore reduced.
The electron temperature and the edge-to-centre density ratio are obtained straight-
forwardly by replacing Da by D∗

a in Eqs (3.72) and (3.75), respectively.

Q In a plasma at p = 13.3 Pa with B0 = 0.2 T, the important frequencies for
transport are

ωci = 2.4 × 105 s−1,

νi = 1.8 × 106 s−1,

ωce = 1.8 × 1010 s−1,

νe = 3.7 × 108 s−1.

Verify the hypothesis that electrons are magnetized and evaluate the effect of
the magnetic field on the transport.

A The electrons are magnetized because ω2
ce/ν

2
e � 1 and the ions are not

because ω2
ci/ν

2
i � 1. On evaluating the magnetization parameter given in

Eq. (9.23), it is found that δB ≈ 6.4 ≥ 1. The ambipolar diffusion coefficient
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Figure 9.3 Electron temperature (left) and edge-to-centre density ratio (right) as
a function of the magnetic field amplitude and for increasing electron densities,
normalized to gas density at the wall. This figure is from Liard et al. [173], in
which the pressure was fixed at 13.3 Pa and the discharge length at l = 0.15 m.

is therefore likely to be significantly reduced compared to the non-magnetized
case. The flux, proportional to D∗

a , is reduced accordingly and consequently
both Te and hl are significantly smaller.

Liard et al. [173] have recently improved the above model to include neutral
dynamics and therefore account for neutral depletion, which was discussed in the
previous section. The details will not be presented here but instead the key results
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of their analysis are given. The electron temperature and the edge-to-centre density
ratio are plotted in Figure 9.3 as a function of the static magnetic field amplitude,
for a neutral gas pressure of 13.3 Pa. Each figure has several curves corresponding
to increasing values of the normalized plasma density.

First observe that, as stated before, the electron temperature and the edge-to-
centre density ratio (and so the flux) decrease when the magnetic field increases.
Second, note the effect of neutral depletion: both quantities increase at a given
magnetic field as the plasma density increases, i.e., when neutral depletion occurs.
However, the neutral depletion effect becomes less and less important as the mag-
netic field increases.

9.2.2 Limitations of the above theory

The focus on perpendicular transport implies that it is as if the system were infinite
parallel to the field, in the z-direction. However, because electrons travel very
fast along the magnetic field lines, the finite extent of any real system must be
considered. A two-dimensional calculation is then required to correctly treat this
problem (see for instance Lieberman and Lichtenberg [2]). In addition, the problem
has different solutions depending on the conductivity of the walls. Whereas with
insulating walls the electron and ion fluxes to any small portion of surface must,
on average, be equal, DC current can flow in conducting boundaries and therefore
a local balance of electron and ion fluxes is not necessary.

Another important aspect that has been presumed in the above considerations
is that the diffusion of charged particles is a stable process. Magnetized plasmas
become inherently unstable as the magnetic field increases, and the transport of
charged particles is then a turbulent process [23]. Plasma turbulence is a major
research topic in the study of fusion plasmas and for plasmas in space.

9.3 Electronegative plasmas

Plasma processing applications often require feedstock gases that contain atoms
with a large electron affinity (or ‘electronegativity’). It is particularly the case in
plasma etching, where the common feature of the typical gas mixtures such as
HBr/Cl2/O2 or Ar/C4F8/O2 is inclusion of halogen-containing components. Fluo-
rine and chlorine in particular have large electronegativities, so one can expect the
plasma formed in these gases to contain negative ions. The term ‘electronegative
plasma’ implies one containing a significant fraction of negative ions – enough
to profoundly modify the equilibrium and the dynamics of the plasma. Among
the new phenomena that arise are spontaneous instabilities with temporal cycles
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of negative ion creation and destruction, and spatial structures including double
layers of charge-separating regions of different ionic composition.

There are then three types of charged particles to consider, and conservation
equations for negative ions must be introduced and coupled with those already
established for positive ions and electrons. Because of their negative charge, neg-
ative ions experience a confining electric field, as electrons do. However, unlike
electrons, their temperature is small and their mass is large so that they barely
penetrate the positive ion sheaths at the boundary and so they tend to be confined
in the plasma.

Q Under what circumstances would negative ions not be confined in a plasma?
A Plasma boundaries are usually places where the positive space charge sheaths

arise. Immediately adjacent to these sheaths there will usually be quasi-
neutral plasmas in which a weak electric field accelerates positive charge out
of the plasma and into the sheath.
(i) This situation may be different near surfaces that are taken to a potential
that is more positive than that of the local plasma, such as obtains when a
Langmuir probe is taken into its electron saturation region. Electrons and
negative ions will both be attracted to such a surface.
(ii) Should negative ions be formed on, or close to, surfaces that are biased
below the floating potential, then these ions will be accelerated into the
plasma, gaining sufficient energy to escape across other sheaths formed on
surfaces that are at a less negative potential.

It is commonly the case that negative ions are produced in the plasma volume, by
electron attachment to molecules, and lost in the plasma volume, by detachment or
by recombination with positive ions. Under these circumstances, the flux of negative
ions to the reactor walls may be presumed to be zero. Then, the simplest way, though
not necessarily the most realistic, to treat the negative ions is to suppose that they
are in a Boltzmann equilibrium with the local potential. This may seem reasonable
since, like electrons, negative ions will tend to be confined in the potential structure.
This naturally arises in plasmas to expel positive charge and retain negative charge
(some of which is markedly more mobile), thereby balancing production and loss
processes. However, as shown in Chapter 2, the Boltzmann equilibrium can be
derived from the fluid momentum equation only when inertial terms like Mu ngKg

and Mu u′ are insignificant compared with the isothermal pressure gradient and
the electric force. Thus, high gas pressure and gradients in drift speed both threaten
the validity of the Boltzmann assumption. Notwithstanding these observations, the
convenience of the Boltzmann factor is sufficient to justify its use in examining the
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characteristic behaviour of electronegative plasmas, so in what follows it will be
presumed to hold for negative ions unless otherwise stated.

9.3.1 Debye length in electronegative plasmas

The Debye length is modified when there are two separate populations of nega-
tive charge characterized by different temperatures. In an electronegative plasma,
assuming Boltzmann negative ions of central density nn0 and temperature Tn, small
changes in potential, eφ � kTe,n, give rise to a small space charge perturbation
described by

ρ(x) = e(np − ne − nn) ≈ e

(
np0 − ne0

(
1 − eφ(x)

kTe

)
− nn0

(
1 − eφ(x)

kTn

))
.

(9.24)

The two following parameters are appropriate: the ‘central’ electronegativity,
α0 ≡ nn0/ne0, and the electron-to-negative ion temperature ratio, γ ≡ Te/Tn.
Quasi-neutrality applies in the unperturbed plasma np0 = ne0 + nn0. The linearized
Poisson equation is then

φ′′(x) = − ρ

ε0
= e2ne0φ(x)

ε0kTe
(1 + γα0) (9.25)

and the Debye length is the scale length of the spatially decaying, exponential
solution (cf. Eq. (3.6)):

λ∗
D =

√
ε0kTe

ne0e2

√
1

1 + γα0
= λDe

√
1

1 + γα0
. (9.26)

The Debye length in an electronegative plasma is therefore smaller than that in
an electropositive plasma, though the difference is not significant at very low
electronegativity (α0 � 1).

9.3.2 Bohm criterion in electronegative plasmas

The Bohm criterion for electropositive plasmas sets a minimum speed for ions
entering a positive ion sheath. The criterion needs to be revisited for electroneg-
ative plasmas. Boyd and Thompson in 1959, and more recently Braithwaite and
Allen [174], have done this analysis. They showed that the Bohm speed for an
electronegative plasma becomes

u∗
B = uB

(
1 + αs

1 + γαs

)1/2

, (9.27)



9.3 Electronegative plasmas 301

where αs is evaluated at the sheath edge. It appears that the Bohm speed is reduced
as the electronegativity increases. The potential drop (from the centre to the sheath
edge), which is necessary to accelerate the ions to this reduced Bohm speed, is also
reduced, and ignoring collisions in the approach to the plasma/sheath boundary
this is

eφs

kTe
= 1

2

(
1 + αs

1 + γαs

)
. (9.28)

Q Using the same approach as in Section 3.2.1, establish Eq. (9.27) when the
negative ion density follows a Boltzmann exponential.

A For a positive ion sheath, the positive ion density falls slower than that of the
negative species as the potential becomes increasingly negative, so

dρ

dφ
< 0,

where

ρ = e

[
nps

(
1 − 2eφ

Mu2
s

)−1/2

− nes exp

(
eφ

kTe

)
− nns exp

(
eφ

kTn

)]
and the subscript ‘s’ signifies the value at the plasma/sheath boundary, where
quasi-neutrality holds: nps = nes(1 + αs). Carrying out the differentiations:

e2nes(1 + αs)

Mu2

(
1 − 2eφ

Mu2

)−3/2

<
e2nes

kTe

(
exp

(
eφ

kTe

)
+ γαs exp

(
eφ

kTe

))
.

As with the electropositive case (Section 3.2.1), Taylor expansion shows
that the inequality is assured for φ < 0 if the terms on the LHS exactly
equal those on the RHS when φ = 0, whereupon u = u∗

B, as defined by
Eq. (9.27).

The analysis is in fact more subtle than it appears above. The negative ion fraction
at the sheath edge, αs, differs from the electronegativity in the discharge centre, α0,
because the negative ion temperature is different from the electron temperature. In
terms of the central densities, the ratio of the two Boltzmann populations at the
boundary (φ = φs) shows that

αs = α0 exp

(
eφs

kTe
(1 − γ )

)
. (9.29)

Equations (9.28) and (9.29) can be solved together to show how the negative ion
fraction, αs, and the potential at the sheath/plasma boundary, φs, vary with the
central electronegativity, α0. Figure 9.4 shows the results for a fixed temperature
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Figure 9.4 Negative ion fraction at the sheath edge, αs, and potential drop in the
presheath, φs, as a function of the negative ion fraction at the centre, α0.

ratio of γ = 20. Both curves are multi-valued in the intermediate-α0 regime. Three
regimes can be identified:

� At low electronegativity, α0 ≤ 2, the negative ions do not reach the sheath edge
(αs is almost zero) and the potential drop in the presheath is nearly unper-
turbed compared to the electropositive solution. The Bohm speed remains almost
unchanged. This regime is called the stratified regime, where the centre of the
discharge contains negative ions while the presheaths remain electropositive, i.e.,
free of negative ions.

� In the opposite limit of large electronegativity, α0 ≥ 30, the negative ions occupy
almost all the plasma volume and reach the sheath edge in significant numbers,
and the potential drop in the presheath is small, on the order of eφs ≈ kTn/2. As a
result, the positive ion speed at the sheath edge is reduced and is u∗

B ≈ (kTn/M)1/2

(obtained by taking the limit αs → ∞ in Eq. (9.27)). This regime is called
uniform, because the electron density is fairly uniform in all the plasma, there
being almost no potential drop from the centre to the sheath edge.

� In the intermediate regime, both curves are multi-valued, and the two branches
described above co-exist with a third solution to the equations. The appropriate
physical solution will be discussed briefly in the following.

It turns out that for γ � 10 the curves of αs and φs are always triple-valued in
the region of α0 ∼ 1, so it is necessary to determine which conditions prevail at
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Figure 9.5 On the left, the potential drop in the presheath and normalized flux at
the wall as a function of α0. On the right, the density profiles in the three regimes.
From results of numerical simulations in [175].

the plasma/sheath boundary. Sheridan and coworkers have analysed the problem
of intermediate electronegativities using numerical solutions of the fluid equations
[175], kinetic theories [242] and particle-in-cell simulations [176]. They did not
impose quasi-neutrality and they solved Poisson’s equation self-consistently. Their
findings can be summarized by examining the curves shown in Figure 9.5, that were
obtained with the fluid calculations [175]. First, on the left, is shown the potential
drop in the presheath and the normalized positive ion flux at the wall as a function
of α0. Note that the curve is somewhat different from that in Figure 9.4, although
the multi-valued feature appears. The difference lies in the fact that Sheridan et al.
included the ionization term in the momentum equation, which was not the case in
the calculation by Braithwaite and Allen; note that for α0 = 0, the potential drop is
eφs/kTe ≈ ln 2 rather than eφs/kTe ≈ 1/2, as already discussed in Section 3.3.1.
This difference is only quantitative and does not change the physical meanings
discussed here.

The positive ion flux to the wall is plotted below the potential curve in Figure 9.5.
The lines represent the flux associated with the potential variations within the
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quasi-neutral approximation, showing also the multi-valued region. However, the
dots, which represent the numerically computed flux (relaxing the quasi-neutrality
approximation) show a continuous variation, and show that the appropriate solution
is that which gives the greater flux. In conclusion, the intermediate regime lies
between the first multi-valued point (when increasing α0) and the value of α0 at
which the two fluxes associated with the two branches are equal. As shown on the
right in Figure 9.5 and already discussed above, the discharge is stratified at low
α0 (with electropositive presheaths) and uniform at high α0.

In the intermediate regime, it was found that the solutions are oscillatory when
approaching the sheaths, and that double layers form before the sheath itself.
Particle-in-cell simulations have shown that the oscillations are an artefact of
fluid calculations, but have also confirmed that double layers do arise. Double
layers have also been observed and studied in a somewhat different context (see
Section 9.4). The following references contain further discussions relevant to these
issues: [177–181].

9.3.3 Transport in electronegative plasmas

The inclusion of negative ions also significantly complicates the problem of the
charged-particle transport within the plasma. As already discussed, negative ions
are produced and lost within the plasma volume because they cannot escape from
the potential well for negative charge that is sustained in the plasma bulk by the
continued escape of the more energetic and more mobile electrons. It turns out
that the mechanisms for production and loss may be very different depending on
the gas mixture and the gas pressure. In some cases, negative ions are lost by
mutual recombination with positive ions, while in other situations they are lost by
detachment on collision with excited neutral atoms or molecules. On top of this, it
should be noted that the simplicity of a plasma with only one type of positive ion and
only one type of negative ion almost never exists: negative ions are formed in certain
molecular gases (hydrogen, oxygen, halogens, fluorocarbons, etc.) and inevitably
the plasma will contain a rich mixture of charged species. These issues are very
important for careful modelling of electronegative plasmas and for appreciating
the limitations of the models. Nevertheless, as in earlier sections, electrons and a
single negative ion species are both assumed here to be in Boltzmann equilibrium
with the potential:

ne = ne0 exp

(
eφ

kTe

)
, (9.30)

nn = nn0 exp

(
eφ

kTn

)
, (9.31)
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Figure 9.6 Charged particle density profiles for α0 = 1 (left) and α0 = 10 (right).
The pressure was chosen such that l/λi = 10. The electron temperature is 3.1 eV
for α0 = 1 and 3.6 eV for α0 = 10.

where φ = 0, ne = ne0 and nn = nn0 at the discharge centre. Taking only a sin-
gle (dominant) species of positive ion requires two equations for conservation of
number and momentum:

d(niui)

dx
= νizne, (9.32)

eniE = nimiνinui. (9.33)

Combining the above equations leads to the three following equations for a quasi-
neutral plasma, for the three variables ni, ui and φ:

d(niui)

dx
= νizne0 exp

(
eφ

kTe

)
, (9.34)

−e
dφ

dx
= miνinui, (9.35)

ni = ne0 exp

(
eφ

kTe

)
+ nn0 exp

(
eφ

kTn

)
. (9.36)

These may be numerically integrated to obtain the density and potential profiles.
As discussed in Chapter 3, the procedure is to choose an electron temperature and
a trial value of the electronegativity at the centre (α0), and then integrate from
the centre to the boundary where a condition must be specified, iterating on the
central electronegativity until the specified condition is reached. The appropriate
condition is to set the ion fluid speed to the sound speed in electronegative plasmas,
defined by Eq. (9.27). The profiles obtained by integration of Eqs (9.34)–(9.36)
are shown in Figure 9.6, and they are similar to the results of particle simulations
shown in Figure 9.5 (note that the sheath is not resolved in the present model
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because quasi-neutrality has been imposed). The stratification discussed previously
occurs: at low electronegativity the negative ions are confined in the centre and the
edges are almost entirely free of negative ions, while at high electronegativity the
negative ions occupy the whole discharge and the electron density profile is almost
flat.

Q The results in Figure 9.6 show that a higher electron temperature is asso-
ciated with a higher central electronegativity. Give an explanation for this
observation.

A A simple explanation is found by examining the global particle balance in
electronegative plasmas, which may be written

neng(Kiz − Katt) = hlniu
∗
B
A

V
,

where u∗
B is the modified Bohm speed and hl is the edge-to-centre

positive ion density ratio. Using quasi-neutrality, ne + nn = ni, then
leads to

Kiz − Katt = hlu
∗
B(1 + α)A

ngV
.

Since Kiz − Katt is a strongly increasing function of Te, it follows that the
electron temperature increases moderately when α0 increases. Intuitively, it
seems reasonable that a smaller fraction of electrons must have a higher
average energy to maintain the plasma.

Comment: Given the very complicated spatial structure of the densities shown
in Figure 9.6, one should wonder if the flux leaving the plasma can still be written
in the form hlniu

∗
B, and if so, what is the appropriate expression for hl. It turns

out that it is a very complicated problem. Monahan and Turner [182] have offered
a thorough analysis of global models of electronegative discharges and tested
them against particle-in-cell simulations. In particular, they have discussed the hl

formulas proposed by Kim et al. [183].
Further insight into the subtleties of electronegative plasmas can be found in a

large section of Lieberman and Lichtenberg [2] (second edition, chapter 10) and
in the related articles by the same authors [184, 185]. Another extensive study of
electronegative plasmas has been reported by Franklin [186]. One very important
point raised is the fundamental difference between the recombination-dominated
case (see [187]), in which a minimum electron temperature is required to satisfy the
particle balance, and the detachment-dominated case, for which such a criterion
does not arise (see [188]).
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Figure 9.7 Negative ion fraction as a function of the radius in a magnetized helicon
plasma in SF6. The solid line at 6.5 cm separates the central region (where the
helicon wave energy is absorbed) from the diffusion region near the edge. From
[190].

9.3.4 Transport in magnetized electronegative plasmas

The effect of a static magnetic field is to increase the plasma confinement, chiefly
because electron motion across the magnetic field is strongly impeded. In most
cases, the mobility of positive ions moving perpendicular to the magnetic field is
unaffected and may be larger than that of the electrons. In electronegative plasmas
there will also be negative ions and since these are slow, heavy particles, their
Larmor radius is of the same order as that of positive ions. Consequently, one may
expect that the electrons will be ‘filtered’ out of a plasma flow across a magnetic
field, while positive and negative ions diffuse together to maintain quasi-neutrality.
This has indeed been observed experimentally by several authors [189, 190]; a so-
called ion–ion plasma is formed. In Figure 9.7, the negative ion fraction is shown
as a function of the radius in a magnetized helicon plasma in SF6 (reproduced
from [190]). The static magnetic field is along the z-axis so that the radial direction
is perpendicular to it. The electronegativity increases drastically from the centre
towards the edge, essentially because the electron density falls rapidly in the outer
regions where there is little ionization. The formation of an ion–ion plasma at the
edge is at the basis of the dual-ion (PEGASES) thruster (Section 1.3). Ion–ion
plasmas have also been considered for charge-free etching in microelectronics.

Franklin and Snell [191] have proposed a fluid model to quantify the electron
filtering described above. They reduced the problem to one dimension (an infinite
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slab or cylinder) and considered various production and loss mechanisms for neg-
ative ions. When ion–ion recombination dominates, the set of equations to solve is
the following:

∇(neve) = (Kiz − Katt)ngne, (9.37)

∇(nivi) = Kizngne − Krecninn, (9.38)

∇(nnvn) = Kattngne − Krecninn; (9.39)

m(Kizng − Kattng + νe)neve + eneE + kTe∇ne + eneve × B = 0 (9.40)

kTi∇ni − eniE + Mi∇(nivivi) + Miνinivi = 0 (9.41)

kTn∇nn + ennE + Mn∇(nnvnvn) + Mnνnnnvn = 0 (9.42)

The first three equations are the particle conservation equations, where electrons
are produced by ionization and lost by attachment, positive ions are produced
by ionization and lost by recombination with negative ions, and finally negative
ions are produced by attachment and destroyed by the recombination with positive
ions. The other three equations balance the forces on the three charged fluids.
The key issue lies in the boundary conditions. Franklin and Snell [191] have
investigated the case when the negative ion flux at the edge is zero (for example, in
the case when a positive ion sheath forms). In one dimension, the charge fluxes are
balanced at each position, �e + �n = �i, so that the Franklin and Snell condition
leads to �e(R) = �i(R). However, with strong electron filtering one also requires
�e(R) → 0 (no electrons reach the edge) so that all the particle fluxes must end
up zero at the edge, meaning that the charged particles have to be produced and
destroyed in the volume. Leray et al. [192] have revisited the problem in order to
allow for ion extraction at the edge. They showed that the problem cannot be solved
in one dimension because the condition of no electron flux at the edge imposes the
following condition, obtained from integration of Eq. (9.37):

�e(R) = (Kiz − Katt)ng

∫ R

0
ne(x)dx = 0, (9.43)

which can only be achieved if Kiz = Katt; i.e., again electrons have to be produced
and lost in the volume. To get around this, they proposed modelling the region of
ionization as a finite cylinder for which there were no radial (cross-field) losses of
electrons but losses along the axis (in which direction the motion is unimpeded by
the field) were modelled as an effective volume (integrated) loss, and then replaced
Eq. (9.37) by

∇(neve) = (Kiz − Katt)ngne − νLni, (9.44)
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Figure 9.8 Normalized fluxes as a function of normalized radius showing the
decay of the electron flux to form a flux of ion–ion plasma at the edge of a
magnetized cylinder; in the chosen normalization scheme the radial wall was
located at 1.8. From [192].

where νL accounts for electron losses in the axial direction. In this way, they
were able to obtain solutions in which the electron flux (and the electron density)
vanishes to zero at the edge, with finite and equal positive and negative ion fluxes,
as shown in Figure 9.8.

9.3.5 Instabilities at the E–H transition in electronegative gases

In electronegative plasmas, widely used in plasma etching (for example, O2, SF6,
CF4, Cl2, etc.), the E–H transition in inductive discharges has been found to be
unstable [19, 20, 124–126, 193–195].

Experimental observations

Figure 9.9 shows the instability window in the power/pressure space, as measured
in a CF4 inductive discharge. At low power, the discharge operates in a stable
capacitive (E) mode, while at high power the discharge operates in a stable inductive
(H) mode. In the region marked in grey in the figure, the discharge parameters
(electron and ion densities, electron temperature, etc.) undergo large relaxation
oscillations. The light emitted by the plasma therefore fluctuates (see insert) with
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Figure 9.9 Instability window in the power/pressure space for a CF4 inductive
discharge. Originally from [124].
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Figure 9.10 Frequency of the oscillations measured in CF4 and SF6.

a clearly defined frequency; near the edges of the unstable region more complex
behaviour is observed with intermittent bursts of instability.

The frequency of these relaxation oscillations varies over a wide range, from a
few hundred Hz to several tens of kHz. The frequency depends mostly on the gas
composition and the gas pressure, but it is also affected by other parameters such
as the RF power and the match-box settings. To illustrate this, Figure 9.10 shows
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the frequency of the instability as a function of the gas pressure, for SF6 and CF4

as feedstock gases. The frequency increases with the gas pressure for both gases,
and the frequency is much higher in SF6. More generally, it has been shown that
the frequency increases with the electronegativity of the discharge, which increases
with the gas pressure, and is much higher in SF6 than in CF4.

Finally, it has also been shown that when the frequency is not too high (typically
in CF4), the gas chemistry (including dissociation, chemical reactions at surfaces
and gas heating) is modulated during the instability [26, 124, 196].

Global model of the E–H instability

A global model has been proposed to explain the instability mechanism [19, 20].
This model is based on an inductive discharge with capacitive coupling, as in
Chapter 7. However, in electronegative gas mixtures the plasma is composed of
electrons, positive ions and negative ions. Moreover, to model the instability one
has to keep time-dependent electron and negative ion terms in the global model
equations. Using the quasi-neutral approximation, ne + nn = ni, the electron and
negative ion particle balance equations are

dne

dt
= neng(Kiz − Katt) + nnn

∗
gKdet − �e

A

V
, (9.45)

dnn

dt
= nengKatt − nnn

∗
gKdet − nnniKrec − �n

A

V
. (9.46)

Electrons are generated by ionization and detachment of negative ions, with the
reaction coefficients Kiz and Kdet, and are lost by attachment to molecules having a
density ng, with a rate coefficient Katt. Electrons are also lost at the wall with a flux
�e. Negative ions are produced by attachment, and lost via three mechanisms: (i)
recombination with positive ions (with the rate coefficient Krec); (ii) detachment by
collisions with metastable species of fixed density n∗

g; (iii) lost at the wall. The third
mechanism is unlikely since there is usually a sheath in front of walls, which pre-
vents negative ions from escaping the plasma. There is no need to consider positive
ion balance explicitly, because this is assured by the quasi-neutrality assumption.

There must be flux balance at the wall to ensure that quasi-neutrality can be
maintained, �e + �n = �i. Since �n ≈ 0, it follows that �e ≈ �i. Chabert et al.
[124] used the following heuristic form for the flux, valid for all values of elec-
tronegativity α = nn/ne:

�i =
[

hl0 − hl∞
(1 + α)3/4

+ hl∞

]
niuB = hlniuB, (9.47)

where

hl∞ = 3

2

[
1 + l√

2πλi

]−1

. (9.48)
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Figure 9.11 Densities during the relaxation oscillations as calculated by the global
model for the case of SF6.

The power balance is

d

dt

[
3

2
nekTe

]
= Pabs − Ploss, (9.49)

where Pabs is given by a relation very similar to Eq. (7.67), although the authors
used somewhat simplified forms of Rind. When the negative ion flux to the wall is
neglected, the loss power is given by

Ploss = nenge (Kizεiz + Kattεatt + Kexcεexc) + �e (eφf + 2kTe)
A

V
, (9.50)

where φf ≈ 5kTe/e, and the flux of negative ions to the wall is neglected. The
constants εiz, εatt and εexc are typical threshold energies for the related processes.

The three balance equations Eqs (9.45), (9.46) and (9.49) may be solved numer-
ically to calculate the time variations of ne, nn and Te. This can be done for various
RF currents in the coil. When doing this, the authors found, as in the experiments,
that the discharge was stable (no time fluctuations of the plasma parameters) at low
power, and at high power, but experienced relaxation oscillations at intermediate
powers. A typical example of calculated densities in the unstable regime is shown
in Figure 9.11, for the case of SF6. The electronegativity is always very large, so
that it is almost impossible to distinguish between positive and negative ion densi-
ties. This has also been observed experimentally. The frequency of the instabilities
is around 1.2 kHz. In the experiment, the frequency was larger at around 10 kHz.
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In addition, the window of instability predicted by the model was smaller than the
experimental window.

The dynamics of the instability within this model has been reported theoretically
in [125]. Some of the discrepancies between theory and experiments have been
explained. The general conclusion is that the instability is sensitive to the amount
of capacitive coupling. Strategies to suppress the instability by controlling the
capacitive coupling have therefore been proposed.

9.4 Expanding plasmas

9.4.1 Electropositive plasmas

Helicon (or cylindrical inductively coupled) plasma processing reactors are gener-
ally composed of a cylindrical source region sitting on top of a larger expansion
chamber. When the ionization is mainly localized in the source, this geometry leads
to a gradient in the plasma density, decreasing from the source to the bottom of the
expansion chamber. Because electrons are generally in (or very close to) Boltzmann
equilibrium, this gradient of electron density is accompanied by a gradient in (DC)
plasma potential. Consequently, there is a weak electric field that accelerates posi-
tive ions out of the source region while confining, to some extent, the electrons. In
general, the ion acceleration is modest and the plasma remains quasi-neutral during
the expansion. However, Charles and co-workers [197–199] found experimentally
that by adding a strongly diverging magnetic field it is possible to obtain conditions
in which ions become supersonic, i.e., exceed the speed of sound (Bohm speed).
Chen [200] has used an analytical derivation of a plasma expansion in a diverging
magnetic field based on classical sheath theory to show that ions will reach the
speed of sound at a position where the plasma radius has expanded by 28%. When
ions become supersonic near a surface, the quasi-neutral plasma goes over into a
sheath region where there is net positive space charge adjacent to the surface. For
an expanding plasma the supersonic condition is generally reached in open space,
and in this case a region of positive space charge develops immediately adjacent
to a layer of negative space charge, forming a so-called ‘double layer’. The double
layer is a sort of electrostatic shock across which there is an abrupt potential step
between two quasi-neutral plasmas. The positive space charge layer is located on
the high potential side, usually called the ‘upstream’ side, while the negative charge
is located on the low potential, ‘downstream’ side.

In Figure 9.12, the plasma potential is plotted as a function of the axial distance.
The symbols are retarding field analyser measurements (see Chapter 10) taken by
Charles and co-workers [199], whereas the solid line is the prediction of a model
proposed by Lieberman et al. [201]. This model couples particle balance upstream
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Figure 9.12 Potential as a function of axial distance in a helicon plasma (argon
0.03 Pa) under conditions where a double layer forms at z = 0.25 m; the circles
are measurements and the solid line comes from a model. From [199].

and downstream to the requirements of the double layer. The double layer is marked
by an abrupt change in potential of about 25 V at around z = 0.25 m.

Positive ions enter the double layer from upstream, at the Bohm speed, because
the Bohm criterion has to be fulfilled in order to form the space charge. They
are subsequently accelerated to a much larger speed when falling across the 25 V
double-layer potential drop.

Q At what speed do argon ions leave the double layer downstream?
A Applying energy conservation, that is neglecting collisions within the double

layer, the speed is vi =
√

2e�V/M + u2
B.

With �V = 25 V, M = 40 amu and kTe/e = 5 eV, the result is vi =
11 500 m s−1.

The acceleration of ions across the double layer forms a positive ion beam down-
stream that has been observed in experiments [199] – see Figure 9.13. The ion veloc-
ity distribution function, measured by a rotating retarding field analyser (RFA –
see Section 10.3), exhibits two peaks when the RFA faces the source (the solid
line), and only one peak when the RFA is rotated by 90◦ (dashed–dotted line). The
other curves represent intermediate angles. The high-energy peak is the signature
of an ion beam, that is ions that were born upstream and accelerated through the
double layer. The peak at low energy (around 25–30 V) is due to ions generated
downstream and accelerated by the sheath that forms in front of the RFA. This peak
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Figure 9.13 Ion velocity distribution downstream measured with a rotating retard-
ing field analyser and plotted on an energy scale (see Section 10.3.2). A high-
energy peak, signature of an ion beam, is detected when the RFA faces the source
(the solid line). The beam does not appear when the RFA is rotated by 90◦
(dashed–dotted line). Reproduced from [199].

sits at the local plasma potential. As mentioned in Chapter 1, Charles’s group at the
Australian National University has proposed taking advantage of the positive ion
beam acceleration to generate thrust in satellites. The concept is called HDLT (for
helicon double-layer thruster). A theoretical analysis of the momentum transferred
to ions within the double layer has been performed by Fruchtman [202].

9.4.2 Electronegative plasmas

Double layers have also been observed in similar reactors operating with elec-
tronegative gases [203, 204]. It has been shown that in electronegative media the
diverging magnetic field is not necessary to observe double layers, partly because
the Bohm speed is much lower in electronegative plasmas. Therefore, the electric
field amplitude required to accelerate ions to supersonic speed is lower. In the
absence of a magnetic field, double layers were not observed for purely electropos-
itive gases (typically argon), but when between 5% and 15% SF6 was added to the
argon, stable double layers were formed at the junction between the source tube and
the expansion chamber. These double layers had weaker amplitudes of only 6–8 V.
As the SF6 percentage was increased further, the double layers become unstable
[204]. This is illustrated in Figure 9.14, which shows the plasma potential as a func-
tion of space and time measured in the reactor. The abrupt drop in plasma potential
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Figure 9.14 Periodic formation and propagation of double layers in the expanding
chamber of an inductive/helicon plasma source working with Ar/SF6 mixtures.

resembles cliffs in this representation; this structure forms at the interface between
the source and the expansion chamber and subsequently travels downstream as
time evolves. The double layers propagate relatively slowly, at about 150 m s−1. It
was found that a second double layer forms before the first one has reached the
bottom of the chamber, so that two double layers co-exist at any particular time
during the cycle.

The unstable behaviour of expanding, electronegative, inductive discharges was
first reported by Tuszewski [205]. Later, Tuszewski and Gary [206] demonstrated
that the expanding plasma becomes linearly unstable if the difference between the
positive ion and the negative ion drift velocities exceeds some threshold (positive
and negative ions are streaming in opposite directions). Although that is certainly
a consequence of double layers, the exact connection between the kHz-level relax-
ation oscillations and slowly drifting double layers remains unclear at the time of
writing.

9.4.3 Reflections

This chapter has considered a few scenarios that are more realistic than the sim-
plified systems that were the subject of earlier chapters. It should be clear that
the inclusion, for instance, of magnetic fields or electronegativity from the outset
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would have obscured the quantitative scalings and classifications that have been
revealed for E, H and W-modes of plasma excitation. There are many other realities
that apply in the wide variety of technological applications of plasmas.

Q Give a preliminary comment on the following realities.
(i) Plasma sources often operate in molecular gases.
(ii) There is usually more than one species of positive ion.
(iii) The pressure is often between the collisionless and collisional regimes.
(iv) The interaction of plasmas with surfaces means that the plasma compo-
sition is not uniform.
(v) ωpi � ω < ωpe.

A The following responses are intended to be relevant comments but are not
comprehensive answers.
(i) Electron energy will be diverted from ionization into molecular excita-
tions – the RF power may have to be higher than simple models suggest to
sustain the plasma at a given density.
(ii) One species of positive ion may dominate but if not, then one must start to
consider where each species is produced and whether there are mechanisms
that couple the different species together – an effective (average) ion mass
could be considered, but there will be times when a more careful approach
is required.
(iii) There has been some attention given to this.
(iv) Depletion of reactants may occur in time and space and etch products
may ‘contaminate’ the plasma. These phenomena may severely perturb the
parameter space established by the simple, chemistry-free models.
(v) Ions will respond to lower frequencies, so the simple mono-energetic
response to the mean field needs to be reconsidered, especially if ω � ωpi.

Whether the behaviour of a plasma is or is not close to the predictions of a model
must be judged on the basis of measurements or the key plasma parameters such
as electron density, mean electron energy, potential of the plasma, etc. There are
various ways to proceed with such measurements using optical, electrical or indeed
electro-optical methods, and the topic of plasma diagnostics is worthy of a book in
its own right. The final chapter looks at just a few, concentrating on techniques that
fall within the electrical category and that are modelled using the same equations
and data sets that have already been used to model capacitive, inductive and helicon
plasma sources.
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Electrical measurements

As a simple means of probing the charge composition of a plasma, one of the
more immediate temptations for an experimental plasma physicist is to insert some
kind of small, refractory, electrically conducting material, such as a bare wire.
Applying a potential to this conductor might then be supposed to enable it to act
as a rudimentary collector of charged particles.

Q Explain why a refractory material has been specified for the collection of
electrons or positive ions from a plasma, bearing in mind the nature of
bounded plasmas as set out in earlier chapters and the difficulty of taking
heat out of a small wire probe immersed in an ionized gas at low pressure.

A It has already been established in earlier chapters that the mean thermal
energy of the electron population in a low-pressure plasma is typically a few
eV. It has also been found that ions are naturally expelled with at least the
Bohm speed, and may pick up additional energy in the sheath, so the mean
ion energy at a surface may be several eV; furthermore, the neutralization of
an ion on a surface will liberate the ionization energy, which is also several
eV. Compared with the molecules of any residual gas, the charged particles
are hundreds of times more energetic than the gas, so one should anticipate
the possibility of a small, thermally isolated surface becoming heated.

In the 1920s, Langmuir was one of the first to develop an electrostatic probe
method based on the insertion of a small, charge-collecting surface. There are
various forms including planar, cylindrical and spherical geometries for so-called
single, double and triple probes. There are also probes that use electrical reso-
nances and others that launch and detect waves. All types can be used in steady
and transient plasmas, though there is always an upper frequency limit. Special
schemes have been devised for RF plasmas, using techniques that compensate for

318
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the RF potential fluctuations with passive or active circuitry. Magnetized plas-
mas pose further challenges. Each configuration is accompanied by assumptions
that constrain both the applicability and the analytical methods that translate the
measured currents and voltages variously into charge densities, space potentials,
particle fluxes, energy distributions and measures of collisionality.

This chapter will take a broad look at the options and opportunities for electrical
probes, suitable for the environment of the RF plasmas. First, the traditional electro-
static (Langmuir) probe will be analysed in sufficient detail to recognize the main
benefits and limitations of the method. Next, a relatively simple development of
the electrostatic probe is introduced, adding an electrostatic filter to form a retard-
ing field energy analyser. In the next section, a range of high-frequency probes
will be described. Finally, the topic will be broadened to include global methods
such as wave transmission and impedance analysis. It should be noted that data on
plasma behaviour can also be extracted non-invasively by optical methods that are
both localized and time-resolved, but at the expense of much more sophisticated
apparatus and analysis – optical measurements are not discussed in this book.

10.1 Electrostatic probes

A simple electrostatic probe can be made by placing a short bare wire projection
from a coaxial cable directly into the plasma volume and biasing it with respect
to some other conducting surface in contact with the plasma. The cable must be
enclosed and sealed so that it is compatible with vacuum and plasma. In this section,
current–voltage relationships will be established for the two most common con-
figurations namely symmetrical (double) probes and highly asymmetrical (single)
probes. Planar and cylindrical geometries are considered.

10.1.1 Planar geometry

To form a device that can be used locally to sample the charged particle fluxes,
one needs to consider a small area of surface that can be independently biased at
a particular potential (Figure 10.1). The equations developed in Chapter 3 when
considering what were imagined to be external plasma boundaries can be applied
here for the internal boundaries that are formed around objects inserted in the
plasma. For a planar surface, area A, at a potential φ which is below that of the
plasma (φp), the electron and ion fluxes can be deduced from Eqs (3.29) and (3.31).
The net current to the surface is then

I = eA

[
−n0ve

4
exp

(
e(φ − φp)

kTe

)
+ nsuB

]
φ < φp. (10.1)
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Figure 10.1 Particle fluxes to a surface (area A, potential φ) immersed in plasma
(potential φp > φ) – electron flux is indicated in grey, ion flux in black. Imbalance
between the fluxes forms a net current I . It is supposed that the lower surface is
insulated from the plasma, so current is collected only on the upper surface.

The electron flux has been written in terms of the density of the ‘undisturbed’
plasma, n0, some way from the surface, whereas the ion flux is written in terms of
the plasma density at the sheath plasma boundary, ns. It was shown in Chapter 3
that when an external plasma boundary actively determines the balance between
production and loss, ns and n0 are related by hl factors – when small probes are
inserted in confined plasmas, that is the plasma boundary is internal, ns at the
boundary and n0 in the bulk plasma are not necessarily related by hl. Notice that if
the surface were biased very negatively with respect to the plasma, it would collect
virtually no electrons and could then be said to collect an ‘ion saturation current’,
which in planar geometry is nseuB per unit area. Also note that if it were biased at
or above the DC plasma potential, the current density would be −n0eve/4, as the
ions would no longer be attracted. Clearly, Eq. (10.1) is not strictly correct at the
plasma potential because it still contains the ion current (based on there being an
ion sheath), but the error is in most cases negligibly small.

It is useful to catalogue the assumptions that underpin Eq. (10.1).

(i) All incident charge is absorbed by the surface.
(ii) The arrival and recombination of charge does not initiate any secondary

processes through which charge is emitted from the surface.
(iii) Any other secondary processes, such as photo-emission, do not release a

significant quantity of charge.
(iv) The electron population is in equilibrium with the electric field (that is the

use of the Boltzmann factor is appropriate).
(v) The ion flux into the sheath around a small planar probe surface is governed

by factors similar to those that apply at large external boundaries.
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(vi) One species of singly charged positive ions exists in the plasma.
(vii) The distributions of particle speeds far from the surface are isotropic.

(viii) The surface is sufficiently small that it does not significantly affect the overall
particle and energy balances and therefore does not perturb the factors that
determine electron temperature and plasma density.

(ix) Unless otherwise stated, the motion of charged particles near probes is colli-
sionless.

The first three assumptions can be ensured by the use of clean, refractory, metals
with a high work function, provided the incident energy of ions is no more than a
few 10s of eV. The others need to be borne in mind before drawing conclusions
from specific probe data.

Q If a probe were to draw a steady current of electrons from a plasma, what
would happen to the potential of the plasma, supposing the normal production
and loss processes to remain in balance?

A The plasma potential would tend to become more positive if there were a net
removal of negative charge.

In practice, for a low-pressure plasma that is generated by volume ionization
and lost by recombination at the walls, a steady loss of electrons to a small surface
can be sustained indefinitely without changing the plasma potential provided there
is an equivalent loss of positive ions to a second ‘probe’ surface, not too far away.
In effect, there must be an electrical current in an external circuit that ultimately
unites positive and negative charge arriving from the plasma by these two separate
routes. Within the plasma the same current must also flow between the collection
points. For the plasma to be able to remain an equipotential the density of probe
current in the plasma must be much less than the random thermal current density.

So now suppose that there are two probe surfaces, joined by a battery that fixes the
potential between them so that φ2 − φ1 = V and the current in the external circuit
is I , as illustrated in Figure 10.2. To derive a single expression for the current–
voltage relationship, I (V ), that could then be measured, first use Eq. (10.1) written
in terms of A2 and φ2 to define a term containing the ‘unknown’ plasma potential,
φp, and density, n0, as

−n0ve

4
exp

(−eφp

kTe

)
=

(
I2

eA2
− nsuB

)
exp

(−eφ2

kTe

)
.

Then, using Eq. (10.1) in terms of A1 and φ1 can be written

I1 = eA1

[(
I2

eA2
− nsuB

)
exp

(−eφ2

kTe

)
exp

(
eφ1

kTe

)
+ nsuB

]
.
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V

Figure 10.2 Two surfaces linked by a battery – the potential is distributed in order that the
current is continuous. It is supposed that the lower surfaces are insulated from the plasma,
so current is collected only on the upper surfaces. I (V ) is given by Eq. (10.2).

Matching the currents so that I = +I1 = −I2, this then rearranges to

I

(
1 + A1

A2
exp

(−eV

kTe

))
= nsuBeA1

(
− exp

(−eV

kTe

)
+ 1

)
.

The general current–voltage relationship for planar surfaces is then

I = nsuBeA1

[
exp

(
eV

kTe

)
− 1

] [
exp

(
eV

kTe

)
+ A1

A2

]−1

. (10.2)

10.1.2 Symmetrical double probe

In this subsection it will be supposed that there are two identical collecting surfaces,
A1 = A2 = A, exposed to the same plasma, for instance, placed side by side, a few
tens of λDe apart. This arrangement forms a so-called symmetrical double probe.
Then a further simplification of the expression for the current follows on taking
exp(eV/2kTe) out of the two sets of square brackets in Eq. (10.2), giving

I = Ii tanh

(
eV

2kTe

)
, (10.3)



10.1 Electrostatic probes 323

where Ii = nsuBeA is the ion saturation current to one of the probe surfaces. Since
the voltage applied to a double probe does not need to be referenced to ground, it is
sometimes termed ‘a floating double probe’. As the potential difference between the
probes is swept from a large negative to a large positive voltage, the current changes
symmetrically between the ion saturation current being collected by one surface
through zero to the ion saturation current being collected by the other surface. In
each case the net electron current at the other surface is just sufficient to maintain
current continuity. No matter how hard one tries, neither probe surface can be
taken close to plasma potential because once a surface is drawing the ion saturation
current, all additional applied voltage is accommodated across the adjacent sheath,
which widens accordingly.

Q Use Eqs (3.7) and (3.90) to estimate the width of a sheath on a small planar
probe across which there is a potential difference of 25 V when immersed in a
plasma having 1016 electrons m−3 with a temperature equivalent to 2 eV, and
hence suggest a minimum diameter for a disk-shaped planar probe surface
in this plasma.

A From Eq. (3.7), the Debye length for 1016 electrons m−3 and 2 eV is 10−4 m,
so Eq. (3.90) gives

s =
√

2 eV0/kTe λDe = 5 × 10−4 m.

A disk probe would need to have a diameter several times this, say ∼5 mm,
to ensure that the sheath forms a thin, conformal layer, with negligible effect
of the edges on current collection.
Comment: The ion matrix model tends to underestimate sheath dimensions,
but it is adequate for the present estimate; a denser plasma would lead to a
smaller limit on the minimum diameter.

It is instructive also to evaluate the change in potential of the more positive
probe that is required for the more negative side to draw the ion saturation current.
When the applied voltage is zero, both probes float with respect to the plasma.
That is,

0 = eA

[
−n0ve

4
exp

(−eφp

kTe

)
+ nsuB

]
, (10.4)

which specifies the potential difference between a floating probe and the plasma,
φp. When eV � kTe the saturation current is drawn. At the more negative probe
this is due entirely to the arrival of positive ions that account for a current Ii into
the external circuit. At the more positive probe since the same flux of ions also
arrives here and this must be offset, so twice that amount of electron flux must be
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Figure 10.3 A double-probe characteristic for a plasma in argon at 5 Pa.

collected to maintain current continuity, effectively taking Ii back into the plasma.
Therefore, at the more positive probe,

−Ii = eA

[
−n0ve

4
exp

(
e(�φ − φp)

kTe

)
+ nsuB

]
,

where �φ is the required small positive shift in floating potential and Ii = AensuB.
Using Eq. (10.4) this now simplifies to

exp

(
e�φ

kTe

)
− 1 = 1,

that is �φ = ln 2 × kTe/e. This is the maximum excursion towards plasma poten-
tial by the more positive probe – all other applied voltage must be developed by
the more negative electrode shifting further away from plasma potential.

Q Calculate φp, the potential difference between the floating probe and the
plasma, for an argon plasma and compare it with �φ if n0/ns = 0.5.

A Equation (10.4) can be simplified to obtain φp = [ln(n0/ns) +
0.5 ln(M/2πm)] kTe/e. In argon at low pressure (hl = 0.5), this equates to
5.4kTe/e (cf. Eq. (3.32)). This is almost 8 times �φ.

Exercise 10.1: Double probe analysis Figure 10.3 shows a double-probe
characteristic for an argon plasma at 5 Pa; the probe is formed by two single-
sided disks of diameter 5 mm. Determine the electron temperature and the
charged particle density of this plasma just outside the sheath. [Hint: The slope
of tanh(ax) at x = 0 is a.]
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Figure 10.4 Current–voltage (I–V ) characteristics (Eq. (10.2)) for asymmetrical
planar probes having area ratios 10, 102, 103 and 104 in the same plasma as that
for Figure 10.3.

10.1.3 Asymmetrical (double) probe

Now consider the case when the two collecting areas are not identical. The asym-
metrical arrangement means that when the larger surface, say A1, draws its ion
saturation current (nsuBeA1), then the smaller surface, in drawing an equivalent
net current over a smaller area (A2), must collect a larger flux of electrons. To do
this the surface potential must shift closer to plasma potential than the maximum
ln 2 × kTe/e found for the symmetrical case. The larger the ratio A1/A2, the larger
the shift in φ2 until at some stage it reaches φp – the electron flux to the surface is no
longer retarded by the Boltzmann factor and ions are no longer attracted to it. The
model developed so far does not apply when φ2 > φp, and in strict planar geometry
it must be assumed that the current collected by the smaller area thereafter remains
fixed in this condition at eA2n0ve/4.

Figure 10.4 shows what happens to the entire I (V ) curve as the area of surface 1
is increased 10 000 times, mapping the current collected by the fixed-area smaller
surface 2, as a function of the voltage between it and the larger surface. Notice that
all curves pass through zero current when the applied voltage is zero and also that
for any given positive voltage the current collected increases as the area ratio is
increased.

Since the smaller surface is more localized, it can now be called the ‘probe’ and
the larger surface can be regarded as a ‘reference electrode’. Notice that electron
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collection in this system constitutes positive current. The applied voltage V is the
probe bias with respect to the reference. It is important to keep in mind the whole
system – probe and reference and intervening plasma – when interpreting probe
characteristics; the following tasks are intended to show why.

Reference electrode

If one chooses a sufficiently large area ratio then the smaller probe always controls
the shape of the current–voltage characteristic. That raises the question of just what
is ‘sufficient’.

Q Based on Figure 10.4, suggest how large an area should be used for the
reference electrode (A1), relative to the probe area (A2) in the given plasma
if the probe current is to pass discontinuously into electron saturation.

A From the figure it is clear that a factor of 1000 is sufficient, whereas 100 is
not.

The biggest current that a planar probe can draw is the constant electron saturation
current, I = eA2n0ve/4. Provided that at all voltages exp (eV/kTe) � A1/A2, the
probe current will reach electron saturation, unimpeded by the collection of current
at the reference electrode. Then Eq. (10.2) shows that the current will follow the
Boltzmann exponential up to the maximum current:

I = nsuBeA2

[
exp

(
eV

kTe

)
− 1

]
I ≤ eA2

[
n0ve

4

]
.

The useful limit of the Boltzmann exponential factor is reached when the probe
potential reaches the local plasma potential, V = φp (see Figure 10.4). Equa-
tion (10.4) shows that in argon, at low pressure, φp = 5.4kTe/e so the area ratio
condition for an argon plasma becomes

exp
(
eφp/kTe

) � A1/A2 ≡ A1 � ∼ 200A2. (10.5)

When the reference electrode is chosen to satisfy this criterion, the smaller electrode
is often called ‘a single Langmuir probe’. The current–voltage characteristic for a
single probe can then also be written

I = eA2

[
n0ve

4
exp

(
e(V − φp)

kTe

)
− nsuB

]
I ≤ eA2

[
n0ve

4

]
. (10.6)

When the positive bias takes the single probe above plasma potential it is said to be
in electron saturation – only electrons are collected from an electropositive plasma,
though as will be shown in the next section, the electron saturation current in
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non-planar geometry is not expected to be constant. A probe biased well below the
floating potential is in ion saturation. Between these two extremes is the electron
retardation region; later it will be shown that this region captures information on
the electron energy distribution function.

Exercise 10.2: ‘Single probe’ design Rework the area ratio criterion for a
low-pressure hydrogen plasma, assuming all positive ions are H+.

The reference electrode is required to ensure that the current drawn from the
plasma is returned to it with negligible changes in potential between the reference
and the surrounding plasma. A large-area surface is certainly one way to achieve
this. The rôle can also be fulfilled by a thermionically emitting surface that is able
freely to release electrons into the surrounding plasma to supply the return current,
again without significant changes in potential. A so-called emissive probe is formed
from a loop of incandescent wire, conveniently heated with a floating power unit
[207] or a focused laser beam [208]. Depending on the material, sufficient emission
can be obtained from wires heated to between red and white heat 1000–2000 K.
The hot surface will be surrounded by a reservoir of charge in an electron-rich
sheath and as a result the area of a hot reference can then be much smaller than a
cold one. As its temperature increases, an emissive probe floats closer and closer to
the potential of surrounding plasma – if it were to be at a lower potential it would
lose negative charge from its thermionic sheath into the plasma, thereby rising in
potential – if it were to rise above the local DC plasma potential it would receive
a significant flux of negative charge from the plasma, thereby falling in potential.
Thus, a self-regulation for its natural DC floating (zero net current) condition sets
it at plasma potential and it then forms an excellent reference electrode. Emissive
probes have also been used widely to map out the spatial variation of plasma
potential in various RF plasmas [208–210].

Separation of probe and reference electrodes

If a probe and its reference electrode were too widely separated then some of the
applied voltage would be dropped across the plasma. Probe currents are generally
small and plasmas are good conductors, but it is still prudent to keep the current path
in the plasma ‘local’. Widely separated electrodes may be exposed to ‘different’
plasmas. For instance, as was revealed in Chapter 3, the plasma is not an exact
equipotential even in idealized 1-D models – in real systems therefore one cannot
expect that the potential at which a surface floats with respect to the plasma will
be the same throughout. The consequence is that where φp has been included in
the modelling, one would be wiser to use φp1 near the reference electrode and φp2
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Figure 10.5 Current–voltage (I–V ) characteristics (Eq. (10.2)) obtained with two
asymmetrical planar probe arrangements (area ratios 34 and 340) in a low-pressure
hydrogen plasma – see Exercise 10.3.

nearer the probe. This would then be apparent in the I–V characteristic having the
zero current at V = φp2 − φp1 = Vf rather than at V = 0.

Practical analysis

Given the above background one should now be able to deduce various plasma
parameters from data obtained with asymmetrical planar probes. In fact, for reasons
to be discussed in the next section, planar probes are difficult to realize so the
following examples use ‘artificial’ data. Nevertheless, it is worth practising on
these simple cases.

Exercise 10.3: ‘Single probe analysis’ 1 Figure 10.5 shows I–V charac-
teristics for a hydrogen plasma, using area ratios of 34 and 340, with a probe
electrode area of 1.9 × 10−5 m2 in both cases. Comment on the nature of the
two curves and then determine (i) the plasma potential, (ii) the floating poten-
tial, (iii) the plasma density at the sheath/plasma boundary based on the ion
saturation current and (iv) the electron density in the undisturbed plasma.

The current that enters at the probe electrode (V < φp) comprises the voltage-
dependent arrival of electrons partially compensated by the steady flow of positive
ions. To examine the electron component alone one can remove the ion component:
Ie = I + I0. What remains according to the planar model developed here, provided
the reference area is large enough, should be a purely exponential electron current:

Ie = nsve

4
exp

(
e(V − φp)

kTe

)
eA2;
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Figure 10.6 (a) The semi-log plot of electron current (in mA) at the probe electrode
for reference electrodes having area ratios 1, 10, 102, 103 and 104, in the same
plasma as that for Figure 10.3; (b) the same data presented as a plot of current on
a log10 scale.

so a plot of ln(I + I0) against V should be linear throughout the range up to the
plasma potential, with slope e/kTe. Exercise 10.4 examines the ‘semi-log’ plot
further.

Exercise 10.4: ‘Single probe analysis’ 2 Figure 10.6(a) shows the semi-log
plot of the electron current for the data in Figure 10.4. Comment on the nature
of the different curves and then determine (i) the plasma potential and (ii) the
electron temperature.

Instead of plotting ln(I + I0) one can simply plot I + I0 on a log scale as
in Figure 10.6(b). To determine the electron temperature from this plot one
then needs to account for the change of base for the logarithms, thus kTe/e =
�V/2.3�(log10[I + I0]). In other words, for a Maxwellian distribution one expects
that the electron temperature in eV is the voltage range for one decade change of
current, divided by 2.3. So for instance over 4 decades of current the voltage
changes by about 19.5 V, which would give kTe/e = 5.0/2.3 = 2.2 V.

Area of probe electrode

The lower limit on size of a planar disk probe has been discussed – the diameter
must be much larger than the thickness of the sheath. If the probe were much smaller
than this, then it would appear from the neighbouring plasma to be almost indistin-
guishable from a hemispherical collector. Non-planar geometries are considered in
the next section. The last point to consider in this section therefore is how large a
planar probe electrode can realistically be without causing a serious perturbation
to the environment that it is designed to sense. One problem is a shadowing effect,
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which means that the distribution of plasma particles is locally depleted because the
probe itself both absorbs charged particles and inhibits the arrival of replacement
particles. A related problem arises if the current flowing to the probe is a significant
fraction of the current that sustains the entire plasma. Either the probe is diverting
the current that would otherwise contribute to the regeneration of the plasma, or
it is adding current that will enhance those processes – either way, the probe is
making a serious perturbation to the equilibria that define the plasma.

Q Suppose that a plasma of density 1016 m−3, and electron temperature 2 eV, is
sustained by a power supply that couples 50 W into it. Estimate the maximum
diameter for a single planar disk probe if it is to divert no more than 1% of
this power when in electron saturation, given that the mean energy invested
in the production of an electron–ion pair is eεT ≡ 50 eV.

A The limit is set by the rate at which energy is drained away by removing
electrons from the bulk, given that on average eεT is invested in the production
of an electron–ion pair – Eq. (2.46). Thus the power drained by a single-sided
disk of diameter d in electron saturation must be such that

n0ve πd2

16
eεT < 0.5 W.

This can be evaluated to deduce that the limit on the diameter is d < 6 mm.
Comment: The maximum diameter is only marginally greater than the mini-
mum size specified on the basis of maintaining planar geometry.

The operational constraints on the diameter of planar (disk) probes is quite
small: too small and they look hemispherical rather than planar (see next section);
too large and if they were allowed to approach electron saturation they would
divert a significant fraction of the power that sustains the plasma; large probes
may also create a significant shadow. That’s a pity because the method and the
analysis are both relatively simple. They are nevertheless useable in the double-
probe configuration where currents never exceed the ion saturation level. The next
section looks at the added complexity that comes with trying alternative geometries
as a means of getting accurate data on the charged particle populations without
serious perturbation to the plasma in question.

10.1.4 Cylindrical and spherical geometry

Spheres and cylinders with radii that are much larger than the thickness of a sheath
will behave rather like planar collectors since the rejection (or acceleration) of
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(a)

(b) (c)

Figure 10.7 Schematics of a cylindrical (or spherical) probe. (a) Sheath develop-
ment around a biased probe – the potential indicated is referenced to the plasma
(φp); (b) example ion trajectories (φ < φp); (c) example electron trajectories in
electron saturation (φ > φp). The lighter regions represent net space charge: pos-
itive if φp < 0 and negative if φ > φp.

charges will then happen over a narrow range of radius, so that the effects of
surface curvature will be negligible. For plasmas at 1016 m−3 and 2 eV that means
that a planar probe model might be applicable for spheres and cylinders with
diameters much larger than 1 mm.

Q Taking the area of a 5 mm diameter disk (about 2 × 10−5 m2) as the basis
for comparison, equivalent collection areas are obtained with a sphere of
1.25 mm radius and a 10 mm long cylinder of 0.3 mm radius. Will the planar
model of the previous section be applicable to a probe made from a 1.25 mm
radius spherical bead or from 10 mm of 0.3 mm straight wire?

A Take the earlier estimate for the thickness of a 25 V sheath in a 2 eV plasma
(5λDe ∼ 0.5 mm). The wire is certainly too fine to ignore the differential
curvature of the sheath and the surface of the probe – they differ in area by
a factor of about 2.5 – see Figure 10.7. The bead, though less so, is also too
small for a planar model, with sheath and probe areas differing by almost a
factor of 2.
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The planar model will fail for probes with diameters less than about 1 mm. The ion
saturation current is unlikely to remain constant as it is essentially determined by
the number of ions per second being expelled into the sheath, so a larger area sheath
will collect a larger current. For example, on the basis of the ion matrix model the
sheath around a 1.25 mm diameter sphere will increase in area by about 25% when
the bias is changed from 10 V to 25 V. One might suppose that the electron saturation
region is similarly affected. But that is by no means the full story, because one must
also take into account the detail of charged particle trajectories since these have
a bearing on the density of space charge and hence the distribution of potential
around the probe. In particular, the angular momentum and energy of particles
must be conserved. Figure 10.7(b) and (c) illustrate trajectories, for particles being
attracted by the probe: most will reach the surface but some will just miss, being
on a passing orbit. Having little initial random energy and being accelerated into
the sheath, the ion paths are very sensitive to any background motion far from the
probe – such drifts are caused by the ambipolar field between confining surfaces
and electrodes. Electrons have considerably larger random components to their
motion, tending to make their distribution isotropic. As a consequence, models of
charged particle collection that include orbital motion are less controversial for
electron saturation currents than they are for ion currents.

Electron saturation current limited by orbital motion

Many electrostatic probes use fine wires as the charge-collecting surface, so this
geometry will be considered here. It is supposed that the radius of the wire is less
than a few Debye lengths, so that simply neglecting the curvature of the probe is
not an option. When the potential of the wire is positive with respect to the plasma,
electrons will be attracted to it by the electric field that develops around it, but
unless the initial path is exactly radial the trajectory will be an orbit along which
energy and angular momentum are simultaneously conserved. In collision theory,
with a target placed on the axis, the perpendicular distance of the initial path from
the axis, before any forces have deflected the incident particle, is called the ‘impact
parameter’ (see Figure 10.8) – this concept is used here to describe the encounter
between charged particles and a wire. At large impact parameter the electrons
are merely deflected as they follow passing orbits. Electrons with a low impact
parameter collide with the probe. The aim here is to obtain an expression for the
current collected by a wire, taking account of this orbital motion; the assumptions
of isotropic distributions and the absence of collisions with the background gas
are particularly important. The probe is a wire of radius rc and length l � rc; the
potential on the wire is Vc > φp – the subscript ‘c’ identifies the collecting surface,
i.e., the probe (see Figure 10.8). Consider the trajectory of an electron (charge −e)
on a path that just grazes the probe surface with an impact parameter hgraze. Energy
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rc 

hgraze 

Figure 10.8 Trajectories of particles with the same energy, starting with different
impact parameters. Those with h ≤ hgraze are collected by the probe; those with
h > hgraze miss the probe.

will be conserved, so that for an electron that is accelerated to just graze the probe
at the surface,

1

2
mv2 = 1

2
mv2

c − e(Vc − φp). (10.7)

At the same time angular momentum must be conserved, so that for a particle that
is going to graze the probe,

mvhgraze = mvcrc. (10.8)

These two expressions can be combined to give the impact parameter for grazing
incidence as a function of the initial speed:

hgraze = rc

(
1 + 2e(Vc − φp)

mv2

)1/2

. (10.9)

Note that for a large initial speed the impact parameter equals rc, so only those
high-speed particles that start off travelling directly towards the probe are collected,
whereas very slow particles are likely to be collected, even when their trajectory far
from a very small probe is not directed straight at it. The current that is contributed
by particles at any particular speed v is dIe = evAdn, with A = 2l hgraze, such that

dIe = 2e l × rc

(
1 + 2e(Vc − φp)

mv2

)1/2

v dn. (10.10)
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To take all particles into account this expression needs to be integrated over the
distribution of particle speeds. The speed distribution given in Chapter 2 was for a
spherical geometry. A form that is appropriate for a cylindrical geometry is

fs−cyl = dn

dv
= n0

(
m

2πkTe

)
2πv exp

(
− mv2

2kTe

)
. (10.11)

Combining Eq. (10.11) with Eq. (10.10) and integrating over all speeds between 0
and ∞ accounts for electrons arriving from all angles, in the plane perpendicular
to the wire; the axial component of velocity is already accounted for in Eq. (10.10).
The total electron current collected by the wire when it is at potential Vc is then

Ie = e 4rcln0

∫ ∞

0

(
mv2

2kTe

)
exp

(
− mv2

2kTe

)(
1 + e(Vc − φp)

kTe

2kTe

mv2

)1/2

dv.

(10.12)

Q Show that the current collected by a cylindrical probe in electron saturation
at potential Vc is

Ie = e 2πrcl
n0v

4

(
2

√
η

π
+ exp η erfc

√
η

)
, (10.13)

where η = e(Vc − φp)/kTe.
A First recast Eq. (10.12) using

η = e(Vc − φp)/kTe and u2 = mv2/2kTe + η

so that v dv = (2kTe/m) u du. Then the current integral becomes

Ie = e 4rcln0

√
2kTe/m exp η

∫ ∞

√
η

(u2 exp(−u2)) du.

The integration can be completed by parts:∫ ∞

√
η

(u exp(−u2)) u du =
[

exp(−u2)

−2
u

]∞

√
η

+
∫ ∞

√
η

exp(−u2)

2
du.

The remaining integral can be written in terms of the complementary error
function as (

√
π/4)erfc

√
η. Rearranging then recovers the given result.

The expression for the saturation current, Eq. (10.13), can be approximated to
within 1% for η > 2 by the following:

Ie = e 2πrcl
n0v

4
2

√
1 + e(Vc − φp)/kTe

π
; (10.14)

in fact this approximation is no more than 13% adrift for e(Vc − φp)/kTe < 2.
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This result for the orbital-motion-limited current was first obtained for cylindri-
cal probes by Mott-Smith and Langmuir [211]. They divided the space into plasma
and sheath as in the planar geometry case above but they did not then solve for
the potential in the sheath – in fact, that is why the approach here did not need to
appeal to the existence of the sheath [211,212]. It is possible to solve the complete
problem of cylindrical and spherical collectors in plasmas, but the analysis relies
upon numerical integrations of Poisson’s equation – there is not much more insight
gained by doing so, though it does show that the above analysis is valid in most of
the parameter space [212].

Plasma potential

A probe collects zero net current when it is at its floating potential and as has been
seen earlier in electropositive, cold ion (Ti � Te) plasmas, this corresponds with
strong Boltzmann factor retardation of electrons. At more positive potentials the
electron current rapidly increases until there is no retardation of electrons when it
is at the local space potential in the plasma – i.e., at the DC plasma potential. At
higher potentials on cylindrical and spherical probes the exponential retardation
factor is replaced by the collection of electrons under orbital motion, which changes
less rapidly with potential. The transition between these two contrasting regimes
of electron collection can be identified as a ‘knee’ in the probe characteristic – it
is helpful to highlight the changeover by taking the derivative of the characteristic
(dI /dV ) which peaks just close to the plasma potential (see the curves on the
left of Figure 10.9). In practice, the peak in the first derivative tends to place the
plasma potential too high and it is perhaps more ‘reasonable’ to take a second
derivative and then to identify the plasma potential as being between the peak and
the zero-crossing of d2I /dV 2.

Exercise 10.5: Applying OML analysis Figure 10.9 shows the electron
current characteristic from a fine wire, ‘single’ Langmuir probe for the same
plasma as Figures 10.3, 10.4 and 10.6, replotted on axes of I 2

e against V .
The fine wire has an exposed surface area of 2.0 × 10−5 m2. Use the electron
saturation region (V > φp) to deduce the density and temperature of electrons
in the surrounding plasma.

Values of electron density and electron temperature can thus be deduced from
the electron saturation portion of the I–V characteristic of a cylindrical probe.
However, operating a probe in electron saturation risks perturbing the local plasma
by drawing too much current from it. For this reason, analysis of the ion current is
worthwhile.
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Figure 10.9 Left: The electron current to a cylindrical probe of area 2.0 × 10−5 m2 in the
same plasma as that for Figure 10.3 and its derivative, plotted against probe voltage. Right:
The same probe current plotted as the square of the electron component of the current
against voltage.

Ion saturation current to cylindrical probes

The ion current to a cylindrical probe does not simply saturate at a constant level
(the sheath area grows as more bias is applied), so for the ion portion of the
characteristic (V < φp) it is tempting simply to replicate the analysis of electron
collection, changing the charge, mass and temperature accordingly. Indeed, many
practitioners do just this but for a number of reasons it may not be an appropriate
course of action. For one thing it turns out that for low-energy particles (remember
normally in the plasma Ti � Te), the potential around the probe may in fact capture
ions that graze a radius somewhat larger than that of the actual probe (and not just
those that graze the actual probe). This arises from the orbital mechanics and the
shape of the potential around the probe. To be certain of the effective radius of
the probe under these conditions one must solve Poisson’s equation to find the
potential structure [213] and then fit probe data to I–V curves calculated with
different values of ion density. In the previous section the form of the potential was
not required because the thermal energy of electrons is large enough to avoid this
issue.

Another consequence of the low energy of ions in the plasma is that they have
very little angular momentum and they collide most often with neutral gas atoms
that are of comparable mass. This means that collisions may effectively bring an
accelerating ion to rest; then the radial field around the probe accelerates it so that
it approaches the cylindrical (or spherical) probe with purely radial motion. An
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alternative to the orbital motion limited model is the radial flow model known as
‘ABR’ after Allen, Boyd and Reynolds [214]. This also requires Poisson’s equation
to be solved and then ion currents can be determined as a function of probe potential,
for which Chen [215] has reported a comprehensive set of computations. The ion
density is then deduced by fitting the ion portion of the characteristic (V < φp)
to calculated curves. There is considerable evidence that the radial motion model
is more appropriate for confined plasmas like those described earlier in this book
[216].

The effects of collisions

The orbital motion model is more appropriate for electron collection than it is for ion
currents because of the relatively low mass and high thermal energy of electrons that
tends to maintain their motion around the probe, even when there are collisions
between charged particles and the background gas. One effect of collisions is
to cause some particles to become trapped in orbits that do not intercept the
probe – trapped populations will build up until collisional de-trapping establishes
an equilibrium. The space charge arising from trapped orbits would then affect the
local potential, but the OML analysis does not directly refer to the local potential.
It seems that OML models for electron currents are satisfactory until collisions
are so frequent that all semblance of orbital motion is destroyed (λe < rc). For
the collection of ions the situation is somewhat different, as the orbital motion is
much more fragile for heavy particles – collisions with the gas instantly disrupt
orbital motion and knock passing ions into paths that intercept the probe. There are
extensions to OML that model the collisional regime analytically for ion collection
[217], treating the dominant process as charge exchange. The principal effect is
as anticipated – collisions tend to increase ion current at any particular potential.
The model appears to work satisfactorily only for very fine wire probes with
rc/ � λDE – in view of this, the model of Allen et al. [214] appears to be more
robust.

Intermediate review of electrostatic probes

So, the initial appeal of the simplicity of electrostatic probes is reduced by the
complexity and contentiousness of the analysis. Truly planar probes are difficult
to achieve for localized measurements. The electron saturation of fine wire probes
is readily modelled, but it risks perturbation of the plasma through the high level
of current that is drawn. On the other hand, the ion saturation region is much less
invasive but rather more difficult to analyse in non-planar geometry. The inter-
mediate (‘electron-retardation’) region is perhaps the most appealing in terms of
both implementation and analysis: for planar, cylindrical and spherical geometry
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it yields an electron temperature through the semi-log plot of the I–V character-
istic. In fact this region is richer still and will reveal the whole electron energy
distribution, as will be shown in the next section.

10.1.5 The electron energy distribution

The electron current collected by retarding probes (i.e., V < φp) is worth a closer
look. It turns out that provided the distribution of electrons is isotropic and the
collector is convex, then the equations developed for an element of surface in
Section 10.1.4 can be integrated over a retarding surface without directly appealing
to Maxwellian distributions. This leads to a means of determining the energy
distribution function from the probe characteristic. That is important because this
distribution interacts with the gas to sustain the plasma. This section steps through
the analysis to show the connection between f (ε) and d2I/dV 2.

Consider a small surface �A immersed in an isotropic plasma. It is supposed
that the probe is sufficiently small that it does not seriously deplete the local
distribution of particles. The electron current that reaches the surface when it is
biased below the potential of the plasma can be found by integrating over all angles
and all speeds that contribute to the flux at the surface; a minimum speed is set
by the retarding potential of the surface and, depending on the angle at which an
electron moves relative to the element of area, there is for any speed a maximum
angle of incidence beyond which the component towards the probe is insufficient
to overcome the potential barrier:

�Ie = e�A

∫ ∞

vmin

∫ θmax(v)

0

∫ 2π

0
f (v) v cos θ vdϕ v sin θdθ dv, (10.15)

where v cos θmax = vmin and vmin = (2e(φp − V )/m)1/2, and the speed distribu-
tion, f (v), is that of electrons in the undisturbed plasma around the probe. The
integrations over the angular ranges leads directly to

�Ie = πe�A

∫ ∞

vmin

v3f (v)

(
1 − v2

min

v2

)
dv. (10.16)

Since the distribution is isotropic and the surface of the probe is small and convex,
the total current will scale with the collection area, so �Ie and �A can be replaced
by Ie and A. At this stage it is convenient to recast the problem in kinetic energy
ε = mv2/2 rather than speed, since the retardation is brought about through the
surface potential. The distribution in electron speed f (v) can be expressed in terms
of the distribution in electron energy fε(ε) using the defining expression

4πv2f (v)dv = fε(ε)dε.
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Therefore,

Ie = 1

4
eA

∫ ∞

εmin

(
2ε

m

)1/2

fε(ε)
(

1 − εmin

ε

)
dε, (10.17)

where the threshold energy above which particles are collected is εmin =
e(φp − V ) – therefore, εmin changes as the voltage on the probe is scanned. In
a sense, the relationship between the energy distribution function, the probe volt-
age and the probe current is now complete, but ideally one wants it in the explicit
form, i.e., ‘fε(v) =’. The next step in the analysis is not obvious but it eventually
achieves what is required. Note that the integration involves one limit that is a
function of one of the controlling parameters, V , so it is useful to make use of
Leibniz’s rule for differentiating under an integral:

d

dy

∫ a(y)

b(y)
F (x, y)dx = F (a, y)

∂a

∂y
− F (b, y)

∂b

∂y
+

∫ a(y)

b(y)

∂F

∂y
dx. (10.18)

Applying this formula, the first term is zero because the upper limit is independent
of V , the second term is zero because the integrand evaluated at the lower limit
vanishes, leaving only the third term. Using dεmin/dV = −e, this simplifies the
expression:

dIe

dV
= 1

4
eA

(
2

m

)1/2 ∫ ∞

εmin

ε1/2fε(ε)

(−1

ε

)
(−e) dε (10.19)

= 1

4
e2A

(
2

m

)1/2 ∫ ∞

εmin

ε−1/2fε(ε) dε. (10.20)

This still leaves a limit that depends on V , but on applying the Leibnitz formula
again only the second term is non-zero:

d2Ie

dV 2
= −1

4
e2A

(
2

m

)1/2

(−e)ε−1/2
min fε(εmin)

= 1

4
e3A

(
2

m

)1/2 [
fε(εmin)

ε
1/2
min

]
, (10.21)

with εmin = e(φp − V ). The quantity in square brackets in Eq. (10.21) is often
called the ‘electron energy probability function’ (EEPF).

This procedure thus arrives at the very useful result that the electron energy
distribution function (EEDF) in the undisturbed plasma can be extracted from
the second derivative of the electron current at a particular retarding potential V ,
which in turn defines the energy axis (e(φp − V )). The implementation of this is
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often called the Druyvesteyn [218] method, but in fact Mott-Smith and Langmuir
[211] were the first to show that the distribution function could be extracted from
derivatives of the current. As noted earlier, the second derivative is also useful in
identifying the plasma potential, which is in effect the zero of the energy scale for
the EEDF.

Q Using probe data how could the Maxwellian character of an EEDF be tested?
A For a Maxwellian EEDF (cf. Eq. (2.9)),

fε(ε) ∝ ε1/2 exp(−ε/kTe). (10.22)

The EEPF for a Maxwellian is thus a simple exponential. Therefore, a plot
of ln(d2Ie/dV 2) against V would be linear if the EEDF is Maxwellian.

Exercise 10.6: Second derivative method Figure 5.16 shows the EEPFs
extracted from data taken with a single (cylindrical) Langmuir probe. Comment
on the extent to which the plasma can ever be said to contain electrons that
have a Maxwellian distribution of energies.

10.2 Electrostatic probes for RF plasmas

In practice, the potential of a probe is often swept rapidly to acquire data quickly –
the considerations of Chapter 4 suggest that the timescale of such changes should
be kept much less than ω−1

pi (a succession of quasi-DC states) or much more than
ω−1

pi (frozen ions) if the ion-rich sheath around an electron-retarding probe is to be
considered ‘steady’. Furthermore, the potential between a probe and the surround-
ing plasma may also change when the probe is held at a steady potential while the
plasma potential changes. This section particularly considers the consequences of
there being RF components of potential between the probe and the surrounding
plasma.

10.2.1 Conventional probes in RF environments

The earlier analysis of RF plasmas showed that capacitive coupling across space
charge sheaths introduces RF fluctuations of the plasma potential with respect
to a laboratory ‘ground potential’, so that in general φp ∼ φp0 cos ωt , possibly
accompanied by higher harmonics. The first thing to consider is therefore what
effect this will have on a Langmuir probe that is operated with potentials that are
set relative to ground. Taking just the fundamental component of plasma potential
in the electron retardation region of a current–voltage characteristic for a single
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Figure 10.10 The effect of an RF fluctuation of plasma potential on the current–voltage
characteristic and log(Ie)–V of a Langmuir probe, area 2.0 × 10−5 m2, in a low-pressure
hydrogen plasma n = 3.6 × 1015 m−3 and kT /e = 2.1 V. The grey curves are the average
current when Vp = V1 cos ωt with V1 = 5 V and ωpi < ω < ωpe; the black curves indicate
the ‘true’ current that would be recorded with probe bias referenced to plasma potential.
The vertical grey lines indicate the range of plasma potential during the RF cycle.

probe, Eq. (10.6) reveals the difficulty:

I = eA

[
−n0ve

4
exp

(
e(V − φp0 cos ωt)

kTe

)
+ nsuB

]
. (10.23)

This shows that there is now a non-linear RF component of current to the probe.
It is not easy to measure this, as RF current will readily follow capacitive paths to
ground in the probe structure before one can intercept it. Therefore, a more realistic
option is to average the current over the RF period and change V more slowly and
see what can be recovered from such averaged data.

Q Figure 10.10 shows the time-averaged probe current when a 5 V amplitude
RF fluctuation is present. Account for the fact that the floating potential is
shifted by about −2.3 V (if necessary, refer to Section 4.3.1 for inspiration).

A The floating potential can be found by averaging Eq. (10.23). Setting I = 0,
rearranging and taking the natural logarithm:

eVf

kTe
= ln

(
4nsuB

n0ve

)
− ln I0

(
eV1

kTe

)
. (10.24)
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The first term on the RHS is effectively the DC floating potential with respect
to the plasma far from the probe and the second term is the RF-induced shift.
The value of the modified Bessel function I0(x) at x = eV1/kTe = 5/2.1 can
be read from Figure 4.8 to be about 3.0; it follows therefore that the shift in
floating potential is −2.1 × (ln 3) V = −2.3 V.

It is also apparent from the semi-log plot in Figure 10.10 that the whole of
the electron retardation section of the curve is shifted by the same amount as the
floating potential (−2.3 V) up to the point where the instantaneous probe bias
comes within range of the plasma potential variation. The averaging of the probe
current, whether at floating potential or at some other bias, gives rise to the same
shift, provided the instantaneous current remains within the exponential region.
This suggests that ion and electron retardation data might still be extracted from
an averaged characteristic. However, it must be recognized that this is not ideal
since the presence of the probe perturbs the plasma not only through the inevitable
local drain on charged particles but also by presenting a low RF impedance path
to ground. Furthermore, one cannot meaningfully conduct an EEDF analysis since
the full range of retardation is not available and the plasma potential is not easily
identified – it is only recognizable in Figure 10.10 because the range of the plasma
potential fluctuation is marked, but this is not known a priori in practice. Therefore,
a better strategy is to take steps to prevent RF voltage appearing across the probe
sheath (and prevent RF current from passing into the probe). This requires the
probe tip to follow the instantaneous plasma potential, offset only by a slowly
swept probe bias.

Passive compensation

The aim here is to use passive components right behind the probe tip to make the RF
impedance from the tip to ground as large as possible (Figure 10.11). A common
approach is to introduce components that give parallel resonances (Z → ∞) at the
fundamental and first few harmonics. There is not much room behind the probe tip,
so a neat way to achieve this is to select wire-wound inductors that are self-resonant,
owing to capacitance between the turns, at exactly ω, 2ω, 3ω, etc. This provides
a notch filter at each chosen frequency. A non-resonant low-pass filter formed by
an inductance and capacitance in parallel with that of the coaxial feed can also
be used. Both approaches in practice can be made more effective by designing
additional capacitive coupling to the plasma across the probe’s sleeve (Csleeve in
Figure 10.11) – RF current coupled this way importantly does not cross the sheath
at the exposed tip where the probe bias controls the particle current.
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Figure 10.11 (a) Schematic diagram of a passively compensated probe for an
RF plasma environment with a filter circuit close up behind the probe tip. Here
the reference electrode is the flange and any conducting surface connected to
it that is also exposed to the plasma. (b) An equivalent circuit of the resonant
passive compensation filter; the RF fluctuations of plasma potential are included
in Vp(t).

If carefully matched in frequency, passive compensation will restore the probe
characteristic to its ‘DC’ shape, as shown dotted in Figure 10.10. The filter charac-
teristics are awkward to tune in situ and in practice it is difficult to achieve complete
compensation, especially when there is a large fluctuation of plasma potential (e.g.,
several tens of volts), such as occurs in symmetric CCPs. In that case an active
compensation scheme may be more effective.

Active compensation

A probe can be actively compensated by driving it from an external RF source with a
signal that synthesizes the RF fluctuation of the plasma potential (Figure 10.12). In
the simplest implementation the probe is driven at the fundamental frequency of the
main plasma excitation source [219]. The amplitude and phase of the active RF bias
must be set to match the plasma potential fluctuation. The tuning condition is based
on maximizing the floating potential, which indicates that the RF potential between
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Figure 10.12 The equivalent circuit of an actively compensated probe circuit with
RF bias waveform synthesized from a number of harmonics each with indepen-
dently adjustable phase and amplitude. The tuning condition is based on maxi-
mizing the floating potential.

probe and plasma is minimized – cf. Eq. (10.24). In practice, the harmonic content
of the plasma potential leaves residual RF between the plasma and the tip. A three-
harmonic active compensation has been shown to be more effective [220]. A seven-
harmonic version has been devised with the tuning of seven amplitudes and seven
phases being accomplished through goal-seeking algorithms in the controlling
software [221]. Although one could simply measure the plasma potential variation
and feed that direct to the probe tip, there would be cable-length phase-shift effects
in the higher harmonics – the in situ tuning method side-steps this issue.

Further review of electrostatic probes

In DC plasmas, single Langmuir probes are powerful tools for making local mea-
surements of the EEDF. To use the same double-derivative method in RF plasmas
one needs to compensate for the effect of RF fluctuations between the plasma
potential and the probe tip potential. Passive methods have been devised to offset
the effects of at least the first three harmonics – in highly symmetrical discharges,
where the plasma potential variation can be very large, the passive compensa-
tion may not achieve the goal of attenuating the RF across the probe sheath to
much less than kTe/e. Active methods allow an optimization of the compensation
signal enabling higher fidelity, but at the expense of considerable complexity in
the apparatus, compromising the simplicity of the Langmuir probe method. There
are further factors that frustrate the routine use of Langmuir probes in RF plas-
mas that are used for processing – these are the issues of the compatibility of
probe materials and probe shadowing effects in an etching or a deposition envi-
ronment. The next section describes a method that attempts to deal with these
limitations.
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10.2.2 Electrostatic probes for real processing environments

Q Real plasma processing environments are primarily intended for the depo-
sition or etching of conductors or insulators. (i) Identify the issues that
should be addressed in devising electrostatic probes for these environments;
(ii) comment on the effect the presence of the probe may have on a plasma
process.

A (i) The materials and design of the probe must be compatible with the plasma
chemistry and the consequences of material deposition need to be mitigated.
(ii) The presence of the probe will locally perturb the plasma as the surface
of the probe and its support will act as an additional site for recombination
within the plasma volume, thereby affecting the various global equilibria.

One strategy to avoid introducing new materials into a processing chamber when
sampling the charged particles is to build a probe out of the existing structure. So
for instance in a CCP the electrodes themselves might be used directly; in an ICP
a substrate holder could be used. For example, measurements of RF currents and
voltages have been used in combination to infer ion fluxes and ion energy within
an ICP, employing sensors that were wholly outside the chamber, with models
that carefully account for the inductance and the capacitance of the electrical
feed between the sensing point and the plasma [222, 223]. These methods require
accurate calibration but are the basis of assessments of the global RF models
described in earlier chapters.

It is also feasible to use the self-bias effect introduced in Chapter 4 to obtain
a bias potential for smaller, more localized probes that are mounted in existing
surfaces [224]. This uses RF signals that are not related to the excitation of the
plasma under investigation, which might be a CCP, an ICP, a helicon plasma or
any other form of low-pressure plasma. Figure 10.13 illustrates the principle of
operation of a self-biased surface probe that is ‘charged’ to an RF floating potential
by the application of a burst of RF signal, amounting to many RF cycles, coupled
through an external capacitance. The capacitance blocks DC current and allows a
self-bias potential to be established on the surface during the early stages of the
burst. The self-bias sets the surface potential so that the steady arrival of ions over
one cycle is exactly compensated by the arrival of a pulse of electrons during the
brief moments when the instantaneous surface potential is close to plasma potential
(Section 4.3.1). After the end of the RF burst the surface potential is initially the
self-bias voltage, now without superimposed RF, so electrons no longer reach it
and the charge on the capacitor is changed initially by the arrival of positive ions
until it approaches the RF-free floating potential, when electrons once more reach
the surface.
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Figure 10.13 Schematic diagram of a self-biased planar probe, embedded in a
grounded surface. The probe bias is derived from a burst of RF applied to the probe,
during which a self-bias voltage is established across the external capacitance Cx.
At the end of the burst the RF is switched to zero and the capacitor discharges at
a rate initially determined by the flux of positive ions from the plasma onto the
probe.

Analytic expressions can be obtained that describe both the charging and the
discharging transients in electropositive plasmas in terms of a few parameters
related to the properties of the plasma and the external environment. The charg-
ing of the probe with different RF amplitudes effectively maps out the modified
Bessel function of Figure 4.9, and so can be used to deduce an effective electron
temperature. The decay of the bias after the end of the RF burst is similarly related
to the ion flux and just the tail of the electron energy distribution function – the
decay of the bias effectively sweeps out the ion characteristic of the planar probe
from ion saturation to floating potential. The decay phase is easier to analyse and
to interpret because the applied RF is zero during this period. The current in the
external capacitor (Cx) is equal to the net particle current arriving at the surface,
provided |dV/dt | � ωpikTe/e, so that the displacement current is negligible (cf.
Section 4.2). The starting point is the differential equation that describes this slowly
changing potential:

Cx
dV

dt
= eA

[
nsuB − n0ve

4
exp

(−e(V − φp)

kTe

)]
. (10.25)

For the decay phase the initial condition is that at t = t1, when the applied RF
amplitude is switched from VRF to zero, the potential across the capacitor is the RF
self-bias established by the burst when t < 0, that is

V (t1) = −kTe/e × ln(I0(eVRF/kTe)). (10.26)
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Figure 10.14 The instantaneous (unresolved, grey) and slow transient (black)
potential of a self-biased planar probe of area 1.8 × 10−4 m2 embedded in the
grounded wall of a plasma source. Outside the chamber the probe is driven with
a 0.9 ms burst of RF at 12 MHz and 15 V amplitude, applied through a 22 nF
capacitor.

The solution of Eq. (10.25) can then be shown to be

eV

kTe
=

(
t − t1

τ

)
− ln

{
exp

(
t − t1

τ

)
− 1 + I0(eVRF/kTe)

}
, (10.27)

where τ = CxkTe/nsuBe2A is a characteristic time for the decay process.
For the period when the RF burst is active, the slow transient potential can be

followed as the self-bias builds up by including the average of the instantaneous
electron current and starting with the initial condition V = 0. Figure 10.14 shows
the complete solution for surface potential of a planar probe, starting with a 0.9 ms
period during which the RF burst is active.

Q Show that the initial decay of the transient potential is linear, remembering
that in Eq. (10.27), VRF is the RF voltage during the ‘on’ phase and therefore
defines the initial conditions for the decay phase.

A In Eq. (10.27), if t ≈ t1, then the Bessel function dominates the logarithm
leaving only the linear time dependence of (t − t1)/τ .

The use of bursts of RF and transients means that quasi-DC measurements can
be made through insulated surfaces. The method is particularly appealing for ‘dirty’
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plasma environments, wherein deposition of insulating material can poison con-
ventional Langmuir probes. The RF-biased probe can tolerate several micrometres
of deposited material – it can even be used to monitor and measure deposition
rates for insulating materials. For a more complete description, including large
bias and electronegative plasmas, numerical solutions are required to the differ-
ential equations that, together with appropriate boundary conditions, determine
the transient phenomena [225]. The method provides simple and accurate mea-
sures of ion flux and effective electron temperature and has proved to be a very
sensitive means of following subtle changes in a variety of low-pressure plasma
sources.

Q Why is it possible to deduce the ‘effective’ electron temperature with this RF
probe? What part of the distribution actually reaches the probe?

A When the voltage decays, electrons gradually reach the probe, so the curve
in the late decay phase gives the electron temperature, much as it does for
a regular Langmuir probe. However, the probe eventually sits at the floating
potential, that is at a potential substantially smaller than the plasma potential:
only the tail of the electron energy distribution reaches the probe.

Exercise 10.7: RF self-biased planar probe With reference to Figure 10.14,
(i) say how the electron temperature could be found from the steady −10.5 V
self-bias created by 15 V of RF and (ii) deduce the ion flux onto the surface
of the probe from the rate of decay of the self-bias potential at the end of the
burst.

The RF-biased planar probe combines a relatively uncomplicated technique with
a simple analysis; a major advantage is its tolerance of insulating films [226], and
indeed it can even be used as a film thickness monitor. The initial transient collects
a constant, saturated ion current, essentially rejecting electrons and attracting posi-
tive ions with a large negative bias. However, the collector is unable to discriminate
among positive ions that reach the surface with different energies – the next tech-
nique manages to do this by taking the ions into a region that is electrostatically
screened from the plasma.

10.3 A retarding field analyser (RFA)

The analysis of the speeds or energies of charged particles in a plasma can be
done in various ways. One is by selecting particles according to particular spatial
trajectories that correspond with a narrow range of speeds. Another is simply by



10.3 A retarding field analyser (RFA) 349

+
+
+

+ + +

faster

faster

slower

slower

detector

detector

(a) (b)

Figure 10.15 (a) A deflecting filter selects particles within a specific (narrow) range of
energy; (b) a retarding filter passes particles with energy above a threshold level.

blocking those with energies below a specific level. In this section, after briefly
exploring both of these types, attention is focused on the latter, which is simpler
to implement for direct measurements in the physical environments of RF plasma
devices. It will be shown that the electric field between narrowly spaced grids at
different potentials provides a means of assessing the energy and speed distributions
of ions arriving at surfaces exposed to low-pressure plasmas [210].

10.3.1 Basic principles

When a charged particle enters a region of electrostatic field it is accelerated in
the direction of the field. However, the trajectory that it subsequently follows
depends also upon its speed in directions perpendicular to the field (Figure 10.15).
The motion of the particles along the field direction is slowed or speeded up
depending on the sign of the charge and the direction of the potential gradient.
The motion across the field is not changed, but the trajectory is deflected by the
acceleration in the field direction and the path depends on the charge-to-mass ratio
Ze/M .

So, taking a collimated sample of charged particles one could, for instance,
spread their paths through space by introducing them to a region where their
motion is deflected by an electric field. It is simplest to consider a case in which
the initial motion is perpendicular to the field (Figure 10.15(a)). The resolution
that can be achieved is a combination of geometry and surface potentials – higher
resolutions require more space and will inevitably produce lower signals. Any
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collisions in the interaction volume will destroy the information being sought,
so this scheme typically requires high (and ultra-high) vacuum to allow compo-
nents to be constructed on a convenient vacuum-engineering scale. Because parti-
cles reaching any particular detector are within a narrow energy range, the signal
often amounts to a weak current that is best amplified by some form of cascaded
electron multiplier (or a micro-channel plate), which also requires UHV. Exam-
ples of ion energy distributions obtained with an electrostatic deflection filter are
shown in Figure 4.6. An alternative approach aligns the electrostatic field with the
direction of motion of a collimated beam of charged particles (Figure 10.15(b)). In
this case the electric field accelerates or decelerates the particles without a change
of direction. The electrostatic field is derived from grids that are biased at specific
potentials relative to the plasma. Particles of a particular kinetic energy, ε, in the
source region can pass grids that have a lower potential than that of the source
(V < φsource), gaining kinetic energy as they go. However, in regions where the
field retards the motion (V > φsource), particles can only reach where the potential
energy, eV , is less than their initial kinetic energy. This allows an energy threshold
to be set on (or near) a collector such that only particles with initial kinetic energy
in excess of a specific value are collected. The retarding field analyser is based on
this arrangement.

Figure 10.16 shows one implementation of an RFA that can be used in low-
pressure plasma systems. The grid across the entrance must have a hole size that
is smaller than λDe so that it is not penetrated by quasi-neutral plasma, which
would prevent proper operation of the analyser. The broad aperture allows a simple
current detection system to be used without an electron multiplier, but this makes
effective differential pumping difficult, so the device must be operated at chamber
pressure. Collisions in the analyser again destroy energy information and this limits
the operational pressure range.

Q If an RFA is to operate with positive ions drawn from an argon plasma
without differential pumping, what is the maximum operating pressure if the
aperture-to-collector distance is 0.75 mm?

A The charge exchange mean free path (λi) for argon ions is about 1 mm at
5 Pa (cf. Eq. (2.30)). So the operating pressure should be less than this if
differential pumping is not available [46].

The current that reaches the collector of a retarding field analyser is made up
of those particles with sufficient energy to overcome the discriminating potential
(whether it be that of a scanned collector or that of a separate discriminator grid),
attenuated also by the transparency of the grids. For a two-grid design biased to



10.3 A retarding field analyser (RFA) 351

Vc

Vc

Vr

t

Vp

Vr

0

+ +

grids

aperture

plasma
e−

insulators

collector

I

Figure 10.16 A two-grid RFA, with a plan of the potential distribution. The aper-
ture grid screens the plasma from potentials set within the analyser; the repeller
grid is set sufficiently negative to reject virtually all electrons; the collector poten-
tial is scanned, rejecting ions that have insufficient energy to reach it. In a three-grid
design the scanned collector is replaced by a further grid that is scanned to reject
ions below a certain energy and a collector at fixed potential.

collect ions, in terms of the velocity distribution at the surface, f (v),

I = βRFAθaθr

∫ ∞

vmin

vf (v)dv, (10.28)

where vmin = √
2eVc/M and θa,r are the fractional open areas of the grids; the

constant βRFA can be determined from the fact that when vmin = 0 the integral
should equal the ion saturation current into the area of the aperture, eAnsuB. The
upper part of Figure 10.17 shows the current–voltage characteristic of an RFA
for ions arriving at a plasma boundary with a narrow distribution of energies
(Section 4.2.3) and then falling freely through a sheath potential of 9.6 V onto the
front surface of the RFA. The energy resolution of the analyser is determined in part
by the extent to which the grids ensure planar equipotentials within the analyser:
smaller holes favour finer resolution at the expense of decreased transmission. The
next section considers how the current is related to the distributions of ion energies
and speeds at the entrance to the analyser.
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Figure 10.17 Current–voltage and the differential current–voltage characteristics
for an RFA with an aperture of 10−4 m2, when the ions enter the sheath with
a distribution like that in Figure 4.5 and are then accelerated through a sheath
potential of 9.6 V. This particular RFA has an energy resolution of 0.4 eV.

10.3.2 The ion velocity and energy distributions

The integral in the expression for the analyser current does not depend on potential,
though the lower limit does. In that case the Leibnitz rule for differentiating under
the integral (Section 10.1.5) gives the following result:

dI

dVc
= −βRFAθaθr

√
2eVc/M f

(√
2eVc/M

) [
1

2

√
2e

MVc

]
(10.29)

= −βRFAθaθr
e

M
f
(√

2eVc/M
)

. (10.30)

Thus the first derivative of the current–voltage characteristic is proportional to the
ion velocity distribution function, or IVDF (i.e., the distribution of speeds directed
towards the analyser). Note that the IVDF is plotted in Figure 10.17 against an
energy axis since eVc is the potential energy of the collector that will collect ions
having a greater initial kinetic energy. To recover the IVDF on a velocity scale, or
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to find the distribution in energy, the IEDF, one needs to use

f (v)dv = fε(ε)dε with ε = Mv2/2,

which states that the number of particles in the speed range v to v + dv must equal
the number in the equivalent energy range ε to ε + dε. Then it follows that

fε(ε) = 1

Mv
f (v).

So, in terms of the current–voltage characteristic of the collector in a two-grid RFA,

fε(eVc) = − 1

βRFAθaθr

√
M

2eVc

1

e

dI

dVc
. (10.31)

The highest velocity ions in Figure 10.17 have a kinetic energy that should closely
correspond with free-falling from plasma potential, so Vp can be identified with
the position of the sharply falling edge of the dI/dV plot and the width of the
distribution, in the absence of collisions, can be linked to kTe (cf. Section 4.2.3).

Exercise 10.8: RFA With reference to Figure 10.17, identify from where
the potential of the plasma can be deduced and hence determine the plasma
potential far from the analyser.

Q It has tacitly been assumed that the signal to an RFA comprises a single
species of singly charged positive ions. What characteristics of the signal
would indicate if this were not so in practice?

A (i) If there were doubly and singly charged ions of the same species leaving
the plasma with the same energy, the RFA would not be able to separate them
precisely because it discriminates only in terms of energy.
(ii) Likewise, a second species of a singly charged ion would gain the same
increase in kinetic energy on crossing the sheath as the original species,
contributing to the same peak in dI/dV as the first species; the only clue
to their presence would be through processes that produce differences in the
distributions of ions arising from generation and transport in the plasma.

10.3.3 The electron energy distribution

The RFA can be used to analyse the energy of negative charges that pass the
aperture by reversing the repeller and collector potentials. The repeller needs to be
biased above plasma potential to send the positive ions back to the plasma. The
sheath at the aperture already prevents the collection of negative charge that leaves
the plasma with less energy than eVp, so the RFA will only see the high-energy tail
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of the distribution. If it is supposed that the negative charge reaching the collector
is from a Maxwellian distribution of electron energies then, as with the simple
analysis of retarding probes, a semi-log plot can be used to test this hypothesis and
extract Te.

In principle, one could also apply the full Druyvesteyn formula, Eq. (10.21), to
obtain the actual shape of the EEDF tail from an RFA.

Q Account for the difference between the formulas that extract distribution
function data for ions and electrons from current–voltage characteristics of
RFAs and probes.

A Comparing the formulas for the IEDF, Eq. (10.31), and the EEDF, Eq. (10.21),
one can see that the former is obtained from a single derivative whereas the
latter is linked with the second derivative. This difference arises because
the ions enter the RFA strongly directed towards it – ion motion parallel to
the aperture is neglected – whereas the electron distribution is assumed to
be isotropic, so account has to be taken of particles that approach from all
directions outside the aperture.
Comment: In any application of the methods, these assumptions should be
remembered.

10.4 Probing with resonances and waves

The main focus of this section will be methods that are based on the interaction
of a plasma with small amplitude signals close to the plasma frequency. These
interactions provide further ways to probe plasma density, many of which can be
implemented with less perturbation and materials that are more compatible with
processing environments. Figure 10.18 shows a selection of ‘microwave probes’
that will be considered in this section. They are comparable in size to Langmuir
probes but they do not draw net current from the plasma. As with other immersive
probes, however, their presence introduces a local drain on the plasma particles
that recombine on their surfaces and on that basis they are not attractive options for
an active processing environment. Nevertheless, the models developed in earlier
chapters and numerical simulations need devices like these to validate them. The
first step is to look at the microwave properties of a small sphere in a large plasma.

10.4.1 Microwave impedance of a small spherical probe

The density of the RF-generated plasmas described in this text generally falls in the
range 1015–1019 m−3, which corresponds with electron plasma frequencies that are
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Figure 10.18 Various types of microwave probes in cross-section: (a) hairpin
resonator (the hairpin is supported in a plane slightly behind that of the loop,
from which it is DC-isolated); (b) multipole resonator; (c) transmission cut-off;
(d) surface waveguide.

at the lower end of the microwave region of the spectrum, in the range 0.3–30 GHz.
It is interesting, therefore, to examine the response of a plasma to signals in this
frequency range. Straightaway the restriction ‘small’ can be quantified, since at
10 GHz a spherical probe must have dimensions � 3 cm if it is considered to be
all at the same potential at the same instant of time (cf. Chapter 6). In contrast
to the modelling related to the production and confinement of RF plasma, the
consideration of the response of plasmas to microwaves will presume that signals
are of low amplitude and that the responses are linear.

It was established in Chapter 2 that electromagnetic signals will only propa-
gate in an unbounded plasma if their frequency exceeds the plasma frequency.
Later chapters have been concerned with bounded plasma and the introduction of
microwave signals into such plasmas necessarily involves consideration of bound-
aries. As a simple example of a plasma with internal and external boundaries,
consider a spherical chamber filled with plasma at the centre of which is a small
spherical probe (see Figure 10.19). The task here is to quantify the impedance that
the probe would present to a 50 � microwave source coupled to it by a 50 � coaxial
cable. In Section 2.4.5 the reciprocal of the impedance (i.e., the admittance) of a
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Figure 10.19 A spherical probe coupling a coaxial cable to a large volume of
plasma.

plasma slab was shown to be

1

Z
= iωC0εr = iωC0

(
1 − ω2

pe

ω(ω − iνm)

)
, (10.32)

where C0 = ε0A/d is the capacitance of the same slab but with vacuum between
the boundaries. This was then recast into a combination of vacuum capacitance,
plasma inductance and plasma resistance:

1

Zp
= iωC0 + 1

iωLp + Rp
. (10.33)

The inductance of the plasma slab, which results from the electron inertia, was

Lp = 1

ω2
peC0

.

The resistance of the plasma slab, which results from the elastic electron–neutral
collisions, was

Rp = νmLp = νm

ω2
peC0

.
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Lp

C0

Rp

Cs

probe chamber

Zsph

Figure 10.20 The equivalent circuit of the spherical probe in Figure 10.19.

So what is the impedance of a system in which the rectangular boundaries of the
slab are replaced by the spherical surfaces of the probe and the chamber?

If the radius of the chamber is much larger than that of the spherical probe
(r0), the capacitance of the probe in vacuum (i.e., the amount of charge per volt of
potential with respect to the outer boundary) is just C0 = 4πε0r0. The admittance
of the spherical plasma is then given by Eq. (10.33) with this spherical version of
the ‘geometric’ capacitance C0; the properties of the plasma are still summarized
in Lp and Rp.

There are two further components that must be considered to complete the
analysis of the impedance between the probe and the chamber – these are the
sheath between the sphere and the plasma and the sheath between the plasma and
the vessel. Since the area of the vessel is so much larger than that of the probe, the
impedance of the latter sheath can be neglected. If r0 � λDe then one can presume
that the relatively thin sheath on the probe is adequately described by a planar
model, so treating it as a region where εr = 1, its capacitance is Cs = 4πε0r

2
0/s;

for a floating sheath s is about 7λDe. Then the total impedance, between the sphere
and the chamber Zsph, as illustrated in Figure 10.20, is given by

Zsph = 1

iωCs
+ 1

iωC0 + 1
iωLp + Rp

. (10.34)

Figure 10.21 shows the magnitude and phase of Zsph. There are two resonances –
the upper one occurs at ω = ωpe and corresponds to the parallel resonance of the
plasma through Lp and C0 (when Zsph → ∞), while the lower one at ω < ωpe

is a series resonance (Zsph → 0) between the sheath capacitance and the plasma
inductance. A similar, but different, result arises in slab geometry [85] – in that work
the analysis is related also to aspects of resonantly enhanced plasma generation,
whereas here the emphasis is on non-perturbative diagnostic measurements.
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Figure 10.21 Magnitude and phase of the impedance of a floating spherical
probe in a large spherical plasma-filled cavity, calculated for a uniform plasma
(n = 1016 m−3 and kTe = 2 eV). The lower resonant frequency depends on the
dimensions of the probe and its sheath: ω = (s/r0)1/2ωpe.

Q An electrical circuit at resonance exchanges energy between the electrostatic
field in a capacitor and the magnetic field of an inductor – what two types of
energy are exchanged in the series and parallel resonances of the spherical
probe immersed in a plasma?

A The resonances involve electrostatic energy, in the sheath or the plasma
volume, that is being exchanged with the directed kinetic energy of the
electron population in the plasma, which is what gives rise to the apparent
inductance of the plasma.

Q Given that the extremely low and extremely high impedances at the resonant
frequencies in Figure 10.21 are likely to be identifiable by looking at the
(microwave) signals reflected by the mismatch between the probe and the
coaxial cable feeding it, suggest how a spherical probe could be used to
determine electron density.

A It is presumed that the probe sits within the central region of a large volume
of uniform-density plasma (cf. Figure 10.19). The basic idea is to apply a
swept frequency signal to the probe via the coaxial feed while monitoring the
reflected power. The maximum impedance at the plasma frequency will be
evident from a maximum in the signal reflected from the spherical probe (or
equivalently a minimum in the transmission); electron density follows from



10.4 Probing with resonances and waves 359

ω2
pe = nee

2/mε0 – in contrast to Langmuir probe methods, one does not need
to know kTe.

Also, the lower-frequency resonance corresponds to minimum impedance
and therefore the greatest opportunity to excite currents in the plasma. On
the basis of a thin sheath, devoid of electrons, it occurs at ω = (s/r0)1/2ωpe.
Linking this resonance to the electron density requires a model of the sheath
on the electrode (e.g., Child–Langmuir), which then requires a value for kTe.
Alternatively, one could use the resonant frequencies to infer s and then
compare that for consistency with sheath models.
Comment: With a fast oscilloscope, or a network analyser, the resonances
are also easily detected from the sharp phase changes indicated in the figure
[227].

There are many closely related resonance probes which will be introduced
briefly in the following sections. Note though that since resonances can be masked
by heavy damping in the plasma (effectively around resonance Rp � ωLp), these
probes are restricted to the low and intermediate pressure range.

10.4.2 Self-excited electron resonance probe

The spherical microwave resonance probe was considered in the previous section
connected to an externally swept signal generator. However, it has been shown
in earlier chapters that in an RF plasma there will be many harmonics of the
excitation frequencies present. It is reasonable therefore to wonder under what
conditions these harmonics might ‘inadvertently’ couple to the natural resonances
of the plasma-filled chamber. Indeed, Section 5.4.3 introduced the slab-geometry
counterpart of the series resonance just described, ‘self-excited’ by harmonics of
the fundamental drive frequency. This phenomenon offers a convenient diagnostic
tool. The presence of the resonance is imprinted in the current that traverses the
plasma. Even when the external current is purely sinusoidal, harmonic currents
can circulate through the plasma and conducting walls. A sample of this current
can conveniently be taken from an isolated section of the chamber wall via a low
impedance bypass and its high-frequency content analysed (Figure 10.22).

The frequency of the self-excited resonances can be linked back directly to the
plasma density using a simple model of the resonance that requires an estimate
of the sheath capacitance. Discussions so far have overlooked the structure of the
plasma, which is not expected to have a uniform plasma density (cf. Chapter 3)
and thus not one single and precisely defined plasma frequency; furthermore, the
resonances are broadened by collisional damping. This leaves the plasma sensitive
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IRF = −I0 sinωt

Ires IresIRF∼ self-excited series resonances

50 Ω

2 π/ω
t

Figure 10.22 The self-excited resonance probe is effectively an isolated section of
wall that takes a sample of the current flowing in the walls of the vessel, converting
it to a voltage signal for analysis.

to a band of series resonances, so the drive frequency does not need to match exactly
a high-quality factor resonance. The decay time of the resonance amplitude within
each fundamental RF cycle is readily linked to the electron collision frequency,
which in turn is a sensitive monitor of changes in gas composition. The analysis of
signals from such a probe is often referred to as self-excited resonance spectroscopy
(SEERS) [87, 228].

Wave phenomena must be considered when electrical signals are applied to
structures that have characteristic dimensions comparable with the wavelength of
electromagnetic disturbances at the same frequency. This was discussed in Sec-
tion 6.2.1, where it was shown that at 200 MHz this became an issue for electrode
widths (not the inter-electrode gap) of about 15 cm. Scaling up by an order of mag-
nitude in frequency shifts that length scale down to 1.5 cm, and where microwaves
are concerned objects more than a few millimetres in size will have to be considered
from the perspective of electromagnetic waves. That not only sets an upper limit to
the radius of a SEERS probe, but it also suggests ways to contrive other resonances
that can be used to infer plasma density more directly. This is the next topic.

10.4.3 Hairpin resonator

The structure of a microwave hairpin resonator is shown in Figure 10.18(a). The
resonator part is a U-shaped wire that forms a length of twin-wire transmission line
that has an open circuit at one end and a half-loop short at the other. The resonator is
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fed from a full-loop termination of a length of coaxial cable placed adjacent to the
shorted end – in practice, the components are fixed in place by a small amount of
dielectric material designed to give appropriate mechanical support without undue
electrical influence. The situation is analogous to an acoustic wave in an organ
pipe: the resonant condition for the hairpin transmission line is when it supports
a standing electromagnetic wave between the open and shorted ends; this arises
when L = λ/4. So for a 2.5 cm long hairpin the resonance in vacuum occurs when

f0 = c

4L
= 3 GHz. (10.35)

An electromagnetic wave propagates in the space between and around the
hairpin, guided by the wires, down to the open end from where it is reflected.
When L = (n + 1)λ/4 there is constructive interference between the forward and
reflected waves that establishes a standing wave. If the hairpin were immersed in
a dielectric medium then c → c/

√
εr, which would tend to shift the quarter-wave

resonance to lower frequency since, for ordinary dielectrics, ε > 1. In a plasma,
however, neglecting collisions,

εr = 1 − f 2
pe

f 2
. (10.36)

It is convenient here to use cyclic frequency, f , rather than angular frequency,
ω = 2πf .

Q Show that in a plasma the hairpin resonance is given by

f 2
res = f 2

0 + f 2
pe. (10.37)

A The result follows from the quarter-wave resonance in a dielectric,

fres = c

4L
√

εr
. (10.38)

Substituting for εr from Eq. (10.36) with f = fres and squaring gives

f 2
res = (c/4L)2

1 − f 2
pe/f

2
res

. (10.39)

Then with Eq. (10.35) this rearranges to Eq. (10.37).

At resonance, the standing wave is established with an antinode (maximum) of
voltage and a node (zero) of current at the open end; at the closed end the current
is maximum and the voltage is zero. This means that the hairpin is especially
sensitive to dielectric around the open end, where the electric field is larger. At
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Figure 10.23 Reflected power resonance curves for a hairpin probe in vacuum
(dotted) and in four plasmas with different values of electron density (a–d).

resonance the structure absorbs incident microwave power, whereas off-resonance
incident microwave energy is reflected back along the coaxial feed. Thus the
resonance can be detected as a minimum in the reflected power envelope. Notice
that the resonant frequency always occurs above the plasma frequency. That has
an important consequence for the energy absorbed by the resonator – the standing
wave of current on the hairpin couples into electromagnetic waves that are able to
propagate away into the surrounding plasma. The propagation of electromagnetic
waves between two probes is another way to explore the plasma properties; a brief
example is given in Section 10.4.5.

If the separation of the limbs is too large, then there is poor coupling between
them and the energy is radiated away without building up a standing wave. At
the other extreme, one does not want the inevitable sheaths around the wires
of the hairpin to occupy a significant fraction of the space between them otherwise
the transmission line dielectric is not comprised purely of plasma and the resonant
frequency is not so easily determined. Various experimental factors (including
ways to account for the sheath around the hairpin) that need to be considered in
constructing and operating hairpin probes can be found in the literature [229–234].

Exercise 10.9: Hairpin probe Figure 10.23 shows data from a hairpin probe
in vacuum and in a CCP, at four different RF power levels. Deduce the maxi-
mum plasma density achieved in the vicinity of the probe.
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The hairpin resonator is a particularly simple structure to make and to analyse.
Other structures can also support standing waves and therefore can be expected to
furnish other resonances. Thus it is not surprising to find a great deal of structure
in the spectrum of energy reflected back from a cable terminated with a hairpin
placed inside the enclosure of a plasma source. Identifying the hairpin resonance
is still feasible, since this feature is first identified ‘on the bench’. Then it is easily
recognized after insertion and can be tracked when the plasma is formed, as it shifts
to higher frequency when the plasma density is increased. By contrast, resonances
of parts of the structure away from the plasma do not change with plasma density
and can be ‘subtracted out’. Other plasma-linked resonances such as the series
resonance can still be excited, and these and higher modes of the hairpin can be
avoided by restricting the microwave sweep range. However, this also highlights
the possibility of designing other plasma-linked resonant structures – one such
example is considered next.

10.4.4 Multipole resonator

The fundamental resonance of the hairpin is above the plasma frequency and the
device couples to electromagnetic waves in the plasma. Around plasma boundaries
the abrupt changes associated with sheaths and the surfaces of metals and dielectrics
create a complicated microwave environment. Even a simple spherical probe has
been shown to have microwave resonances. The multipole resonator shown in
Figure 10.18(d) is a development of the spherical probe – it looks at first sight like
additional capacitance has been added in the form of a thick dielectric coating, but
in fact it is more sophisticated than this. The core is not a single metallic sphere,
being in fact a pair of separate hemispheres that are connected to a balanced feed
with the microwave input signal on the two hemispheres in anti-phase. The analysis
of this structure is complicated [235], and it reveals that electromagnetic waves
guided around the surface of the sphere can excite resonant modes. These waves
interact with the plasma over a distance of a few times the outer radius of the
probe. Figure 10.24 shows the results of calculations showing readily identifiable
resonances that can be linked to the plasma properties, principally electron density
in the vicinity of the probe. The multipole probe is able to meet the constraints
on materials exposed to the plasma since the dielectric layer and the outer surface
of the support shaft can be made from material chosen solely for its compatibility
with the plasma environment.

One of the important points about all the hairpin and multipole probes is that
resonances are formed by standing waves guided by the plasma boundary. The
closing part of this chapter looks briefly at these waves themselves.
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Figure 10.24 Calculated absorption spectrum of a multipole resonator.

10.4.5 Microwave transmission and cut-off methods

In a vacuum, any frequency of electromagnetic wave will propagate. In a plasma,
plane-wave solutions to Maxwell’s equations can be found only for ω > ωpe. The
presence of free electrons forced into oscillation by an incident wave effectively
excludes frequencies below ωpe, reflecting the incident energy – the plasma fre-
quency marks the limit beyond which a population of electrons is unable to keep
up and waves can penetrate. The sheath regions that form at plasma boundaries
are largely free of electrons (so ε = 1) and are therefore important channels in
which wave solutions to Maxwell’s equations can be found. Modes are found that
propagate parallel to the boundary in some of the range of ω < ωpe that is excluded
by the bulk. Although the wave does not escape into the body of the plasma, the
fields decay over a skin depth or so inwards from the boundary as a disturbance
travels along the boundary.

Detailed analysis [236] shows that there are sharp bands of frequency in which
waves will or will not propagate along the boundary, depending on the bound-
ary structure. For instance, waves are guided down a sheath between a dielectric
and a plasma for ωpe/

√
2 < ω < ωpe whereas they will only pass along a sheath

between metal and plasma in the complementary region ω < ωpe/
√

2 and ω > ωpe.
A diagnostic probe based on this has been demonstrated – it is illustrated in Fig-
ure 10.18(d). A band of transmission is observed between a ‘transmitter’ and a
‘receiver’ that are linked by a rod of dielectric, which is itself shrouded by the
plasma and a sheath that guides the waves. The ratio of the upper and lower limits
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of transmission is close to the expected
√

2. This ‘transmission’ probe is not as
localized as the hairpin and multipole resonators, and the edges of the pass band are
less easy to discern than resonance peaks, especially in the presence of collisional
damping.

A variation on this idea places a transmission probe in one arm of an interfer-
ometer and measures the phase difference between a path guided along a plasma
boundary and one outside the plasma in coaxial cable [237]. In this version the
waves are guided along a sheath around a section of coaxial line from which the
dielectric has been stripped back to expose the surface of the inner conductor. A
frequency is chosen above the expected plasma frequency and waves are guided
along the bare conductor, although some energy propagates away because ω > ωpe.
The phase shifts for an interferometer with a 3 cm path through the plasma corre-
spond conveniently with electron densities at the rate of about 10◦ per 1016 m−3 of
electron density.

The final configuration in this range is that of Figure 10.18(c), in which one
simply tries to find ωpe by determining the frequency below which wave propagation
from one probe to another across a region of plasma [238] is cut off. This is not as
simple as it first sounds because, as has already been discussed, just as the plasma
path is cut off, the dielectric waveguide modes switch on and the best one can hope
for is a sharp dip in transmission at ωpe, which is inevitably blurred by variations in
electron density along the path. In fact, a bare wire probe is not necessarily the best
way to launch and detect microwaves in a plasma and the cut-off and interferometer
methods can also be done using horns to transmit and receive signals across the
plasma [229,239]. Interferometry with unguided microwaves is a well-established,
non-invasive technique, especially in high-temperature plasmas, though the method
necessarily gives a line-of-sight integration of plasma density.

10.5 Summary of important results

A simple refractory, conducting probe is a convenient means of quantifying the
charge composition of a plasma. Langmuir tried this in the 1920s and was one
of the first to develop an electrical probe method. There are now numerous varia-
tions on the theme, including planar, cylindrical and spherical geometry. There are
also probes that resonate near the plasma frequency and others that launch waves.
Some probes are electrostatic and others are electromagnetic; some are effectively
wireless; most absorb but some emit. An important feature is that a probe should
function in steady and transient plasmas, while special schemes have been devised
for RF plasmas. Magnetized plasmas pose further challenges. Each configura-
tion is accompanied by assumptions that constrain both the applicability and the
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analytical methods that translate the measured currents and voltages variously into
charge densities, space potentials, particle fluxes, energy distributions and mea-
sures of collisionality. This chapter looked at electrical measurement methods in
general for local characterization of charged particles in the environment of the
non-equilibrium plasmas used in materials processing. Table 10.1 sets out the main
methods discussed in this chapter.

There is a complementary toolbox based on optical techniques that can be used
in measurements on charged and neutral populations and for measuring electric
and magnetic fields. It is in the nature of these methods that they involve specific
atoms and molecules in specific environments, so they are often not universally
applicable. However, their capacity to probe locally and non-invasively makes them
attractive partners to electrical methods.



Appendix: Solutions to exercises

Chapter 2

Solution 2.1: Using Eq. (2.11) with kT /e = 2 V gives v = 9.5 × 105 m s−1.
Then, using Eq. (2.20) with �φ = 10 V, kT /e = 2 V and n = 1016 m−3:

Qw =
[

1016 m−3 × 9.5 × 105 m s−1

4
exp (−5)

]
(4 V) × 1.6 × 10−19 C

≈ 10 W m−2.

Solution 2.2: Use ng = p/kTg, kTe/e = 2 V, ve = (8kTe/πm)1/2, kTi/e =
0.05 V and vi = (8kTi/πM)1/2. Then

frequencies (K = ν/ng):

νiz = 2.7 × 104 s−1,

νexc = 2.0 × 105 s−1,

νm = 1.5 × 108 s−1,

νi = 1.4 × 106 s−1 ;

mean free paths (λ = v/ν):

λel = 6.5 × 10−3 m,

λi = 4 × 10−4 m.

Solution 2.3: Using the mean free path and frequencies calculated for the same
conditions in the previous example,

λel = 4 × 10−3 m,

νiz = 2 × 104 s−1,

νexc = 1.55 × 105 s−1,

νm = 2.3 × 108 s−1,

368
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and the data given in Table 2.1, one obtains λε = 0.067 m. This length is greater
than the typical plate separation in capacitive discharges.

Chapter 3

Solution 3.1:

λDe =
√

ε0kTe/(ne0e2) =
√

ε0(kTe/e)/(ne0e)

=
√

8.9 × 10−12 × 2.0 × /(1.0 × 1016 × 1.6 × 10−19) m

= 1.1 × 10−4 m.

Solution 3.2:

eV0

kTe
= e2 ni0

2ε0kTe
s2 = 1

2

(
s

λDe

)2

, since ni0 = ne0,

s/λDe =
√

2 eV0/kTe. (A.3.1)

So the thickness of an ion matrix sheath would be
√

200 = 14 Debye lengths.

Solution 3.3: Divide both sides by λDe and rearrange to make s/λDe the subject,
then simplify the RHS by expanding λDe and explicitly grouping V0 with e/kTe to
obtain

s

λDe
=

(
4
√

2 ne0 e
√

kTe/M

9Ji

)1/2 (
eV0

kTe

)3/4

. (A.3.2)

The Child–Langmuir sheath under the given conditions is then found to be about
25 Debye lengths thick.

Solution 3.4: Equation (3.23) gives

s

λDe
=

(
8

9π

λi

λDe

)1/5 (
ne0e

√
kTe/M

Ji

)2/5 (
5

3

eV0

kTe

)3/5

.

Inserting values gives

s

λDe
=

(
8

9π
× 3

)1/5

× 1 ×
(

5

3

200

2

)3/5

= 20.84.

Solution 3.5: First check that the sheath will be collisionless:

λDe =
√

ε0kTe

ne2
∼ 10−4 m � λi, so the sheath is collisionless.
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Next calculate the ion flux using the idea that the ion density at the boundary is
reduced by the (collisionless) acceleration to the Bohm speed (Eq. (3.30)):

�boundary ≡ �surface ≈ 0.6 n0

√
kTe

M
ions m−2 s−1.

Then, evaluating the potential drop across the sheath using Eq. (3.32) and including
the ion energy Mu2

B/2 at the sheath edge, the ion energy is

wsurface = kTe
1

2

∣∣∣∣ln(
2πm

M

)∣∣∣∣ + 1

2
kTe joules per ion

and so the net ion energy flux to the surface is

Qsurface = 1

2
kTe

[∣∣∣∣ln(
2πm

M

)∣∣∣∣ + 1

]
× 0.6 n0

√
kTe

M
≈ 22 W m−2,

remembering that 2 eV = 3.2 × 10−19 J.
Comment: Compare this with the electron energy flux to a surface calculated for
the same situation at the end of Section 2.1.2.

Chapter 4

Solution 4.1: Using Eqs (4.1) and (4.2), with M = 40 amu (argon) gives

τi ≈ 50 ns

τe ≈ 0.2 ns.

The period of a 13.56 MHz waveform is τRF = 74 ns, so that τe � τi � τRF.

Solution 4.2: Using Eq. (4.3) the results are H: ωpi = 130 × 106 s−1, H2O: ωpi =
31 × 106 s−1, Ar: ωpi = 21 × 106 s−1.
Comment: These are angular frequencies so the unit is s−1 rather than Hz.

Solution 4.3: The total DC bias is the floating potential given by Eq. (4.15):

VfRF = 2

[
1

2
ln

(
2π × 9.1 × 10−31

40 × 1.7 × 10−27

)
− ln I0(25)

]
V = −54.3 V.

Inserting the magnitude of this DC voltage into Eq. (A.3.1) for a DC matrix sheath
gives

s/λDe =
√

2 × 54.3/2 ∼ 7.
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So one needs to compare the mean free path with 7λDe. For the given plasma the
Debye length is 10−4 m, which is only 1% of the mean free path so the ions would
pass through more or less without collisions.
Comment: This simple estimate of sheath size can be improved by building a proper
model of the RF sheath region – see Section 4.4.

Solution 4.4: The ions will arrive at a rate given by the Bohm flux and with the
mean sheath energy, so the ion energy flux is

Qsurface = hln0 uB eVfRF .

Taking the centre-to-edge density ratio from the low-pressure side of Figure 3.11:

Qsurface = 0.5 × 1016 ×
√

2 × 1.6 × 10−19/(1.67 × 10−27 × 40)

× 1.6 × 10−19 × 54.3 ∼ 100 W m−2.

Solution 4.5: To control the energy of ions arriving at an insulating substrate
one must use the self-bias effect of an RF modulation, as the substrate blocks DC.
The pressure must be set low enough to avoid collisions in the sheath, e.g., using
λDengσi−n � 1; a low electron temperature is also desirable to keep the distribution
at the plasma/sheath boundary as narrow as possible, though this may not be easily
controlled as the pressure has already been constrained. Then one must choose a
frequency high enough (ω � ωpi) or sufficiently asymmetric to promote a single-
peaked IEDF.
Comment: Wang and Wendt [50] proposed a voltage waveform that combined
a slow negative-going ramp and a short positive-going pulse for application to a
substrate via a coupling capacitor, which achieves a steady, narrow IEDF with a
steady ion flux, that is neutralized on the substrate by the electrons attracted during
the periodic positive pulses.

Chapter 5

Solution 5.1: The rise in temperature and fall in density follow from the reduced
pressure in much the same way as with the gap size: hl increases, leading to
enhanced losses. The sheath size deceases with increasing pressure, as indicated
by Eq. (5.52).

Chapter 8

Solution 8.1: For efficient heating, αz ≤ 0.5 m. As shown in the tables, kz ≤ 190
and kr ≤ 60 for the reference conditions, with ωce = 8.9 × 108 s−1. Therefore,
Eqs (8.26) and (8.27) show that αz ≤ 0.5 m is equivalent to νeff � ωce/50 ≈ 2 ×
107 s−1.
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Chapter 10

Solution 10.1: Since the model characteristic is I = Ii tanh(eV/kTe), the slope
at the origin is eIi/kTe. The first thing to do therefore is to deduce from the graph
the saturation and the slope at the origin: these quantities are estimated to be 32 μA
and 30/2.0 μA V−1, respectively, noting that the curve does not quite saturate in
the displayed range. Thus

kTe/e = 32 × 2.0/30 = 2.1 eV.

Then uB =
√

2.1 × 1.6 × 10−19/(40 × 1.67 × 10−27) = 2200 m s−1 and I0 =
nseuBA gives

ns = 32 × 10−6/[1.6 × 10−19 × 2200 × π × 25/4 × 10−6] = 0.46 × 1016 m−3.

Comment: This is the density at the plasma boundary. Given the relatively low
pressure one can take hl ≈ 0.5, so the density beyond the immediate vicinity of the
probe, n0, will be double this value.

Solution 10.2: For M ≡ 1 amu the plasma potential is expected to be 3.5kTe/e

above the potential of a reference surface. In that case the area criterion, Eq. (10.5),
becomes

A1 � 34A2 ,

which is a markedly easier thing to achieve for a reference electrode that is genuinely
in the vicinity of the probe electrode.

Solution 10.3: The first thing to do is to reject the data for the area ratio of 34 as
this is insufficient to ensure an unimpeded electron saturation (i.e., this is not the
characteristic of a single probe). One can use the curve with area ratio of 340 since
this meets the criterion for a single probe in hydrogen.
(i) At the plasma potential there is a sharp discontinuity: on the ‘340’ graph this is
at 9.6 V.
(ii) At the floating potential the current is zero: in the figure this is at 1.9 V (what-
ever the area ratio). Comment: In most real systems the floating potential is indeed
not that of the local ground for one or more of the following reasons – the plasma
is non-uniform so that φp2 �= φp1; the vessel walls are not conducting or are set
at a potential different from ground; the object that is floating does not have the
simple planar geometry presumed here.
(iii) The ion density follows from ns = I (−15 V)/eA2uB. From the graph
I (−15 V) = 0.15 mA, but to evaluate the Bohm speed one needs the electron
temperature. This can be estimated from the difference between the plasma and
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floating potential:

kTe/e = (Vp − Vf)/0.5 ln(M/2πm) = 6.2

2.8
≈ 2.2 V.

Then one can evaluate uB = 1.4 × 104 m s−1 and finally

ns = 0.15 mA/[1.6 × 10−19 C × 2.0 × 10−5 m2 × 1.4 × 104 m s−1]

= 3.5 × 1015 m−3.

(iv) The electron density in the undisturbed plasma follows from n0 =
4I (9.6 V)/eA2ve; the mean thermal electron speed is ve = √

8kTe/πm = 9.8 ×
105 m s−1. This gives

n0 = 4 × 5.3 mA/[1.6 × 10−19 C × 2.0 × 10−5 m2 × 9.8 × 105 m s−1]

= 7.1 × 1015 m−3.

Solution 10.4: Linearity on a semi-log plot implies that a function is exponential.
All curves show a linear portion at very small current, but only the two that meet
the criterion for ‘single probe’ operation are linear throughout.
(i) The discontinuity locates the plasma potential at 11.3 V.
(ii) From the slope of the semi-log plot, kTe/e = 20/9 ≈ 2.2 V.

Solution 10.5: According to Eq. (10.14), a few volts above plasma potential, the
plot of I 2

e against V should be linear with gradient

d(I 2
e )

dV
= (e 2πrcln0)2 e/π2m

and intercept (Ie = 0) at

Vint = kTe/e + φp.

The plasma potential is clearly seen as a knee in both the I–V curve and the
I 2–V curve (and as a peak in dI /dV ) at 11.3 V. After this the transition to linear
behaviour of I 2–V begins. Reading from the graph, the gradient well above the
knee is 100 × 10−6/5.5 A2 V−1 and the intercept is 9.3 V. It follows from these
measurements that n0 = 7.2 × 1015 m−3 and kTe = 2 eV.

Solution 10.6: The Maxwellian character is indicated by linear semi-log plots of
the EEPF. In Figure 5.16 simple linear behaviour is only really evident around 40 Pa.
Below that the distribution seems to show two different linear portions. Treating the
two regions as separate Maxwellians the gentler slope at high energy corresponds
to a higher-temperature distribution whereas the steeper slope at low energy is
associated with a cooler component. The temperatures can be deduced by the same
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means as the semi-log analysis of I–V curves introduced in Section 10.1.3. Above
40 Pa, the distribution in the high-energy tail is much cooler than the bulk. [Closer
scrutiny reveals that the distribution here scales with exp(−av4) – a form that is
called a Druyvesteyn distribution.]

Solution 10.7: (i) The electron temperature could be found from a graphical
solution of Eq. (10.26) with VRF = 15 V – the result is 2.5 eV.
(ii) The slope of the initial decay rate is

dV

dt

∣∣∣∣
initial

= eAnsuB

Cx
.

From the graph the initial slope is 2 V/0.1 ms, so inserting values for Cx and A

gives nsuB = 1.5 × 1019 ions m−2 s−1.

Solution 10.8: The highest velocity ions in Figure 10.17 have a kinetic energy
that should closely correspond with falling freely from plasma potential, so Vp can
be identified with the position of the sharply falling edge of the dI /dV plot. The
lower side of the IVDF is located at the 9.6 V given as the sheath potential and
the distribution extends above that to 11.6 V, which corresponds with the plasma
potential far from the RFA. According to the Tonks–Langmuir formulation the
width of the IEDF (which is equivalent to the width of the IVDF on an energy
scale) is 0.854 kTe, so that in this case kTe ∼ (11.6 − 9.6)/0.854 = 2.3 V.
Comment: Because of the limited energy resolution in the analyser this is slightly
larger than the 2.0 V used to calculate the initial distribution for Figure 4.5.

Solution 10.9: The maximum-density case corresponds to the highest resonant
frequency: fres = 3.05 GHz. The vacuum resonance f0 is at 2.55 GHz. Using
Eq. (10.37),

f 2
pe = (3.052 − 2.552)(GHz)2.

Therefore

ne = mε0

e2
(2πfpe)

2 = 3.5 × 1016 m−3.
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Index

adiabatic approximation, 39
ambipolar diffusion, 84
Ampère’s theorem, 225
anisotropy, 6

Bessel function
complex arguments, 221
first kind, 190
modified, 112, 221

Bohm
speed, 74

Bohm criterion
electronegative plasma, 300
original, 72, 74

Boltzmann factor (or equilibrium), 64

CCP, 15, 131, 176
CCP asymmetrical, 166
CCP symmetrical, 133
charge exchange, 36
Child-Langmuir law

collisional, 70
collisionless, 67
fully collisional, 69
RF, 125, 133, 179

CMOS, 4
collision

binary, 28
elastic and inelastic, 27

collision frequency, 29
conductivity

complex plasma, 47
Coulomb collisions, 280
cross-section, 29
current-driven sheath, 119
cycloidal motion, 295
cyclotron frequency

electron, 264
ion, 264

damping
Landau, 282
wave–particle, 282

DBD, see dielectric barrier discharge
Debye length (or distance), 64
deposition

magnetron, 9
PECVD, 7
plasma, 7
sputter, 8

dielectric barrier discharge, 2
dielectric lens, 199
dissociation, 34
dissociative ionization, 34
distribution function, see also EEDF, IEDF

ion energy, 101, 105
Maxwell–Boltzmann distribution,

21
Maxwellian, 21
Maxwellian energy, 25
Maxwellian speed, 24
Maxwellian velocity, 22
velocity, 19

double layer, 13, 304, 313
double probe

asymmetrical, 325
symmetrical, 322

Druyvesteyn
disitribution, 374
method, 340

dual frequency
sheath, 179

E–H transition, 202, 209
E-mode, 16, 202, 209
edge effects, 216
EEDF, 339, 346
EEPF, 169, 339
electromagnetic regime (CCP),

177
electron energy distribution, see EEDF
electron retardation region, 327
electron saturation

cylindrical, 332
planar, 326

electron temperature, 92
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electronegative plasmas, 298
electrostatic regime (CCP),

177
energy relaxation length, 40
equivalent circuit

inductive, 227
inductive with capacitive coupling,

244
matching network, 162
plasma, 54
RF sheath, 116
symmetrical CCP, 140, 142

etching
deep, 7
plasma, 5
reactive ion, 6

Faraday shield, 254
Faraday’s law, 229
ferromagnetic cores, 255
floating double probe, 323
floating potential

DC, 61, 75, 94, 324, 327,
345

RF, 112, 341, 345
flux

ambipolar diffusion, 85
electron energy, 27
ion, 75, 90
ion energy, 76
random thermal, 26
wall, 26, 75

gamma mode, 170
gas heating, 291
global model

DC, 39, 41, 75
dual-frequency CCP, 182
inductive, 246
single-frequency CCP, 161
VHF CCP, 202

group velocity, 269

H-mode, 16, 202, 209
hairpin resonator, 360
heating

dual-frequency enhancement,
181

dual-frequency sheath, 180
hard wall, 150
kinetic-fluid, 151
ohmic (collisional), 52, 141
stochastic, 222
stochastic (collisionless), 141, 149,

180
wave absorption, 277

helicon, 12, 16
helicon mode number

azimuthal, 272
longitudinal, 275

helicon reactor, 262

homogeneous model
CCP, 133
sheath, 116, 117

hysteresis, 157

ICP, 15, 219
IEDF, 105, 186
impact parameter, 332
impedance

plasma, 54
inductance

coil, 231
electron inertia, 142, 231, 236
magnetic storage, 231, 236
mutual, 237
plasma, 54, 142, 178

inhomogeneous model
CCP, 146
sheath, 125

instabilities
E–H transitions, 309

instability, 157
ion matrix, 65
ion saturation (cylindrical), 336
ion saturation (planar), 323, 327
ion transit time, 103
ion–ion plasmas, 307
ionization

frequency, 32
multi-step, 28
rate (coefficient), 32
single-step, 28
threshold, 31

isothermal approximation, 39
IVDF, 352

kinetic theory, 19

Larmor radius, 293

magnetized plasmas, 293
match-box, 162, 252
mean free path, 29
MERIE, 260
microwave interferometry, 365
microwave probe, 354
mode transition, 157, 170
MOSFET, 3
multi-step ionization, 28
multipole resonator, 363

negative power absorption, 258
neutral depletion, 284, 288
non-local electron kinetics, 41

OML, 332, 335, 337
orbital motion, 332

parallel resonance, 357
permittivity

complex plasma, 47
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photo-emission, 320
plasma

ion–ion, 14
plasma frequency

electron, 98
ion, 98

plasma impedance, 54
plasma permittivity tensor, 264
plasma potential

DC, 62, 216, 313, 320, 327, 335
RF, 96, 168, 217, 253, 343

plasma transport, 78
plasma transport models

Godyak, 87
Schottky, 83
Tonks–Langmuir, 82

plasma turbulence, 298
ponderomotive force, 259
power dissipation

by electrons, 52, 141, 142
by ions, 141

power transfer efficiency, 241, 250
Poynting theorem, 227
probe

active compensation, 343
analysis (planar), 328
assumptions (planar), 320
cylindrical, 330
emissive, 327
floating double, 323
hairpin, 360
microwave, 354
multipole resonator, 363
passive compensation, 342
planar, 176
processing environment, 345
RF-biased planar, 348
RF-compatible, 340
single Langmuir, 326
spherical, 330
symmetrical double, 322

quasi-neutrality, 59, 76

rate coefficient, 29
reference electrode, 325
refractive index, 265
resistance

plasma, 54
retarding field analyser, 176, 314, 348
RFA, see retarding field analyser

scaling laws, 158
secondary electrons, 170
secondary emission coefficient, 170
secondary processes, 320
self-bias, 113

self-excited resonance spectroscopy, 360
semi-log analysis, 329, 338, 342, 354, 374
series resonance, 171, 357
sheath

DC, 2, 59, 61, 221
dual-frequency, 179
reversal, 128
RF, 60, 96, 131, 176

sheath model
Child–Langmuir, 67,
current-dri

69, 70, 125
ven, 120,

homogeneous,
128

116,
inhomogeneous,

117
125

ion matrix, 65, 117
RF, 116, 117, 125
voltage-driven, 119, 127

sheath thickness, 94, 158
single-step ionization, 28
skin depth

anomalous, 256
collisional, 50
collisionless, 57
inertial, 57
ordinary, 48, 220

speed
ion acoustic (also Bohm), 52, 74

sputtering, 8
standing wave, 188, 361
stochastic heating, 141, 149, 180, 222
substrate holder, 219

TCP, 15
transformer

coupled plasma, 221
model, 221, 236

transition
E–H, 202
E–H–W, 261, 283
global E–H, 208
plasma/sheath, 72
spatial E–H, 214

transmission line model, 189, 206

variable mobility, 70, 88
vibrational excitation, 35
voltage-driven sheath, 119

W-mode, 16
wavelength shortening, 196
waves

Alfvèn, 267
electron cyclotron, 267
electron plasma, 51
electrostatic, 50
helicon, 268
ion acoustic, 52

whistlers, 260
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