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Abstract:

Classical diffusion of single particles on lattices with frozen-in disorder is surveyed. The methods of continuous-time random walk theory are
pedagogically developed and applications to solid-state physics are discussed. The first part of the review treats models with regular transition rates;
these models possess internal structure or correlations over two jumps and complete solutions are given for each case. The second part of the review
covers models with disorder in the transition rates and irregular lattices. For these problems too, explicit calculations and methods are explained and
discussed.

1. Introduction Die Wissenchaft, sie ist und bleibt,
Was einer ab vom andern schreibt.
Doch trotzdem ist, ganz unbestritten,
sie immer weiter fortgeschritten.

Eugen Roth, Roth’s Tierleben

This review surveys random walks of single particles in ordered and disordered lattices. These walks
may serve as models of classical particle transport in ordered and disordered solids. Random-walk
theory on ordered lattices has been extended far beyond uncorrelated walks with constant transition
rates. Furthermore, methods of statistical averaging have been developed to deal with random walks on
lattices with static disorder. It is the intent of the authors to present a systematic, yet pedagogical,
discussion of these methods and to give details of the derivations of the results.

The random-walk models are treated here under the perspective of their applicability to solid-state
physics, but the methods presented have applications in many fields. The authors hope that a broad
readership will find the presentation useful. There are many results which are not found in any review
(some results are new) and the results of several researchers on the same problem are presented in a
unified notation. Though the models are motivated by solid-state applications, there have been many
parallel pure mathematical and interdisciplinary (biology, chemistry and physics) developments. The
authors found it necessary to impose a constraint on the citations. The main criterion for selection was
the paper’s contribution to the coherence of the presentation. Despite this constraint, over 300 articles
are cited and even this list cannot be considered to be complete.

In the review the diffusion of a particle is described by stochastic methods. That is, probability
concepts are used and the information about the particle’s dynamics is contained in a statistical quantity
called a probability distribution on the lattice. The dynamics is formulated either in terms of
enumerating the individual transitions of the particle from one site to another (random walk descrip-
tion) or in terms of rate equations for the probability distribution, the so-called master equation. The
first formulation requires that the transitions be summed and weighted according to their frequency of
occurrence; this powerful method is derived in chapters 2 and 3; first simple models are considered,
then more complicated situations are introduced. Of course, the equivalence of this method to the
master-equation approach is shown. Most of the review is devoted to continuous-time random walks;
however, discrete-time random walks have also been included.

The justification of the stochastic methods must be sought in the complicated Hamiltonian dynamics
of the particle. The particle is coupled to the many degrees of freedom of the lattice and it undergoes
rapid and irregular momentum changes by its interaction with the atoms in its environment. As this
statement implies, there must be a wide separation of time scales between the particle’s motion and the
lattice vibrations; the host atom then acts as a random heat bath coupled to the particle and the local
minima of the potential form a lattice on which the particle moves. This separation of time scales would
allow a description of particle diffusion in terms of Fokker-Planck equations. In a solid the particle
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remains near a local minimum of the potential energy for a long time and in an event of short duration
it passes through a local saddle point of the potential to get into the next local minimum. Thus there is a
second separation of time scales between the duration of the transitions and the mean residence time of
the particle near the local minima. It is this second separation that allows the passage to a description of
particle diffusion in solids as a random walk between lattice points. Often this second separation is not
well justified; however, in the framework of the phenomenological formulation the deviations are
included in internal states, more complicated time dependencies of the individual processes, etc. It
remains then to derive the parameters of the random-walk models from first principles. Theories that
deduce the transition rates between local minima from a combination of Hamiltonian mechanics and
statistical mechanics have been developed [1, 2]. The success of these theories relies on a knowledge of
the atomic interactions between the host crystal atoms and between the diffusing particle and the host
crystal atoms [3].

Stochastic modelling is quite powerful and the methods have been used with great success in laser
theory [4], biological systems [5] and chemical dynamics [6]. In solid-state physics, they provide a
framework for analyzing experimental results on particle diffusion in ordered and disordered materials
and testing models for the underlying dynamics. Stochastic models are of practical importance because
they are not difficult to formulate and in many circumstances exact results can be derived. The
clarification of the particular circumstances in which these results can be derived is a partial goal of this
review.

The subject matter treated in the review can be divided into two parts. The first part, chapters 2-5,
covers diffusion in ordered structures. Complications arise from non-Bravais lattices (chapter 2),
correlation between successive jumps (chapter 4) and internal structure of the lattice sites (chapter 5).
All these complexities can be managed by suitable extensions of random-walk theory. Complete
solutions of the probability density are given for all these problems and this subject can be considered
to be conceptually well understood, as far as diffusion in ordered solids is concerned. The conceptual
difficulties appear when these models are used to describe diffusion in disordered solids.

Considerable progress has been achieved in the last years in the direct treatment of random walks in
disordered lattices, cf. chapters 6-10. This progress is partially due to the identification of two
prototype models of particle diffusion in disordered solids. The random-barrier model is studied in
chapter 6 and the random-trap model in chapter 7; each model has its own simplicities and difficulties.
Methods have been developed to give approximate solutions for the prototype models. Long-time
asymptotic solutions are derived for specific physical quantities. Complete analytic solutions are
available only for special cases in one dimension. Despite their obvious simplicity, both models exhibit
a signature of disorder; namely, moments of the particle’s displacement have non-analytic time
dependence. For instance, the non-analytic time dependence is manifest as a long-time tail of the
velocity autocorrelation function. These signatures are disorder specific and do not appear when a
periodic distribution of transition rates is assumed, instead of a random distribution of the same
transition rates. Both models have disorder only in the transition rates and the particle diffuses on a
regular lattice. The regular lattice structure is a difficult restriction to relax and only very special models
are discussed in chapter 8 and section 6.5. The authors know of no methods available for analytically
treating topologically disordered solids. The above models, as well as the more general models of
disordered systems with local and global drift (chapter 10) also exhibit signatures of disorder. In chapter
9 trapping of particles by random walks in the presence of random permanent traps is discussed. This is
clearly a non-equilibrium phenomenon, but also here the signatures of disorder become visible.

At the time this review was being organized in 1982, diffusion in disordered media was a subject of
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active research. Though four years have intervened before the work was completed, research on this
subject has not waned. On the contrary, several important achievements have been published; and the
activity shows no signs of diminishing. This shall be most apparent to the reader by the large number of
articles cited from the years 1983-1985.

There are several other good reviews and books on the subject of random walks. Weiss and Rubin [7]
discuss applications with an emphasis on polymers and on solid-state physics. Montroll and West and
the book edited by Shlesinger and West [8] treat special mathematical topics in detail, they also contain
historical notes which are interesting reading as well. Excellent mathematical works are Stratonovich’s
and Feller’s two volumes [9, 10] and Spitzer’s book [11]. Barber and Ninham’s book [12] is another
useful source of information on random-walk models. Goel and Richter-Dyn [13] cover applications of
stochastic processes to biological systems and van Kampen [14] has many applications of stochastic
processes.

2. Poissonian random walk on regular lattices
2.1. Discrete random walk

This chapter treats the random walk of a particle on a translation-invariant lattice where the
transitions between the sites occur according to a Poisson process. This is a standard textbook problem
and it is described here mainly for introductory and reference purposes. Several extensions are made in
this chapter; for instance, the inclusion of the case of non-equivalent sites in the unit cells of
non-Bravais lattices is handled.

First the discrete random walk (RW) of a particle on a d-dimensional Bravais lattice is considered. It
is conveniently formulated in terms of recursion relations. The sites of the Bravais lattice will be
denoted by integer vectors n. A linear, square, cubic, or hypercubic lattice with lattice spacing a is
taken for specific examples. In each step of the discrete RW the particle makes a transition from a given
site, say m, to a set of sites n with probabilities p, ,,. The assumption of lattice-translation invariance
requires that p, . depends on the difference n —m only. The simplest example is provided by
nearest-neighbor transitions on cubic lattices in d dimensions,

_ {1/2d if n is a nearest neighbor of m, 21
0 otherwise. (2.1)

n.m

Of course, p, ,, must be normalized,
2 Pum=1. (22)

The quantity of interest is the conditional probability P,(n|!) of finding the particle at lattice site n
after » steps when it started at site /. The following recursion relation is obvious

P,(n|1)= 2 pyuP, i (m]1). (23)

The probability P, (r|l) can be expressed by iteration as a v-fold product over the transition
probabilities. In the translation-invariant case the recursion relation is simplified by Fourier transforma-
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tion. A large but finite lattice composed of L‘= N unit cells is considered and periodic boundary
conditions are imposed. The Fourier transformation is defined by

P,(k) =2 exp[—ik-(R, — R,))] P,(n|l). (2.4)

The Fourier transform of the spatial transition probabilities p, ,, is called the ‘structure function’;
another name is the ‘characteristic function’. It is given for nearest-neighbor transitions on the
simple-cubic lattices by

pk)= % ,:21 cos(ak,) , (2.5)

where a is the lattice constant. It should be noted that p(k) generally reflects the structure of the
reciprocal lattice, e.g., it is periodic with period 27G where G is a vector of the reciprocal lattice.
In Fourier space the iteration of eq. (2.3) leads to

P,(k)y=p'(k), (2.6)

where p,(m|l)=3,, was used. From this formula the elementary expression for the probability
distribution of the 1-dimensional RW after n steps is easily obtained. For symmetric nearest-neighbor
jumps p(k) = cos(ka). Inverse Fourier transformation of eq. (2.6) yields [15, 16]

Pv(n|m)=(§)vu!/{(”+’;_”>z(”_’;“L”)!}. (2.7)

The generating function P(n; £) of the discrete RW is very useful for general considerations. It is
defined by

P(n; )= 2, & P,(n). (2.8)
Evidently
P(n) = o) 2.9)

£=0 "

An equation for the generating function is obtained by multiplying the recursion relation eq. (2.3) by £"
and summing from » =1 to »

P(n; £)— ¢ 2. p, . P(m; &)= Py(n). (2.10)
Again this equation is simplified by Fourier transformation. Its solution is
Pk; £)=[1- ¢ p(k)] " (2.11)

v-fold differentiation of this result according to eq. (2.9) yields the previous result eq. (2.6).
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2.2. Markoffian master equation

In this section the RW of a particle on a translation-invariant lattice is considered where the
transitions of the particle are assumed to represent a Poisson process in time. The transition rate from a
site to a nearest-neighbor site will be called I'; further-neighbor jumps will be ignored until section 2.4
for simplicity. As the discrete RW, so too the time-continuous RW is a Markoff process, i.e., the
present state is determined by the past state at a particular time, but not by a more detailed sequence of
states. The object of interest is now the conditional probability P(n, t|1,0) of finding the particle at site
n at time ¢ when it started at site [ at time 0. It is also assumed that the process is time-homogeneous,
i.e., no time point is distinguished. The Markoff property requires that the conditional probability
obeys the Chapman-Kolmogoroff equation [17]

P(n, z'| 1,0)=>, P(n, t|m, 1) P(m,t'|1,0), (2.12)

where t>¢' >0. If r=1t"+ 7 is chosen with a small = then

I'r n, m nearest neighbors,
P(n,t' +7|m,t')={1-z" n=m, (2.13)
0 otherwise .

z is the number of nearest-neighbor sites, also called the coordination number. The first and third line
are consequences of the assumption of a Poisson process with transition rate I, the second line follows
from particle conservation. In the limit of infinitesimally small 7, the master equation is found,

%P(n, (L0Y=T S [P(m,|1,0) P(n, £|1,0)] . (2.14)

{(m.n)

The notation {m, n) designates m as the nearest-neighbor site of n.

It is useful to define a transition rate matrix A, , . This matrix contains as off-diagonal elements, the
negative transition rates from site m to site n, the diagonal elements give the total transition rate
originating at the sites n. With this new notation the master equation is

dP(n,t|1,0

i ) _ —% A, o P(m, t]1,0). (2.14")

The master equation is easily solved after Fourier and Laplace transformation. The Laplace
transformation is defined by

P(k, s)= f dr exp(—st) P(k, 1), (2.15)

the equation then has the form
{s—zI[p(k) — 1]} P(k,s)= P(k,1=0)=1, (2.16)

where p(k) is the structure function introduced in eq. (2.5) for simple cubic lattices. Thus, it is clear



270 J.W. Haus and K.W. Kehr, Diffusion in regular and disordered lattices

from this equation that the conditional probability is also the Green function for the master equation.
The solution of eq. (2.16) is immediate, and one has in the time domain

P(k, t) =exp[—A(k) ] , (2.17)
where
A(k) = zI'[1 = p(k)] (2.18)

is the Fourier transform of the previously defined transition-rate matrix.
Moments of the probability distribution are also important physical quantities. From the definition of
the Fourter transform, the second moment or mean-square displacement of the particle is:
~2 25
(F)(s) ==V, P(k. $)|,_q » (2.19)
in the Laplace-transformed representation and

(r*)(6) =~V Pk, 1) = . (2.20)

using the representation of the conditional probability with the time variable. From eqs. (2.16) and eq.
(2.17) the explicit results for the mean-square displacement in these representations and for simple-
cubic lattices are:

(F*)(s)=2dld’ls* , (2.21)
and

(r*)(ty=2dTa’ . (2.22)
From this expression the diffusion coefficient is deduced

D=Ta =a"2dr, (2.23)

and 7= (2dI')”" is the mean residence time of the particle at a site. The fourth moment of the particle’s
position also finds application in later chapters. A definition of the fourth moment is:

(94

e P(k, )| 4=0 (2.24)

<r”“><s>=g

in the Laplace-variable representation. For concreteness the expression of this moment for the
hypercubic lattices is:

(F*)(s)=24dIa'ls’ + 2dla"ls* . (2.25)
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In the time representation this result is:
(r*)(t)=12dIa*’ + 2dTa’t . (2.26)

The probability distribution can be analytically calculated for many lattices in space and time
representation. From eq. (2.17) and the inverse Fourier transformation, the result for the hypercubic
lattice is:

wla

d d
P(n,t)= 2 exp(—2dl't) f dk [1 [exp{ik,n,a — 2I't cos(k,a)}] . (2.27)
(z-ﬂ‘d —-mla =1
The symmetry of the integrands allows the replacement exp(ik;n,) with cos(k;n;) and each integral is
independent. The integrals are the definitions of the modified Bessel functions, [ (2It), the final
expression is:

P(n, t) = exp(-2dT’t) f[ 1,(2I1). (2.28)

As t—0, all the modified Bessel functions approach zero except for [(21't), which approaches unity.
For long times, the asymptotic properties of the Bessel function give:

P(0, 1) = (4nl1)" %", (2.29)

In particular, for n =0 the particle disappears from the initial site with an inverse power law which
depends on the dimension of the lattice.

For completeness the representation of the conditional probability is given for the space and
Laplace-variable representation in 1 dimension. The inverse Fourier transform of eq. (2.16) for the
linear chain is:

wla

. exp(inka)
P(n,s)= f dk [s + 20 (1 - cos ka)]

~mla

(2.30)

The integral can be most simply evaluated by contour integration. Define the variable Z = exp(ika),
then

1 Z"
P j dz
(n,5) = Gi20Z-T-TZ°" (2.31)

where the initial site is chosen to be the origin. The contour C is closed on the unit circle. The
denominator contains two simple poles:

_ s 2F Vs(s +47I)
+ T T (2.32)
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Furthermore, for n >0, there is an nth order pole at infinity and for 7 <0 there is an nth order pole at
the origin. The contour integration is carried out so that these poles are excluded. For short times
s— —, and the pole Z, is inside the unit circle, whereas Z_ is outside the unit circle. The result is:

. (Z"INZ.-Z)). n=0,
P(”vs)‘{zi/r(z+—2), n=0. (2.33)

The definitions of the moments and the probability distributions calculated above are often referred to
in the following chapters of this review.

An important application of this result is the derivation of the cross section of incoherent quasielastic
scattering on single particles diffusing in crystals. Van Hove [18] showed that this cross section is
proportional to the spatial and temporal Fourier transform of a self-correlation function P,(r, t). In the
classical approximation the self-correlation function is identical to the conditional probability intro-
duced above. The incoherent quasielastic dynamical structure function is related to ﬁ(r, s) by

S, (k, w)= % Re{P(k,s =iw)} . (2.34)

The quantity };(k, s) has been derived above for the model of diffusion of a particle on a Bravais lattice.
Hence S, (k, w) for diffusion of a particle on a regular Bravais lattice is given by

nc

1 Ak)
Siclk, 0)= = ——F—. )
mc( (l)) T wh+A2(k) (2 35)
The Lorentzian appearing in eq. (2.35) is called ‘quasieleastic line’ and its width is given by A(k).
This width function reflects the structure of the reciprocal lattice, A(k) is periodic modulo 277G and
vanishes at the Bragg points. For small &

A(k)—> DIk (2.36)

where D is the diffusion coefficient introduced in eq. (2.23).

Chudley and Elliott [19] were the first to apply the master equation (2.14) of jump diffusion to the
determination of the cross section for quasielastic incoherent neutron scattering. They intended to
provide a quasicrystalline model of a liquid; their result found wide application for diffusion of
interstitials in solids, in particular of hydrogen in metals. In this field the structure of the lattice of
interstitial sites was a key question; an identification of the lattice of octahedral sites for hydrogen
diffusing in the FCC lattice of palladium by the determination of A(k) was achieved by Rowe et al. [20].
The application of quasielastic incoherent neutron scattering to diffusion in solids, especially of
hydrogen in metals, has been reviewed by Springer [21], Richter [22] and Springer and Richter [23].

2.3. Poissonian random walk with recursion relations

Instead of introducing a Markoffian master equation, continuous-time random walks (CTRW) can be
treated in complete analogy to discrete RW by using recursion relations. This approach has been
introduced by Montroll and Weiss [24] with general waiting-time distributions between successive jumps
of the particle. In this section the conditional probability for continuous-time random walk with an
underlying Poisson process will be derived by this alternative method.
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The conditional probability of finding the particle at lattice site n at time f when it started at site [ at
t=0 is decomposed into the contributions of different numbers » of transitions,

P(n, t|1,0)= D, P,(n,t|L0). (2.37)
r=0

P (n,t|l, 0) is the conditional probability of finding the particle at site n at time ¢ when it performed
exactly v steps. The following separation can be made for a Markoff process where the spatial transition
probabilities and the time dependence are separable,

P(n,1]1,0)=P,(n|D)V,(1), (2.38)

with P,(n|l) the conditional probability of the discrete RW considered in section 2.1 and V (1) the
probability that exactly v steps have been performed until time 7. A recursion relation for V, (¢) is easily
obtained. For a Poisson transition process the probability that the particle has not yet performed a
transition until time ¢ when it arrived at a site at ¢ =0 is exp(—t/7) where 7 is the mean residence time
on this site. Hence

Vo(t) = exp(—t/7) (2.39)

and

V.(1)= f de’ exp[—(t — ') /7] % V(). (2.40)

1/7 is the transition rate at an (arbitrary) time point ¢', the first factor in the integral is the probability
that no further transition occurs between ¢ and ¢. The recursion relation is solved to yield

V)=~ (5) exp(~1/7) . (2.41)

vl \r
Equation (2.37) can now be written in Fourier space in the form

Pk, 1) = 20 p (k) % ( g) exp(—1/7) (2.42)

where eq. (2.6) has been used. Summation of the exponential series gives

P(k, 1) = exp{~[1 — p(k)]t/7} . (2.43)

This result is identical to eq. (2.17). Of course, the recursion relations and the master equation must
yield identical results since the underlying assumptions of a Markoff process are the same, as well as the
basic transition probabilities.

An approximate correspondence between discrete RW and CTRW at long times can be deduced
from the structure of V, (¢) according to eq. (2.41). The results of discrete RW can often be translated
into the results of CTRW, at long times, and vice-versa, by identifying the number of steps with /7. For
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large numbers v of steps V() can be represented as

V., (1) =exp[¢,(1)], (2.44)
where the leading terms of ¢, (¢) are
é,(t)=—vinv+vin(t/7). (2.45)

Thus ¢, (¢) has asymptotically a maximum at » = /7. Its width is determined by the second derivative of
¢, (t) with respect to v,

', () lov' =—1lv. (2.46)

The maximum becomes sharp for large » or /7. Hence in sums over », such as eq. (2.42), the main
contributions come from step numbers v of the order of t/7. However, this argument must be applied
with caution; it requires that the remaining functions of » behave sufficiently smoothly. Otherwise the
product of V (¢) and these functions must be examined.

2.4. Extensions

1) Transitions to further-neighbor sites. Transitions to next-nearest or further-neighbor sites can be
included in the derivation of the conditional probability in both formulations. Here the recursion-
relation method will be used which was applied to this problem by Gissler and Rother [25]. The spatial
transition probabilities p,_,, now include transitions to further-neighbor sites, the sum of p,_, over n
must be normalized according to eq. (2.2). As before, is the mean residence time of a particle on a
site. The formal result of the recursion-relation method is eq. (2.43); p(k) is modified by the inclusion
of further-neighbor transitions.

In the master-equation formulation the transition rates depend on the distance n — m,

d P(n,t|1,0)= 2 [, P(m,1

1,0~ I, P(n,t|1,0)]. (2.47)

When the transition rates between neighboring sites of order (i) are denoted by I} and the number of
neighbor sites of this order by z,, then

b=/ S0 (2.49)
and
Yzl=7". (2.49)

Equation (2.48) allows to make the connection to the result eq. (2.43). In applications, further-
neighbor jumps were introduced to describe results of quasielastic neutron scattering on hydrogen in
palladium and niobium at elevated temperatures (26, 27, 28].
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ii) Non-Bravais lattices. The random walk of a particle in non-Bravais lattices is of practical
importance since one of the most commonly encountered lattices of interstitial sites is of this kind: the
lattice of tetrahedral sites in a BCC lattice (cf. fig. 2.1). This case will be treated here in detail, using
the master-equation formulation developed by Rowe et al. [29]. An earlier derivation was given by
Blaesser and Peretti [30]. The derivation may serve as an example for other non-Bravais lattices. There
are six tetrahedral sites per metal atom, corresponding to a Bravais lattice (BCC) with basis. Each point
of the lattice is characterized by a vector R, and a vector a, (e =1, ..., 6), whose vertices connect the
origin with the sites in a unit cell.

The basic quantity to be calculated is the conditional probability P(n, a, |1, y,0) of finding the
particle at site n, « at time ¢ when it was at site /, y at £ =0. It is convenient to use a different origin for
each sublattice, characterized by «, and to define the Fourier transform of P(n, «a, t|1, v, 0) as follows

P, (k,t)=2 exp[-ik*(R,, — R,)] P(n, a, 1|1, 7,0). (2.50)

The initial condition is

P, (k,t=0)=34,,. (2.51)
The master equation for transitions on the lattice of tetrahedral sites reads

dP

3 (matllyn,0=" > P(m, B,t|l,v,0)— 4T P(n, a,t|1,7,0). (2.52)

(mB, na)

This set of equations can be brought into a simpler form by Fourier and Laplace transformation. The
equations have then the form

2 [58,5+ Ay (k)] P, (k,s)=P,_(k,1=0). (2.53)
B=1

Fig. 2.1. Lattice of the tetrahedral sites (O} in the BCC Lattice (®). The vector a, connects the origin to one of the six sites belonging to the unit
cell of the Bravais lattice, these sites are numerated.
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The transition rate matrix A, is given by
Ag(k) =418, — I exp(ik-1,,), (2.54)

where [ , is the vector that connects the site on sublattice @ to its neighboring sites which are on
sublattices 8 (8 may coincide with ). The explicit form of the matrix A (k) is

4 0 -A, -A, —AY -A,
0 4 —A% —A* —AF —A,
—AY —A, 4 0 -A, -A,

A=l -4z -4, 0 4 —ar —ar | (2:55)
—A, —A, -A* -A, 4 0
—AY —AP A —A, 0 4

where

[ ia 1 [ ia

A1=exp~——4—(k1+k2)~, A3=exp_—z(kl—k2)],
[ ia 1 [ ia

A3=exp_—z(k2+k3)_, A4=expL—Z(k2—k3) , (2.56)
[ ia | [ ia

AS:CXPL_Z (k3+k1)_ ) A6=exp¥_z (k3_k1)}

and an asterisk superscript denotes complex conjugation.
The master equation can be solved after diagonalization of the matrix A,,(k). Consider the
eigenvalue problem

ZAQB vy, =A (k) v,, . (2.57)

Since A,4(k) is Hermitian, the eigenvalues are real, and the v, are orthogonal and complete; after
normalization '

E i, =8, gujyuﬁy = 8,5 - (2.58)
Hence
2 vE A = A (k) vk, . (2.59)

Using these relations the solution of the master equation is obtained in the form
P, (k s)= Z pe A ST Ve vis Py (K, 1=0). (2.60)

The diagonalization was carried out explicitly by Blaesser and Peretti [30] for the main symmetry
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directions. For instance, they found the following simple expressions for the eigenvalues of A ,(k) in
the (100)-direction, cf. also fig. 2.2,

A, =4I,

A4 =30+ T\/9-8sin’ (ka/4), (2.61)

Ao =5+ T'\1+8sin’(ka/4).

For general k the matrix must be diagonalized by numerical methods.
In the application to quasielastic scattering on hydrogen in metals the total conditional probability is
required as a sum over the probabilities of finding the particle at a specific sublattice,

6

P(k, 5) = 2 P.(k,s). (2.62)

The quantity };a (k, s) is defined as the conditional probability of finding the particle on sublattice a,
when the particle started with equal probabilities at each sublattice or

1 6
P.(k, s) =5 Z (2:63)
T T T
2vo.L moo] 1 20F mmn '
Ase
" 15 1.5 1
[VE}
3
< A
=10 10
5 R
w AG
0.5 4 o5k
AS
0 0 > 3
3 1 2 3
10 1.0 Wy
& V—
E 05 0.5+~ _ b
[N
2 (u) J (b)
°0 1 7 3 % 1 2 3
WAVEVECTOR WAVEVECTOR

Fig. 2.2. Widths A, and weights w, of the incoherent quasielastic structure function for diffusion on the lattice of tetrahedral sites as a function of
wavevector @ in the (a) [100] and (b) [111]-directions. The weights w,, w, continue mirror-symmetric with respect to the Bragg point in the
[100]-direction. Weights not shown are zero.
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where the initial condition eq. (2.51) was used for P ,(k, s). Using eq. (2.60) the total conditional
probability can be expressed in the form

6
1

P(k, s) = ; W, — %Ok (2.64)

with
1 6 1 6 2

net $ it s

The incoherent dynamical structure function follows from eq. (2.64) by using eq. (2.34),
6
W, Ak
Sncll, )= 2, =2 5(4) (2.66)

5=1 T w2+/\§(k)'

Thus it is a weighted sum of (normalized) Lorentzians; the weights are denoted by W,. Also the weights
can be found in the example considered above for the main symmetry directions by analytical
calculations. In the (100)-direction W, =W, =W, =W, =0; explicit expressions for W,, W, can be
found in ref. [30]. The behavior of the eigenvalues and weights as a function of the wavevector in two
main symmetry directions is shown in fig. 2.2.

In the non-Bravais case there is no direct periodicity of the weights with 277G where G is a vector of
the reciprocal lattice. (However, there appears a periodicity with higher multiples of 27G.) If one
chooses a particular reciprocal lattice vector, e.g. 27/a(2,0,0), an eigenvalue can approach zero
without the corresponding weight approaching unity. The weight can be considered to be a generalized
structure factor of the lattice under consideration. Important information about the lattice for
interstitial diffusion can be drawn from an experimental determination of these weights. In this way
Lottner et al. [31] have established the lattice of tetrahedral sites as the interstitial for hydrogen
diffusion in niobium.

iii) Two independent stochastic processes. A further possible extension is the combination of two
independent stochastic processes. The problem will be exemplified by the Chudley-Elliott model in its
complete form which was designed to describe oscillatory diffusion in a quasicrystalline liquid [19]. The
basic assumption is the independence of the oscillatory motion and the diffusion; alternating transitions
between the oscillatory and diffusive state require a more complicated model, as discussed later (cf.
section 5.4). Consider the dynamical incoherent structure function of a particle in the classical
approximation, in the time domain,

I(k, t) = (exp{ik - [r(z) — r(0)]}) . (2.67)

The motion of the particle is decomposed into jumps between equilibrium sites with coordinates R(t),
and oscillations about each equilibrium site with coordinates u(t), independent of the positions R(¢),

() = R(t) + u(7) . (2.68)
If both motional processes are independent, the average in eq. (2.67) can be factorized,

Ik, t) = (exp{ik - [R(t) = R(0)]}) (exp{ik - [u(r) — u(0)]}) . (2.69)
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The two terms can now be treated separately. The first average can be evaluated by the methods of
sections 2.2-2.3, if the particle performs a RW on a translation-invariant Bravais lattice. The result will
then be an exponential decay. The evaluation of the second term depends on the detailed dynamics of
the particle. For instance, a hydrogen atom would perform localized vibrations with frequency w, well
above the lattice frequencies or the transition rates. Restricting the discussion to frequencies of the
order of the transition rate, the second term can be replaced, for this particular problem, by a
‘Debye—Waller factor’ exp(—k°(u’) /6). The incoherent dynamical structure function will then have the
form

I(k, t) = exp{— A(k) t} exp(=k*(u’) 16) , (2.70)

and it will be a Lorentzian with reduced intensity in the frequency domain. For a more detailed
discussion see ref. [21]. Also other time dependencies of u(t) might be considered. The main point to be
made here is the factorization into two independent expressions when the two motional processes are
assumed to be independent.

2.5. Energetically inequivalent sites

In this section the diffusion of a particle on a linear chain with periodically distributed temporary
traps is investigated. This model typifies the case of several, energetically inequivalent sites per unit cell
of a Bravais lattice. Hence the method to be described is representative for this case. From a more
general point of view, the problem is an example of RW of a particle with internal states, to be
discussed in the next chapter. It is useful, however, to treat this problem separately in view of its
importance in applications. The derivation follows ref. [32]; similar results were obtained by Kutner and
Sosnowska [33]. Here the quantity of interest is the conditional probability of the diffusing particle.
Periodically distributed traps were also treated by Wu and Montroll [8, 34]. They elaborated mainly
properties associated with the first passage to the trapping sites.

A pictorial representation of a one-dimensional model with periodic trapping sites is given in fig. 2.3.
As suggested by the figure, the particle can be released from the trapping sites by thermal excitation.
The period of the traps is L, and unit cells of length La are introduced. The equilibrium sites are

Fig. 2.3. Periodic trapping model. The potential indicates the transition rates and the equilibrium energies of the sites. The energy of the sites a # 4
is taken as reference energy. The model is periodically continued (L = 6).
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enumerated by @ =1, ..., 6. Abstractly the periodic models are characterized by sets of transition rates
between nearest-neighbor sites within a unit cell, and between adjacent cells. For the trapping model of
fig. 2.3 the transition rates I’ depend only on the index « of the initial site, not on the final site.

It is illustrative to consider the conditional probability for the diffusion of a particle in the periodic
trapping model on a one-dimensional lattice. It was calculated in {32] by numerical solution of the
master equation, for specific initial conditions. An example is given in fig. 2.4a where the particle starts
on site 2 of fig. 2.3. Averaging over different initial conditions with weights corresponding to the mean
thermal occupation of the sites (see also below) results in a much less structured averaged probability

probability '\ (G)

e
98¢

probability !‘\ (b)
|

Fig. 2.4. (a) Conditional probability in the periodic one-dimensional trapping model as a function of position and time, the particle initially starts at
site 2, two sites from the trapping site. (See fig. 2.3.) (b) Averaged probability distribution for thermal equilibrium initial conditions, the space
coordinate is counted relative to the initial sites. Figure adapted from (32].
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distribution, cf. fig. 2.4b. Also the mean-square displacement of a particle for starting at specific sites,
and for starting at different sites with the appropriate thermal equilibrium weights was studied in [32]. It
was found that (x”)(¢) divided by t increases or decreases with ¢, depending on the start in the trap or
outside of the traps, while the averaged quantity (x*)(r)/t is independent of time. This result will also
be derived, for the general case of disordered configurations of traps, in section 7.2.

The periodic models can be dealt with by the formalism of the previous section, when the initial
condition of starting at a specific site is used, or starting at each site with equal probabilities. The
appropriate master equation is formulated in analogy to eq. (2.52) and after Fourier transformation the
transition-rate matrix A,;(k) is identified. The matrix A,,(k) is non-Hermitian in the case of
energetically inequivalent sites, however, it is diagonalizable.

A complication arises through the requirement that the average conditional probability of the
periodic trap model be derived in a stationary ensemble. In this case the equilibrium occupation of the
different sites influences the result. A large chain with NL sites will be considered. It is evident and can
be deduced from the master equation that a stationary solution exists with

L -1
E”:P(n, aat|l’ 730)’—_):‘)01:[]; ﬁ}::l F[;IJ ‘ (271)
The condition of detailed balance can be used to relate the rates I, to a reference rate I,
I, =exp(—E,/kpT), (2.72)

where E_ is the energy difference between site a and the reference site. In the stationary situation the
probability of finding the particle on a site with index « is given by the expression

exp(E, /kgT)
Lo exp(EglkyT)

P = (2.73)

hence it should be used as a weighting factor in the initial conditions, when calculating the averaged
conditional probability. The transition-rate matrix is transformed into a Hermitian form by
’ —-1/2 1/2
A =P, " Aypg . (2.74)

A similar transformation can be performed in the general case of inequivalent sites in the unit cell. The
eigenvectors of A" will be denoted by v’,

EBZ ALy =AU, . (2.75)

The eigenvalues are identical with those of A ;(k). A little algebra gives

ol _ 1 1/2 1 Pk —1/2
P_(k, s)—% o, P Vs Vi P P, (k,t=0). (2.76)

If one sums over the initial sites with the weighting factors p,, and over the final sites, one obtains the
average conditional probability in a stationary ensemble, in the Laplace domain
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~ B ~ B 1
Plk.s)=2 P, p, =2 W, (s+2,)™", (2.77)
ay 5

where the weights W, (k) are given by

2

: (2.78)

L

2 1/2 1
pa Ua&

a=1

W, =

Explicit results for the eigenvalues A_(k) and weights W_(k) for several periodic models can be found
in ref. [32]. They will not be reproduced here. Since the traps of the model of fig. 2.3 are periodically
arranged, one of the eigenvalues vanishes not only at the Bragg points of the original lattice (multiples
of 27/a), but also at the Bragg points of the superlattice with period La. This means a vanishing of an
eigenvalue at several points (multiples of 277/6a in the example) of the reciprocal lattice. The associated
weight generally does not vanish at these points. These features are not found for the eigenvalues and
weights of models with random trap distributions. Hence the periodic trapping models cannot be
applied to the calculation of the incoherent dynamical structure function of diffusion in the presence of
random traps. More appropriate models will be described in chapter 7. Nevertheless, the derivations
presented above are valuable in the case of diffusion with inequivalent sites. For instance, Anderson
[35] has described diffusion of hydrogen in yttrium with alternating transitions between inequivalent
sites.

3. Continuous-time random walks on regular lattices

In this chapter the discussion of the previous chapter is generalized to allow the possibility of
non-Poissonian waiting-time distributions of the particle between the transitions. The lattices con-
sidered generally shall be translation-invariant, with one exception considered in the last section. This
chapter will appear rather abstract; applications of the formalism to physically motivated models will
appear in the subsequent two chapters. In the last section the formulation will be extended to include
the availability of different states that the particle can acquire at the sites of the lattice.

3.1. Waiting-time distributions and time homogeneity

A particle performs a random walk on a Bravais lattice; in this section only the stochastic process of
the transition of the particle in time will be considered. The waiting-time distribution (WTD) ¢(r) of
the particle is defined as follows. Let the particle have performed its last transition at £ = 0. Then (¢) is
the probability density that it performs its next transition at time ¢ after it waited until 1. The simplest
example is provided by the WTD of a Poisson process, ¥(t) = exp(—¢/7)/7. The factor (1/7) is the
probability density or ‘rate’ of a transition to another site, the second factor is the probability that no
transition has occurred until time . Of course, the concept of WTD allows for more general time
dependencies. General WTD were introduced into the theory of random walks on lattices by Montroll
and Weiss [24].

The waiting-time distribution () must be positive semidefinite, and when integrated over all time,
its value must be normalized. If not positive, (¢) is not a probability density and should ¢(t) not be
normalized then the particle number is not conserved in the system. It is useful to introduce the sojourn
probability ¥(t) that the particle remains on the lattice site until ¢ without a transition,
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W) =1- [ & w(e). G.)
0

In the Laplace domain the sojourn probability is:
Y(s)=[1 - ¥(s)]/s . (3.1)

In the case of a Poisson process the sojourn probability is ¥(t) = exp(—¢/7). It is assumed here that the
first moment of the WTD exists,

t_=fdt' t () <. (3.2)

The renewal theorem [36] states that for large times the transitions of the particle occur, on the average,
at a constant rate £ . For shorter times, however, the time homogeneity of the process is destroyed
when the transitions begin at ¢ = () and are all described by the WTD ¢(t). If a system is considered in a
stationary state, then a constant rate of transitions should occur, on the average, at all times. The point
is that the time origin can be chosen arbitrarily in the stationary situation; the last transition of the
particle may have occurred some time before ¢ = 0. To incorporate this possibility into the theory, the
first transition of the particle needs a special treatment; it will be characterized by the waiting-time
distribution A(¢). It is plausible that the correct WTD of the first transition in a stationary ensemble is
obtained by averaging the WTD ¢(¢) over all time differences ¢’ between the time origin and the last
transition,

heq(t)=fdt’ :,l/(t+t’)/f dtfdt’ St+t'). (3.3)

The denominator is required for normalization. An equivalent expression is
he()=¥(0)/t. (3.4)

It is easily seen that for a Poisson process &, (t) = #(¢), but in general both quantities are different.
Figure 3.1 illustrates this difference for a particular example.

Feller [36] derived eq. (3.3) from the requirement that the stochastic process described by h(z), ¥(1)
be stationary. A different derivation of eq. (3.3) was given by Lax and Scher [37] using conditional
probabilities. It should be stressed that the correct choice of A(¢) depends on the initial conditions, in
particular whether a stationary situation is given or not. Equation (3.3) is the correct form for a
stationary or equilibrium ensemble. If the system is prepared at ¢ =0 in a state from which it develops
according to (t) (for instance, by implantation of a particle at = 0) then (¢) = k() is the correct
assignment.

Tunaley recognized that the above considerations on time homogeneity are relevant for the CTRW
theory [38] which will be described in the following section.
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Fig. 3.1. The waiting-time distribution ¢(r) and the first-jump waiting-time distribution #(¢) determined from eq. (3.3). The WTD y(r} is derived
from a two-state model, cf. section 5.1.

3.2. Continuous-time random walk by recursion relations

The theory of CTRW of a particle on a lattice with general WTD was developed by Montroll and
Weiss {24]. Tunaley extended their work by incorporating a distinct WTD for the first jump A(¢) into the
formal CTRW theory [39]. The theory is most conveniently developed by introducing recursion
relations [40]. A slight generalization, which will be made here, is the introduction of ‘non-separable’
CTRW [40]. The transitions of a particle are then characterized by the WTID y, .(¢), the probability
density of transition to site n at time ¢ when it arrived at site m at t =0. These WTD are normalized
according to

; f de' ¢, (1) =1. (3.5)

The CTRW will be called ‘separable’ when

Goo(1) = Py (1) (3.6)

where p, ,, and (r) were introduced in previous sections.

The quantity of interest is the conditional probability P(#n, t|1,0) of finding the particle at site n at
time ¢ when it was at site / at time 1 =0. Let O, (n, t) be the probability density that the particle has
performed its vth transition at time ¢ and thereby reached site n. Evidently

0,00.0=3 [ a4, (=) 0, (m. ). ()

0

The recursion relation is only valid for v =2 since the first transition has to be treated differently,

Q,(n,1)=2h, ,(t) P(m,1=0). (3.8)
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Here h, () is the WTD for the first transition from site m to site n, the normalization is analogous to
eq. (3.5). These WTD will not be specified for the moment. The probability density that site n is
occupied by a transition at time ¢ is given by

0 0 =2 0,0n.1). (9)

Resummation of the recursion relations yields
O(n,t)= > fdt’ Y ut—=1)0(m, ')+ Q,(n,1). (3.10)
0

The convolutions appearing in e€q. (3.10) become simple products after Fourier and Laplace transfor-
mation. The result is

h(k, s) P(k, t =0)
1-dk,s)

The conditional probability P(n, |1, 0) is related to Q(n, ') by the probability that no further transition
occurs between ' and ¢, but there is also the probability that no transition occurred at all. Hence

O(k, s) = (3.11)

P(n, t|1,0) =fdt’ Y(it—1t')Q(n, t')+ H(t) P(n, t=0), (3.12)

where ¥(t) and H(t) are given by

n
0

W(t)zl—gfdt’ o () H(z)=1—2fdt' (). (3.13)

Equation (3.12) is written in the Fourier-Laplace domain and ¥(f), H(r) are substituted by the
analogues of eq. (3.1'). The final result is

Plk,5) = 5™'[1= 0k, )] '[1 = (0, 9) + (k. 5) = (k. 5) + (0, 5) §(k, 5) — (k. 5) §(0, 5)].
(3.14)
The result simplifies for separable CTRW

Pk, s)=s"" [1— p(k) §(s)] " {1~ (s) + p(k) [A(s) — §(5)]} - (3.15)

This is the form of Is(k, s) derived by Tunaley [39].

When a stationary ensemble is considered, the WTD for the first transition is given by a
generalization of eq. (3.3)

Jodt' y, (t+1)
L, fodefode g, (1) (3.16)

Hoin(1) =
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The Fourier-Laplace transform of eq. (3.16) is

h(k, s) = [d(k, s) = ¥k, 0)}/(is) ,

where

X

f=;fdﬂﬂ%ﬂwy (3.17)

The conditional probability for a stationary ensemble is then given by

Py {1+ L LSOO Z1))
P () B

It was assumed that P(k,0)=1, i.e., the particle is assumed to be at the origin at t=0. The
specialization of eq. (3.18) to a separable walk is obvious. .

[t is interesting to consider the lowest moments of P(n, t) which can be found by expansion of P(k, s)
for small k and inverse Laplace transformation. It will be assumed that an expansion of (k, s) about
k=0 is possible uniformly in s,

(3.18)

Wik, s)= (0, 5) + O(K”) . (3.19)

It is then found that the conditional probability for a stationary ensemble has the following behavior for
small k£ and arbitrary s

2
%+w@k. (3.20)

P(k, 5)

k—0
It is recommended to repeat this derivation for the case of separable CTRW, where the argument is
more direct. The zeroth moment of the conditional probability is 1/s, corresponding to particle number
conservation. The second moment of P(k, t) is found to be independent of the precise form of the
waiting-time distributions; it is proportional to 7 and the second moment of the structure function p(k).
The second moment of P(n, ) represents the mean-square displacement and the coefficient of ¢ is
proportional to the diffusion coefficient. Thus CTRW, in the form presented, yields a time-independent
diffusion coefficient, corresponding to a frequency-independent mobility.

Though it is not seen directly from eq. (3.18) the result on the strict linearity of the mean-square
displacement with time is a consequence of the inclusion of the WTD for the first transition according to
eq. (3.3). If no distinct h(¢) is introduced, or A(¢) is chosen which does not correspond to the stationary
ensemble, a non-linear mean-square displacement and thus a frequency-dependent mobility is obtained.
The consequences of the inclusion of A;’ (f) on the diffusion coefficient, or equivalently, on the
mobility of a particle under the influence of a small force, were drawn by Tunaley [39]. He considered
only separable CTRW, but the conclusions are equally valid for the non-separable case, as the above
derivations show. These results aroused a debate whether £, ,,(¢) should be included in CTRW theory
when it is applied to model transport in disordered systems. A discussion of this controversy will be
deferred to section 6.7, until transport in disordered systems has been reviewed too.
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CTRW theory with inclusion of a distinct WTD for the first transition in equilibrium seems to be
intrinsically correct. This opinion is shared in other reviews [7,41]. Less formal, but perhaps more
physical arguments can be given by considering the velocity correlations of the particle executing
CTRW. The second derivative of the mean-square displacement with respect to time is obtained in a
thermal equilibrium ensemble from the velocity correlation function. This amounts to a multiplication
with s%/2 in the Laplace domain. From eq. (3.20) a constant is found in the Laplace domain,
corresponding to a velocity correlation function proportional to 8(¢) in the time domain. The velocity
correlation function ought to be a delta function in the CTRW considered here. There is no reason why
backward (or forward) correlations in the transitions of the particle should appear, no matter how
complicated the time dependence of the stochastic transition process is. Since the Fourier transform of
the velocity correlation function is the frequency-dependent diffusion coefficient, it is frequency-
independent in the equilibrium CTRW model studied here.

3.3. Equivalence with generalized master equation

It was shown by Bedeaux et al. [42] that the solution of the separable CTRW problem and that of the
corresponding master equation approach each other at long times when all moments of the waiting-time
distribution exist. The spatial transition probabilities p, , are identical in both formulations, the
transition rate is f ' where 7 is the first moment of the waiting-time distribution (for simplicity separable
CTRW is considered) and the times must be large compared to the maximum of (r,)'"”, where , is the
nth moment of the WTD. Kenkre et al. [43] pointed out that at arbitrary times a correspondence exists
between (separable) CTRW and a generalized master equation. This equivalence will be described here
for the case of single-state non-separable CTRW on ideal lattices.

The starting point is the form (3.12) of the solution of the CTRW problem, where (3.11) is inserted,

P(k, 5) = {¥(s) [1 — (k, 5)] " ik, s) + H(s)} P(k,0). (3.21)
It can be written in the form
[1= b, )] ¥ '(s) P(k, 5) = {h(k, )~ [1 = §(k, )] & '(s) H(s)} P(k,0) ; (3.22)

this can be compactly expressed as:

[s — d(k, s)] Pk, s) = P(k, 0) + I(k, 5) , (3.23)
where

d(k, 5)= s [k, ) = (0, $)]/[1 - (0, 5)] (3.24)
and

h(k, s) = d(k, 5) = [0, 5) = §(0, )] + h(0, 5) d(k, s) — h(k, s) §(0, s)
1~ 40, 5)

I(k, s) = P(k,0). (3.25)

In the time domain, eq. (3.23) yields the generalized master equation (GME) with an inhomogeneous
term,
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t
d
3 Pk, 1) = j dt' ¢k, t—1") Pk, ') + I(k, 1) . (3.26)
0

¢(k, 1) and I(k, ¢) are the inverse Laplace transforms of eqs. (3.24) and (3.25), respectively. The
transformation of the GME to direct space is obvious.

One disturbing feature of eq. (3.26) is the presence of the inhomogeneous term. It is a consequence
of the mtroductlon of a different WID for the first step, and thus of the requirement of time
homogeneity.' It will be discussed further in the context of specific models, cf. section 5.2, where using
specific models it is shown explicitly how to obtain A(f) and under what initial conditions () agrees
with or differs from (7).

The kernel ¢(k, £) and the inhomogeneity I(k, t) are somewhat simpler for separable CTRW,

d(k, 5)=[p(k) — 1] $(s) , (3.27)
where
é(s) = s §(s)/[1 - ¥(s)], (3.28)

and

(S) P(k,0). (3.29)

Ik, s) = [ p(k) ‘]—r

The equivalence of CTRW with the GME was originally given [43] through these relations, except the
inhomogeneity. In an equilibrium ensemble, where A(r) is given by eq. (3.3), the inhomogeneity
acquires the simple form

ik ) = [p(k) = 1) S [T - (5. (329

It is illustrative to consider two simple cases. i) Kernel without memory, ¢(t) =y 8(¢t). Equation
(3.27) gives an exponential WTD, (t) = y exp(—7?). This kernel corresponds to the ordinary master
equation with total transition rate y; hence the ordinary master equation corresponds to CTRW with
exponential WTD, as discussed in the previous chapter. ii) Kernel with exponential memory, ¢(f) =
a exp(—At). The resulting WTD is the sum of two exponentials,

Y(t) = (2a/p) exp(—At/2) sinh( pt/2) (3.30)

where p=VA>— 44’ The GME can be transcribed in this case to a variant of the telegrapher’s
equation, cf. [43].

' An inhomogeneous term appears also in the GME resulting from the Liouville-von Neumann equation. It may vanish if appropriate initial
conditions are given. See the discussion of Kenkre [44] for the case of exciton transport. The existence of an inhomogeneous term in the GME is not
generally appreciated and this point is taken up again in section 6.7.
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3.4. Multistate continuous-time random walks

The derivations of the last sections will now be generalized to include the availability of different
states of the particle at each site of the lattice. A physical motivation for such a generalization may be
the existence of several internal states of the particle at each lattice site. For instance, a non-spherical
molecule diffusing on a surface of a crystal may take on different orientations at each site. In this
section a rather general formulation of muitistate CTRW will be given; possible applications will be
mentioned in the context of more specialized models. However, one particular extension will be
mentioned here. Namely, when the states are identified with the sites themselves, the formulation
includes the case of different WID at each site of the system (which may not even form a lattice).
References to previous work will be deferred to the end of this section.

The quantity of interest is P(n, B, t|I, , 0), the conditional probability of finding the particle at site
n in state B at time ¢ when it was at site [, in state «, at time 0. The WTD for a transition to site # and
state § at time ¢, when the particle arrived at site m and state a at t=0is ¢, ,,(¢). Normalization is
required,

> f A Yo ma () =1. (3.31)
np 0

A vector/matrix notation with respect to the state indices will be adopted henceforth. For instance, the
Fourier-Laplace transform of the WTD will be denoted by y(k, s).

The derivations of the previous two sections are easily extended to the general case. The result for
the conditional probability is

P(k,s) = {W(s) - [E — (k, 5)] ' -h(k, s) + H(s)} - P(k, 0),, (3.32)

in complete correspondence to eq. (3.22). E is the unit matrix and the quantity h(k,s) is the
Fourier-Laplace transform of the WTD for the first transition. W(s) is the Laplace transform of the
probability that no further transition occurs after the last one. It is a diagonal matrix with the elements
in the Fourier/Laplace domain

¥, ()=~ [1—2 0,,(0, s)] (3.33)

H(s) is the Laplace transform of the probability that the first transition has not yet occurred until time ¢.
It is also a diagonal matrix of the same structure as eq. (3.33) where ¥(0, 5) is replaced by A(0, 5).

Equation (3.32) constitutes the general solution of the multistate CTRW problem. The further
simplification of this expression, in analogy to eq. (3.15), is not possible unless ¥ and h are diagonal.
However, it is possible to deduce a coupled set of GMEs. The algebra runs as in the preceding section;
some care is necessary with the matrix manipulations. The result is

[SE — &(k, 5)] - Pk, 5) = P(k, 0) + I(k, 5) . (3.34)

The matrix elements of the kernel are given by
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, $[0oalk: 5) = 845 %, (0, 9)]
k,s)= - .
bop(k, 5) 1L, 3,0, (3.35)

The inhomogeneity is given by

I(k, s) = M(k, s)- P(k, 0) ,

where the matrix elements of M are given by

~ ~ _1 ~ ~ ~ ~
M,k 5) = [1 - Z U,4(0, s)] {haﬁ(k, $) = sk, 5) = 8, ; [h,5(0,5) = (0, )]
+%Ah9;ﬂMmﬂ—%Ah92Jmek (3:36)
Y
As a special case the ‘separable’ multistate CTRW will be considered,

B(k, s) = p(k) U(s) , (3.37)

where p(k) includes transition probabilities between sites and states and where J:(s) is a diagonal matrix
with elements ¢ _(s). p and ¥ must be normalized separately,

2 P k=0)=1, § (s=0)=1. (3.38)
B

It is further assumed that
h(k, 5) = p(k) - h(s), (3.39)

with the same transition matrix p and a diagonal matrix h. The kernel of the GME is now given by the
matrix elements

. k)—6 .]¢

and the elements of the matrix appearing in the inhomogeneity

[Pos k) = 30p [ (5) — 4 9)]
1- ltl’;;(s) .

So far a rather general formulation of continuous-time random walk of a particle between different
states and sites has been given, and the equivalence with the GME established. Note that the
inhomogeneous term in the GME is always present when a different WTD for the first transition is
introduced, i.e., when A(t) # ¢(t). The multistate CTRW of a particle will generally yield frequency-
dependent diffusion coefficients, although this is not yet evident from the present formulation. This will

M, (k,s)= (3.41)
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be demonstrated in the particular application of the general formulation in the next chapter. The
solution of the set of coupled GME requires the diagonalization of matrices, hence it is practical only
when a small number of states is taken into account. Although the expressions eq. (3.32) and eq. (3.33)
provide a solution of the problem of CTRW on a lattice (or even on a general set of sites) with different
WTD at each vertex, the solution is only formal when, say, 10° sites are involved.

The earliest publications on multistate CTRW were made by Kenkre and several collaborators [45].
They considered sites with a different WTD at each site and established the correspondence between
CTRW and the GME. Research with a similar theme was published by Shugard and Reiss [46]. The
general formulation of CTRW, including the equivalence with the GME, was developed by Landman et
al. [47] and the present authors also obtained similar results [48]. Landman and Shlesinger made
applications of the formalism, especially to surface diffusion [49]. A compact derivation of multistate
CTRW and its equivalence with the GME was given by Gillespie [50], in this work states are equivalent
to sites. Multistate CTRW was also treated in ref. [51] with the aim to include energy dependence of the
RW process. More references will be given in the next two chapters when special cases of the general
formalism are considered. There are presumably more applications of CTRW with internal states than
hitherto considered. For instance, the combined spatial and spectral diffusion of an excitation in a
crystal could provide a case in point.

4. Random walks with correlated jumps

Correlated random walks are a class of random walks where memory is not lost after each step, but
only after a finite number of steps. This chapter treats mainly correlations over two successive steps and
it is shown that correlated walks are a special case of multistate random walks. However, they deserve a
separate treatment since they represent an important class of random walks with many significant
applications. They are more easily treated directly than by using the full formalism of the last chapter.
Also, their distinct features tend to be hidden by the general formalism.

4.1. Historical survey; one-dimensional models

Correlated walks were invented in the course of the discussion of ‘persistence of motion’ of particles
in fluids. The first calculation, using kinetic theory arguments, showing that a particle persists to move
in the same direction after a collision is attributed to Jeans [52]. Smoluchowski [53] in his investigation
of the kinematic justification of Brownian motion, extended the calculation of Jeans by determining the
mean-square displacement. This was evidently the impetus for Fuerth [54] to work out a detailed
one-dimensional random-walk theory with persistence. As an application of his formula for the
mean-square displacement, he studied the diffusion of infusoria in solution (actually, he measured the
average time it required an infusor to make a first passage across a predetermined segment). The
mean-square displacement showed a definite non-linear time evolution; in this case, the correlation or
memory accounts for the fact that the particles possess an inertia and thus, they persisted to move in the
same direction for a time which is not negligible compared to observation time. Independently, Taylor
[55] developed an equivalent theory in an attempt to explain the correlations of particle diffusion in a
turbulent medium.

Since then, correlated random walks were rediscovered in various physical applications. The two
most prominent applications are i) conformation of polymers, and ii) tracer diffusion in metals. One is
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interested in the squared end-to-end distance of a polymer chain of n segments (monomers), or in the
mean-squared displacement of a tagged particle after n steps. The simple model of a freely rotating
chain fixes the polar angle @ = cos 6 between two consecutive segments, and allows arbitrary azimuthal
angles ¢ [56]. For tracer diffusion a correlation between successive steps appears since, after one step of
the tracer, the vacancy that promoted this step is with certainty behind the tracer [57]. It then effects
more easily a backward step of the tracer than a forward or sideward step, resulting in a negative
average angle (cos ) between two steps. In both problems the square of the sum of all displacements
d. is considered,

(R, —R,)’) = <(21 di) (}Z} d].>> : (4.1)

In RW with correlations between two successive steps d, is related to d, indirectly through the
intermediate steps, and (d;-d;) is """ the first case and = (cos 8)" /' in the second one (some
restrictive assumptions are necessary in the case of diffusion in crystals [58]). This fact is sufficient to
allow an evaluation of eq. (4.1) with the result

<(R" ‘R())2>
<(Rn - R())2>uc e

where the denominator is the mean-square displacement for uncorrelated random walks and f the
correlation factor, in application i) [56]

f. (4.2)

f=(1+a)/(1-a), (4.3a)
where a is the fixed value of the polar angle, or in application ii) [58]
f=(1+(cos0))/(1—-{cos8)). (4.3b)

Thus there appears a modification of the static diffusion coefficient, which constitutes the most
conspicuous effect of correlated random walks. This chapter is concerned with a more detailed
description of correlated walks, for instance in the derivation of the complete conditional probability for
correlated walks.

As a particularly simple example, a correlated walk on the linear chain with constant transition rates
is considered [59]. The rate for a transition in the same direction as the previous one is denoted by I}
and the rate for a transition in the opposite direction is denoted by I}. The conditional probability
P(n, t) of finding the particle at site n at time ¢ when it originated at site 0 at =0 is split up into two
contributions P, (n, t) and P_(n, t), where + and — indicates that the particle came from site n + 1 or
n — 1, respectively. These quantities obey the coupled master equations:

S P (0= [[P.(n+ 1,0~ Po(n 0]+ [P (n+ 1.0~ PL(n.0)
(4.4)

ad—t P_(n,t)=L[P_(n—1,0)= P_(n, )]+ L,[P.(n—1,1)— P_(n, 1)].
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This set of master equations is transformed into a set of coupled algebraic equations by Fourier and
Laplace transformations,

[s+ [(1—e*)+ L] P, (k,s) - I, e* P_(k,s)= P, (k,0),
s ‘ . (4.5)
~L,e™™P (k,s)+[s+T(1-e¢*)+ ] P_(k,s)=P_(k,0).

The initial conditions are P, (k,0)= P_(k,0)= 3. The summary conditional probability is obtained
from the solution of eq. (4.5) as

s+y+ ([, —I;)cos ka

P(k,s) = : 4.6
(k.5) s+ 2s [I, + I, (1 —cos ka)] + 21 y (1 — cos ka) (4.6)
where y = I} + I is the total transition rate.
The small-k expansion of P(k, s) is
~ + ) I,(ka)’
P(k,s)_)l_(i_rzl.f_(.ﬁ)_+.... (4.7)

The time-dependent mean-square displacement or the frequency-dependent diffusion coefficient shall
be discussed later when this model is generalized to arbitrary dimensions. Here only the asymptotic
mean-square displacement is given, which follows from the small-s behavior of eq. (4.7),

I
<x2>(t):)F: ya’t. (4.8)

The resulting static diffusion coefficient is the product of the diffusion coefficient of the uncorrelated
random walk, ya’/2, times the correlation factor f=I}/I; .
The conditional probability can be easily transformed back into real space,

. "’ dk 4. =
P(n, s) = f P e P(k, s) . (4.9)

The lattice constant a was set to unity. This integral is evaluated by the technique explained in section
2.2, of egs. (2.30)—(2.33). The final result is

P(n,5)=(4*= B) " {(s + y) [(4" - B*)""* — A" B~
+%([;) _ I_;) [(Az_ Bz)l/z_ A]|n+1| B—\n+1|
+(L - [(A* - B*)'"? - A" By (4.10)

where
A(s)=s"+2sy + 2@y,
and

B(s)=-2I(s +vy).
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When the result is transformed into the conditional probability P(#, ¢) in lattice space and time, it is
found [60, 61] that side peaks develop at intermediate times, cf. fig. 4.1. These side peaks are clearly
visible for I;> I}; and they correspond to the fraction of particles, in an ensemble, that have not yet
suffered backward transitions. In this limit the particles move in the forward direction with an apparent
velocity al; = ay. However, these apparent manifestations of a ‘persistence of motion’ are transient as
long as I/I, is finite. Eventually, each particle will be scattered in the backward direction, and
asymptotically diffusive behavior is obtained. The conditional probability approaches asymptotically a
Gaussian distribution, cf. also the discussion in section 4.4.

The conditional probability, eq. (4.6) can be decomposed into partial fractions, and the dynamical
incoherent structure function obtained by using eq. (2.34). The zeroes of the denominator in eq. (4.6)
are given by

$12= 1L, + I (1~ cos ka)] = SQ,

(4.11)
SQ=T:-T}sin® ka)'? .

Only when I}, > I the two poles are always real. In the opposite case I} > I} there appear complex
poles for larger k values. The consequences of complex poles in the conditional probability in real space
and time are the side peaks discussed above. The structure function is only discussed for backward
correlations I, > I;. In this case it is the sum of two Lorentzians

w, /T w, /T
Smclk, ©) =W, ————= + W, —"— , 4.12
mc( ,(l)) 1 (1)1 2 w§+w2 ( )
100
150
200}

PROBABILITY (ARBITRARY UNITS)

100

DISTANCE FROM ORIGIN

Fig. 4.1. Conditional probability for the forward-correlated random-walk model with I = 0.99y at three different time§ ploFted as a function of
distance from the origin. A continuous curve was drawn through simulation results for 450 000 particles and the time is given in Monte-Carlo steps
per particle.
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where o, , = —s, , are the widths of the Lorentzian and the weights are given by
W, =(SQ + I, cos ka)/(25Q), W,=1-R,. (4.13)
In the limit k— 0 there is only one Lorentzian and its width is proportional to the diffusion coefficient,
Wi—1, W,——0,  o—2>1fr(ka)’". (4.14)

The behavior for general & is given by the formulae above. For instance, at the zone boundary k = 7/a
the first weight vanishes,

and the second pole gives the summary transition rate,

wzﬁ 2’)’ . (414’)
The widths and weights of this one-dimensional correlated-walk model will be represented in fig. 5.2b,
to facilitate comparison with the results for the two-state model.

4.2. Model with reduced reversals/backward jump model

This section describes a simple model of a RW of a particle with correlations over two successive
steps that can be solved explicitly in arbitrary dimensions. There are two special cases of this model that
are discussed here, 1) the particle has a less-than-average probability of returning to the site visited by
the preceding step (model with reduced reversals), and ii) the particle has a larger-than-average
probability of returning to the previous site (backward jump model). Of course, both models differ only
in the sign of the correlations, not in their physical content. The discrete RW with the correlations
described above was treated by Domb and Fisher [62] following earlier work of Gillis [63]. They
obtained the solution for the generating function, the derivations were quite complicated. The CTRW
of a particle including the correlations described above was considered by the authors [59].

Here the direct approach of ref. [59] will be followed. It is a generalization of the treatment of RW
by recursion relations in section 3.2. The probability density Q,(n, t) of a transition of the particle to
site n at time ¢ by step number v is now related to this quantity taken with one and two steps less (v = 3)

0.0.0=(1=0) S [ 4 61= 1) pop 0 (m. 1)

+£Zfdt'fdt” Y=Yt 1) q,,Q, ,(m,t"). (4.15)
0 0

The parameter ¢ determines the strength of the memory to the previous step (v — 2). For the special
case ¢ = 0 the single-state CTRW is recovered. Separable CTRW is used, and p, ., 4, are normalized
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spatial transition probabilities. A simple choice is nearest-neighbor transitions for Pn.m as described by
eq. (2.1), and

Qn.m = 6n,m ' (416)

With this particular choice and & >0 the particle has a preference to return to a visited site by two
consecutive transitions, while for £ <0 the particle tends to avoid this site (model with reduced
reversals).

The further derivations parallel those of sections 3.2 and 3.3. It is convenient to introduce Fourier
and Laplace transformations. The Fourier transform of g, ,, is denoted by q(k); it is unity for the case
eq. (4.16). The initial condition is P(k, r = 0). It is assumed that no memory is effective at the first step,
either by preparation or by using a stationary ensemble. Let h(t) be the appropriate WTD for the first
step. Then

Q,(k, s) = p(k) h(s) P(k, 0),

. L L (4.17)
Q,(k, s) = (1~ &) p(k) ¥(s) Q,(k, 5) + & q(k) $(s) h(s) P(k,0).

Resummation of the recursion relation yields
Ok, 9)= — 2k * ¢ g(&) 4{s) fi(s) P(k, 0) (4.18)

(1= PR TG & q(k) ¥(s)

The Green function P(k, s) in the Fourier and Laplace domain is obtained from eq. (4.18) by using a
relation analogous to eq. (3.12),

P(k, s) = {¥(s) [1 - (1 - &) p(k) ¥(s) — & q(k) §*(s)] "
[ pk) + & q(k) Y(s)] A(s) + H(s)} P(k, 0). (4.19)

Substitution of 1f’(s) and }~I(s) leads to the form

[1+ ¢ p(k) SO = A)]+ [p(k) + £ q(k) F)] [(s) — ()]
I Ve (e b2 L 7 5 e N 69

P(k, s) = P(k, 0). (4.20)

This is the generalization of Tunaley’s result eq. (3.15) to the model with reduced reversals, his result is
recovered for & = 0. N

Simpler expressions are obtained for the special case of a Poisson process. In this case ¢(s) =
y/(s + y) and the WTD for the first jump h(s) = y(s). Also P(k, ) =1 will be used. The conditional
probability is then given by

styteypk) . (4.21)
(s+y)—(Q—-g) y(s+v)pk) —ey

Here the special case eq. (4.16) was used and p(k) is given by eq. (2.5) for the square, simple-cubic,

P(k, s)=
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and hypercubic lattices. The result eq. (4.21) is equivalent to the result of Domb and Fisher when
(s + y) is substituted with z ', the variable used in their generating functions, and ¢ identified with —8.

It is easy to deduce the frequency dependent diffusion coefficient from eq. (4.21) by calculating the
mean-square displacement and multiplying with s */2d. The result is, in Laplace space

2

ays+(l-¢gy
_47? _ 4.22
D) 2d s+(1+¢&)y (4.22)
The frequency-dependent diffusion coefficient is obtamed by substituting s =iw and taking the real
part. The high-frequency limit is given by D(®)=a *y/2d, thus the correlations do not enter in this
limit. The diffusion coefficient in the static limit is related to the high-frequency limit by a proportional-
ity constant f:

D=D(x) f; (4.23)
the constant f, called the correlation factor, is given for this model by
f=(1-¢/(l+e). (4.24)

The behavior of the frequency-dependent diffusion coefficient, D(w), is shown in fig. 4.2 for two values
of f. Positive ¢ corresponds to the backward jump model, e =1 or f=0 is the limiting case where
diffusion ceases to exist. Negative & corresponds to the model with reduced reversals. There is a
smallest admissible value of . A particle at site n that came from site m has the combined probability
(1-¢) p,,* € of return to site m. This quantity must be non-negative, hence it is required that
(1—€)/2d + £ =0. Thus ¢ can approach —1in d = 1, but is restricted to £ = — } on the square lattice in
d=2. The case e = —1in d =2 is the one where no backward transitions occur at all, and the maximal
correlation factor is f =2. Analogous restrictions hold in higher dimensions.

It may be of interest to give the explicit expression for the mean-square displacement in the time
domain which results from eq. (4.21)

Zl_gt— 2ed’
1+¢ (1+ &)

([R(H) — R(OY*) = [ —1]. (4.25)

Equation (4.25) is a generalization of Fuerth’s result [54] for the discrete RW in d =1 to a CTRW in
arbitrary dimensions. The mean-square displacement is given in fig. 4.3 for the model with reduced
reversals, for the uncorrelated random walk and for the backward jump model.

The model of correlated walks under consideration can be brought into correspondence with a
second-order integro-differential equation [59]. To establish this correspondence eq. (4.19) is written in
the form

F(k, s) P(k, s) = { [Wys) pk) + ey q(k)] h(s) + F(k, 5) ﬁ(s)} P(k,0), (4.26)
where
Fik, ) = =L [1= (1= ) p(k) 9(5) = € 4(K) §76)],

¥(s) [1 = 4(s)]
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Fig. 4.2. The real part of the frequency-dependent diffusion coeffici- Fig. 4.3. Mean-square displacement of particles that perform corre-
ent from eq. (4.22). Results are scaled to D(=) and f is defined in eq. lated random walks with f=3 and f = 1/3. The dashed curve is the
(4.24). result for uncorrelated random walks.
and
S
(9S s=0

is the inverse of the first moment of y(¢). The quantity ﬁ(k, s) can be brought into the form
Flk,s)=5"+[1=(1 = &) p(k)] ys + 5 X(5) + (k) 7(s)

where
XS =yli(s) =, ()= ys b(s)/ 11~ b(s)]

and
Jk)y=1-(1-¢) p(k) — & q(k) . (4.27)

It is clear from the structure of ﬁ(k, s) in eq. (4.27) that a second derivative appears in the time
domain. There appear initial-time terms when the transformation from the time to the Laplace domain
is made. These initial-time terms are particularly simple when a stationary ensemble is considered
where
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‘Z—f (k1) _ ==y[1=p()] P(k,0). (4.28)

t=

In the case of stationary initial conditions eq. (4.26) can be represented in the form
F(k, s) P(k,s)=[y 4~"(s) + & p(k) y] P(k, 0) + I(k, 5) . (4.29)

The first terms on the right-hand side are the initial terms mentioned above and

Tk, s) = [#(s) (1= ()] " {[1 = p(k) + & §(s) (p(k) = q(R)] [¥(s) = h(s)]} P(k,0).  (4.30)

Transformation of eq. (4.29) to the time domain leads to the following equation

2

L e+ yl1-(1- ) p(0] 5 (1)
+f de' x(t—1t') (:j—l; (k,t')+ J(k)fdt’ n(t—1t'") Pk, t')=I{k, ). (4.31)

The kernels y(¢), n(¢) appearing in this equation are the inverse Laplace transforms of x(s) and 7(s),
respectively, cf. eq. (4.27). The inhomogeneity I(k, ) is the inverse Laplace transform of eq. (4.30).

The expressions simplify considerably for a WTD corresponding to a Poisson process. The kernels
are then given by

Xi—t)y=yd(t—1), mt—t)=y’8(t—1), (4.32)

and the inhomogeneity eq. (4.30) vanishes since in this case (¢) = h(t). There remains the following
second-order differential equation

d’P/dr’ +[2y — (1 - ¢) p(k)]dP/dt + y* J(k) P=0. (4.33)

This second-order differential equation is solved by the usual Laplace—-Fourier transformation methods.

For Bravais lattices the equations are completely diagonalized by these methods. However, as

demonstrated in chapter 2 for uncorrelated walks, the correlated-walk problem is not completely

diagonalized for non-Bravais lattices; there are as many coupled equations as inequivalent sublattices.

For instance, the tetrahedral lattice of interstitial sites in a body-centered cubic lattice has six

inequivalent sites, therefore, the corresponding master equation is reduced to six coupled equations.
Equation (4.33) has the following continuum limit

2

d’p P
W(r,z)+(1+8)y‘;—t(r,z)+(1—s)«/azvz%—f(r,z)mzaz(l—s)vzho. (4.34)

In the formal limit y—®, ¢——1, a—0, such that ya=V and (1+ ¢)y = I this equation is the
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well-known telegraph equation
d*P/df* + T'dP/de + 2V VPP =0, (4.35)

which has been studied in connection with correlated random walks by Goldstein [64].

In this limit the particle moves mainly in the radial direction from its center and the particle moves in
this direction with a velocity V. Every now and then a change of direction can occur, this event has a
rate I'; were it not for a change of directions the particle would propagate in the medium without a loss
of memory of its initial state.

4.3. Other models with correlated walks

There are many more models with correlated walks than the one considered, especially in higher
dimensions, even if only memory to one previous step is included. Perhaps the simplest one is the
forward jump model where the particle has a larger than average probability to make a transition in the
same direction as the previous transition while the probability for a transition in any other direction is
reduced compared to the average value. In d = 1 the forward jump model is identical with the model of
reduced reversals while in higher dimensions they are different. This is illustrated in fig. 4.4 for both
models on a square lattice and parameters such that the same diffusion coefficient obtains.

The models with memory over two consecutive steps are analytically treated by using the corre-
spondence with multistate random walk discussed in chapter 3. The conditional probability is indexed
by the previously occupied site n’, as well as the presently occupied site, n: P(n, n’, t). This index n’
specifies the prehistory of the particles. Since the transition probabilities extend to a finite set of
neighbors of n, the number of states, specified by n’, is finite. The general procedure is exemplified by
the forward jump model on a Bravais lattice with constant transition rates (corresponding to Poisson
processes) I in forward and I'" in the other directions. The resulting master equation for P(n, n’, t) is

% P(n,n',t)=[[P(n',2n' —n,t) = P(n,n', )] + I 2’ [P(n',n", t) — P(n,n',t)]. (4.36)

n"#2n' —n

For this model it is somewhat more convenient to introduce the directions of the transitions as the state
index. Equation (4.36) can be transformed into a set of z coupled algebraic equations by Fourier and
Laplace transformation. As can be verified on the explicit solution for the square lattice, no reduction
to a set of two coupled equations appears possible for general directions in k-space. Hence one has to
work with eq. (4.36) for the forward model in d =2, or analogous equations for other models. In

| B
1
- p—o?
1
— B — () (b)

Fig. 4.4, Illustration of (a) model with reduced reversals and (b) forward jump model. The dashed arrows indicate the preceding steps and the full
arrows indicate the consecutive steps. Probabilities for the transitions which give a correlation factor f=2 are indicated in the figure.
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contrast, the simple backward jump model or model with reduced reversals are reducible to two
coupled or one second-order master equation. For this model the following master equation can be set

up

aqt P(n,n',t)=1L[P(n',n,t)— P(n,n', )|+ I > [P(n',n", t)— P(n,n', 1)], (4.37)

n"#n

where I} is the transition rate to the previous site n’ and I'' the transition rate to arrive at a site which
was not occupied in the previous step. In order to reduce the master equation eq. (4.37) to the results
of the previous section, a summation over all previous histories is performed,

P(n,t)= 2. P(n,n',1). (4.38)
(n':n)

The quantity P(n, t) then obeys the second-order differential equation eq. (4.33) where the following
identifications are made

y=N+G-)I", e=,~T")y. (4.39)

The spatial transition probabilities p, ,, and g, ,, are given by eq. (2.1) and eq. (4.16), respectively.

The impossibility of reduction of the forward-jump model to the results of the previous section,
related to the backward-jump model, is connected with the different symmetry of the correlated
transitions in both models. In the backward-jump model, two correlated jumps lead to the initial site
with strength ¢, that is to a situation with the same symmetry as before. In the forward-jump model,
two correlated jumps introduce a particular direction with a symmetry lower than the original
symmetry. In d =1 the forward-jump model and the model with reduced reversals are identical. The
solution is provided by eq. (4.21) with p(k) = cos ka. Of course, this solution is easily deduced from
either eq. (4.36) with I'' = I} or eq. (4.37) with I"' = I} [59].

The forward- and backward-jump models were investigated by the authors [S9b] for non-Bravais
lattices; in particular, they considered the tetrahedral interstitial sites in a BCC lattice, which is relevant
for hydrogen diffusion. In this work a set of coupled master equations with constant transition rates was
formulated, extending eqgs. (4.36) and (4.37) to the non-Bravais case. Also the case of ‘planar jumps’ in
the lattice of tetrahedral sites was studied, cf. fig. 4.5. These types of jumps were suggested by
molecular-dynamics studies of hydrogen motion in metals [65]. The coupled set of master equations was
solved numerically in the Fourier-Laplace domain, it amounts to determining eigenvalues and
eigenvectors of appropriate matrices, similar to the derivations in chapter 2. The eigenvalues determine
the widths of the corresponding Lorentzians in the dynamical structure function, the eigenvectors their
weights. Details are given in ref. [S9b]. Okamura et al. [66] studied correlated discrete RW of a particle
on the SC lattice with different probabilities for forward, backward and sideward steps, and a
probability of sojourn on a lattice site. Thus their model includes also temporary trapping effects and
the asymptotic diffusion coefficient contains both the features of correlated walk and of the trapping
model to be discussed in the next chapter. Extensions to the BCC and FCC lattices were also
considered. Godoy [67] considered the influence of an external field in correlated RW in d = 1, using a
continuous-time formulation with WTD corresponding to a Poisson process in time. He observed that
the introduction of an external field suppresses the divergence in the mean-square displacement of a
particle for I;— v if the limits are taken appropriately.
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Fig. 4.5. Illustration of planar jump model on tetrahedral sites of a BCC lattice. The preceding step of the particle is indicated by the dashed arrow.
In this model r, = r, = r, for preferred in-the-plane transitions.

The models referred to in this section regarded correlated RW either as a discrete process or as a
continuous-time process with exponential WTD, representing a Poisson process. The extension of
correlated walk to CTRW with general WTD was given by the authors [59] for the model with reduced
reversals. (The introduction of a distinct WTD for the first transition was omitted in this work.) The
model with reduced reversals is characterized by one WTD (¢) for the temporal development, the
correlations enter through the parameter e. However, in a general multistate CTRW each transition
(e.g. forward and backward in d = 1) can be characterized by a separate WTD, and only the sum of all
transitions need be normalized according to eq. (3.31). An example of correlated walk with WTD that
were not simple exponentials was studied by Landman and Shlesinger [47] in the context of their
discussion of multistate CTRW. Correlated CTRW on the linear chain with general WTD () for
forward and ¢, () for backward transitions was discussed by Zwerger and Kehr [68]. They obtained
Q(k, s) the Fourier-Laplace transform of the probability of a transition of the particle to site  at time ¢
as

Ok, 5) = Y(5) = Uhls) * coslak) _ i(s) P(k,0), (4.40)
1 — 2y (5ycostar) + ;) — T (s)

where h(s) is the WTD for the first transition (see below).

Zwerger and Kehr also studied an explicit one-dimensional model with internal states that can be
mapped exactly on the backward-jump model. This model is shown pictorially in fig. 4.6a. The particle
may arrive at say level 1 at site i from the left, the WTD for a transition to level 3 at site i — 1 (i,(1))
and a transition to level 1 at site i +1 (¢(r)) are different. They are derived explicitly from the
first-passage problem on a finite chain, depicted in fig. 4.6b. The levels 1, 2, 3 correspond to levels, 1, 2,
3 at site i, O corresponds to (3,i—1) and 4 to (1, i + 1). ¢, (¢) is identical to the probability of the first
transition at time ¢ from 1 to 0, and ¢,(¢) is identical to the probability of first transition to site 4 with 1
as the starting site. It is interesting to point out that the WTD for the first transition A(¢) in the
stationary ensemble can be determined in two ways.
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Fig. 4.6. (a) Random-walk model with internal states. (b) Diagram exhibiting the first-passage problem on a finite chain corresponding to the
internal-state model.

(i) The time average of () + ¢, (¢) is taken, in analogy to eq. (3.3),

h) = [ AU L0+ )+ 4 0] (4.41)

(ii) the thermal average of (1), ¥, () and the first-passage time distribution x,,(¢) of a transition
from the inner level 2 to an adjacent site is taken

heq(t) = [Pl,eq + P3,eq] [(pf(t) + (//h(t)] + P2,eq XOZ(t) . (442)

Both determinations of &, (r) give the same result. Further, the authors worked out the linear-response
theory for this simple model and corroborated in this way the results of the CTRW description. The
frequency-dependent diffusion coefficient of the one-dimensional backward-jump model is obtained as

D(w) =7 fw), (4.43)

where the frequency-dependent correlation factor is given by

1+ {cos 8)(s)
flw)= Re{l_— (cos 8)(s) )s=io’

where
(c0s 8)(s) = P(s) — d(5) . (4.44)

Hence the frequency dependence of D(w) is determined by the Fourier transforms of the WTD, in the
combination indicated above. The static result is obtained by setting s = 0.

A three-dimensional correlated-jump model with general WTD was investigated by Kehr et al. [69]
in the context of diffusion in lattice gases, see the following section. The authors derive the conditional
probability P(k s) in Fourier-Laplace space for correlated diffusion of a tagged particle in a FCC
lattice with 5 different WTD for forward, backward, and 3 types for sideward transitions. Explicit
expressions for P(k s) were obtained in the main symmetry directions. Again the frequency-dependent
diffusion coefficient is obtained in the form eqs. (4.43,44) where
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(cos 0)(s) = Z n, cos 6, (s (4.45)

and n, are the numbers of equivalent transitions for one type of transition. Distinct WTD for the first
transition were taken into account in these derivations.

4.4. Some properties of correlated continuous-time random walks

In this section some properties of correlated CTRW will be discussed in more detail.

i) Markoffian nature. This property of correlated walks was discussed by Montroll [70], who
admitted correlations over an arbitrary but finite number of steps, and infinite correlations with
sufficiently rapid decay with distance in the step numbers. Montroll was interested in the dependence of
the squared end-to-end distance of polymer chains on the number n of monomers and the probability
distribution of this distance. He considered explicitly a RW model of a polymer where the enumeration
of monomers corresponds to the step number of a discrete walk. In his RW model on a square lattice
only sideward transitions (90°) were allowed and first-order overlaps after four steps (corresponding to 4
monomers forming a square) were excluded. The essence of his argument can be formulated more
abstractly by considering k consecutive steps a,_,,a,_,,,,..-@a, as a kX d dimensional matrix.
Evidently this matrix at n + 1 steps can be entirely deduced from the matrix at n steps if a memory to k
steps is assumed. Consequently a Markov process occurs, described in terms of these matrices. All
conclusions pertaining to such processes can be drawn, in particular that the growth of the mean-
squared end-to-end distance is proportional to the step number (number of monomers). A singular case
is the limit of strong correlations, i.e., when the next step is uniquely determined by the previous one,
rendering the complete evolution deterministic. This is realized, for instance, in the forward model
when p, =1 and the particle moves in a straight line.

ii) Frequency dependence of diffusion coefficient. As has been shown by the examples of the model
with reduced reversals and the backward-jump model with general WTD, the diffusion coefficient of
these models is frequency dependent. These examples are sufficient to establish the generic nature of
the frequency dependence. The frequency dependence appears even when distinct WTD for the first
transition corresponding to stationary ensembles are introduced. In more physical terms, this class of
models has, by their design, taken into account the possibility of forward or backward correlations in
the velocity of a particle; this is necessary to give frequency dependence to the diffusion coefficient.
Alternatively formulated, the models with correlated jumps yield non-linear time-dependent mean-
square displacements of a particle. Only at long times does the asymptotic diffusional behavior appear,
which then contains the effect of the correlations. Hence, when the need arises of modelling a system
with frequency dependence of the diffusion coefficient, the class of models with correlated CTRW
offers a relatively simple possibility to include these effects.

iii) Correspondence with single-state CTRW. Correlated CTRW can be considered as a special case
of multistate CTRW. Even the simple model of reduced reversals, which involves only one WTID and a
memory between two steps, is equivalent to the multistate CTRW. One may inquire whether the result
of a correlated-walk model can be mapped onto single-state CTRW models with possibly more
complicated waiting-time distributions. To be specific, the discussion will be based on the model with
reduced reversals with constant transition rates, whose Green function is given by eq. (4.21). This
expression will be compared with the result of single-state CTRW eq. (3.15) including a distinct WTD
for the first transition. One has to identify
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= E=AT ) (4.46)
(s+7v) —ey

The WTD is normalized and its first moment is £ = (1 + £)/[(1 — €)y]. The WID h.q(s) corresponding

to a stationary ensemble is deduced from eq. (4.46) according to eq. (3.3) or eq. (3.4). It is easily seen

that eq. (3.15) cannot be brought into correspondence, if the WID h_(s) is used in this comparison.

However, a correspondence can be established by identifying

~o ys-l-(l—s)'y2
hs) = '(3'*_7-)'%53"?—.

Hence correlated CTRW can be mapped, in this example, onto a single-state CTRW with a particularly
chosen WTD for the first transition. This WTD does not represent an equilibrium ensemble and its
physical meaning is not obvious.

iv) Higher-order partial correlations. Tchen [71] studied systematically the case of a RW with
multiple partial correlations, i.c. specified partial correlations between two steps which are an arbitrary
number apart. Let ¢, describe a partial correlation over i steps (¢, = {cos 8) of the previous case), then
a simple final result can be obtained, if some third-order terms are neglected,

(4.47)

k

(R, ~ )R =R [T+ ) [Tl a6, (4.48)

j=1

where k is an arbitrary finite number. Further studies of higher-order partial correlations were made by
Kutner [72] in the context of self-diffusion in lattice gases, see below. Rubin [73] studied the influence
of correlations between step i and step i +j of a RW where the step separation j can be large. He
considered the dependence of the mean-square displacement on j in different dimensions, in order to
understand the influence of repulsive interactions on the end-to-end distance of polymers.

4.5. Applications of correlated walks

Various applications of correlated random walks were made, some of the earlier applications were
already mentioned. This section reviews other applications in a rather cursory way, except the tracer
diffusion in metals, which will be discussed more thoroughly.

One important application is the description of conformations of polymers, initiated by Kuhn [56].
The details of this application are reviewed e.g. by Flory [74]. More recent work on polymer
conformations using correlated-walk models was done by Fujita et al. [75], Thorpe and Schroll [76] and
Schroll et al. [77]. Schroll et al. were particularly interested in the case of stiff chains, corresponding to
strong forward correlations. The main point with respect to these applications is that a correlated walk
with a memory over a finite number of steps does not allow a proper treatment of the effects of
self-avoiding walks. The treatment of these effects requires quite different methods from the one
discussed here and is outside the scope of this review. See [78] for an overview. The combined effects of
self-avoiding walks and strong forward correlations were considered by Halley et al. [79].

Strongly correlated walks were also used by Argyrakis and Kopelman to describe coherent transport
of excitons at low temperatures [80]. Coherent transport of excitons should be described by generalized
master equations [44]. A rough physical picture is that an exciton propagates in one direction in a
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wave-like fashion until it suffers a scattering event, it then continues to propagate in another direction
until another scattering event occurs. This process was modelled by Argyrakis and Kopelman [80a] by a
correlated walk where the exciton makes transitions over L sites in a straight line and L was taken from
a Gaussian distribution with mean value L >1 and standard deviation o. After L steps the particle
chooses another direction at random. Hence the model differs somewhat from the forward jump model
of section 4.3, but the results of both models are rather similar if L and p,=I;/y are chosen
appropriately.'

Further applications of correlated walks comprise a description of superionic conductance [81],
transport in a Lorentz gas [82], and the helix-coil transition of polypeptides [83].

The application of correlated walks to the diffusion of tracer particles in metals deserves special
interest. Abstractly this is the problem of diffusion of a tagged particle in a lattice gas where the
transition process is mediated by a small concentration of vacancies. In the limit of vanishingly small
vacancy concentration, the correlations in the transitions of the tagged particle that are caused by one
vacancy can only extend over two steps of the tagged particle [84]. This observation is the basis of the
application of eq. (4.3b) to tracer diffusion in metals. The average angle {cos #) between successive
transitions of the tracer is commonly derived from lattice Green functions for diffusion of the vacancy
[85, 86]. However, there are problems associated with the proper normalization of the weights used for
calculating {cos 6). It is important to calculate the probabilities for the first return of the vacancy to the
starting site only. A correct theory was given by Benoist et al. [87]. Another problem appears through
the possibility of escape of the vacancy to infinity in three- and higher-dimensional crystals. Kidson [88]
and Koiwa [89] showed in careful analyses how these processes can be taken into account. A third
problem is the possibility of interference of the vacancy responsible for the first transition with other
vacancies. Also this problem has been resolved by careful considerations [90].

All these derivations relate to long-range diffusion in the limit of large times or numbers of steps.
Not much work has been done on the detailed time dependence of tracer diffusion in metals. There
exists the phenomenological ‘encounter model” which describes the net effect of correlated exchanges of
one vacancy with the tagged particle [91, 92]. In d = 1 the WTD for an exchange of a vacancy with the
tagged particle are known in the limit of vanishing vacancy concentration ¢, — 0 [93]. The extension of
these results to higher dimensions seems straightforward, although it has not yet been worked out. It is
necessary to employ the CTRW formulation of the model with correlated jumps where general WTD
are used, and to express these WTD in terms of the time or frequency-dependent Green functions for
the diffusion of a single vacancy, in a manner analogous to ref. [87]. The time dependence of correlated
diffusion of tagged particles was also treated by Bender and Schroeder [94] using a hierarchy of master
equations; they were interested in the application to the Moessbauer lineshape.

While the description of tagged particle diffusion in lattice gases as a RW with correlations over two
successive steps is exact in the limit of vanishing vacancy concentration, the correlated RW is an
approximation at higher vacancy concentrations. Much work has been devoted to lattice gases at
arbitrary concentrations, both numerically (see the reviews [95,96]) and theoretically (see [93,97-
102]). In the context of correlated CTRW, the waiting-time distributions of a tagged particle were
estimated by Monte-Carlo simulations for diffusion of a lattice gas on an FCC lattice and analyzed by
semiphenomenological considerations [69]. The WTD were classified according to forward, 3 types of
sideward, and backward transitions, cf. fig. 4.7. The results at 4 different concentrations are reproduced
in fig. 4.8. It is scen that the WTD for backward transitions begins for small times with the unblocked

"In the forward-jump model the distribution of straight paths p, of length L is approximately Poissonian for p;— 1. p, == (1 - p;) exp[—(1 -

p.)L]. The average length of a straight path in the forward model is L=(1-p,)’ g’
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Fig. 4.7. Classification of consecutive transitions on an FCC lattice. The preceding step of the particle was from site (b) to the center of the bottom
plane. The subsequent transitions can be designated as b (for backward) and by numbers indicating the order of the neighbor shell from site b.
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Fig. 4.8. The waiting-time distributions for four different concentrations of particles on the FCC lattice. The full circles indicate backward
transitions, the plus signs, +, indicate transitions to sites labeled 1 in fig. 4.7 and the crosses, X, indicate transitions to the site labeled 4.
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Fig. 4.9. Correlation factor f for tagged particle diffusion on a honeycomb lattice gas. Full circles: Monte-Carlo simulations; full line: theory of ref.

[98]; open circles: f-factors where correlations over two jumps are included; open triangles: f-factors for four-step correlations. Figure adapted from
{72].

transition rate I"and decays to the forward WTD. The forward WTD begins with the blocked transition
rate (1 — c)I" where c is the concentration of the lattice gas. The forward WTD behaves approximately
exponentially. The WTD for sideward transitions shows an initial increase at small times, for small
vacancy concentrations, due to the possibility that the initial vacancy enables a sideward transition. For
more details see ref. [69]. This work appears to be the first simulation of WTD in a nontrivial physical
context.

As a test on the validity of the assumption of correlations over two successive steps, one can derive
the static diffusion coefficient by using the formula eq. (4.43) o =0. As eqgs. (4.44,45) show this
requires the determination of the areas of the WTD. One observes that the model is indeed a good
approximation for tracer diffusion in an FCC lattice gas [69]. Kutner [72] made a similar investigation of
tagged particle diffusion in a lattice gas on a honeycomb lattice. Due to the small coordination number
(z =3) correlation effects are expected to be more pronounced than in the FCC lattice. For instance,
the correlation factor f = § in this lattice in the limit ¢, — 0 whereas f = 0.78145 . . . for the FCC lattice
in this limit. As fig. 4.9 demonstrates the model of RW with correlations over two steps is clearly
insufficient at general vacancy concentrations, and the correlation factor determined in the above-
mentioned way differs markedly from the one directly determined from the reduction of the diffusion
coefficient [72]. Inclusion of higher-order correlations remedies the discrepancy, but even when
correlations over 4 steps are taken into account, the ensuing theoretical correlation factor differs still
from the simulated value. Hence, CTRW with correlation over two successive steps is only a rough
approximation for lattice gases at arbitrary concentrations whose quality depends on the type of lattice
considered.

5. Multi-trapping models

5.1. The two-state model

In this chapter another class of random-walk models on ideal lattices is considered, namely the
‘multiple-trapping models’. They are characterized as random-walk models with internal states. In one
of these states the particle can perform ordinary random walk on the lattice, but there are one or
several trapping states associated with each site, the particle being immobile in these states. Release of



J.W. Haus and K.W. Kehr, Diffusion in regular and disordered lattices 309

the particle from the trapping state(s) to the mobile state is possible; thus the trapping is temporary in
these models. Although the multiple-trapping models are a subclass of the multistate models, they also
deserve a separate discussion because of their simplicity and of their importance in applications. One
advantage is that the multiple-trapping models with constant transition rates are explicitly solvable
(analytically on Bravais lattices when only a few states are included). These solutions allow to pass
explicitly to a contracted description and to study the correspondence with single-state CTRW.

The concept of two-state behavior in diffusive transport developed gradually in the past. An early
reference is the work of Lennard-Jones [103, 104] who considered surface diffusion and attributed two
states to a diffusing particle: (1) the vibrating state where it is immobile, and (2) the diffusive state. Let
7 be the lifetime in the mobile state, D, the diffusion coefficient of the particle in the mobile state, and
7* the lifetime of the immobile states. Lennard-Jones deduced the effective diffusion coefficient D in
the form

D=D,7/(t*+7). (5.1)

This form is highly plausible: it describes the reduction of the free diffusion coefficient by the mean time
spent in the immobile state.

Subsequently, multistate trapping models were introduced in various fields of the natural sciences.
Only a selected choice of references can be given. They were proposed to describe in a phenomenologi-
cal manner transport processes in chemical systems [105-107], the transport of excited charge carriers
across amorphous materials [108-116], self-diffusion in liquids {117], the motion of interstitials in metals
[118-122], and 1/f noise [123]. Also the depolarization of muon-spin rotation caused by the interplay
between diffusion and trapping was treated in the framework of multistate trapping [124-125].

To demonstrate the ease with which multistate behavior is discussed and to give an indication of its
potential for applications, the Green function of the two-state model with constant transition rates is
discussed in the remainder of this section. The model is depicted schematically in d =1 in fig. 5.1. Three
parameters characterize this model, y the summary transition rate to neighbor sites in the free state
(y = 2T for nearest-neighbor transitions), ¥, the capture rate into the trapped state and v, the release
rate from the trapped state. For simplicity nearest-neighbor transitions on a Bravais lattice are assumed,
as in eq. (2.1). The conditional probability is decomposed according to

P(n,t)=P(n,t)+ P(n,t), (5.2)

where the index indicates the state that is occupied by the particle. The master equations obeyed by a
particle diffusing according to this model are

¥/2 X2
\ /
¥ ¥

Fig. 5.1. The two-state model in one dimension with transition rate to nearest-neighbor sites y/2, trapping rate v, and release rate 7,.
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d
a_[ Pf(n’ t) = —2 An.n’Pf(n,’ t) - Yt Pf(n’ t) + Yr Pt(na l) s
(5.3)

d
& Pt(n’ l) = % Pt(nv t) + Pf(n’ [) .

A, is the transition-rate matrix introduced in eq. (2.14"). To solve these equations they are

n

transformed into the Fourier-Laplace domain,

[s + AK) + ¥] P(k, 5) =, P,(k.5) = P(k,0),
~ . (5.4)
[S + yf] Pt(k’ S) ~ N Pf(k’ S) = Pt(k’ 0) >
where A(k)=y[1 — p(k)], cf. eq. (2.18).
Here the question of the appropriate initial conditions arises. The particle is assumed to start at the
origin at ¢ = 0. It may be further assumed that the probabilities of originating in the free or trapped state

are given by the stationary solution of the master equation, i.e., by the asymptotic probabilities of
finding the particle in either of the two states. The assumption reads explicitly

Pk, 0)=v/(y,+7), P0O)=y/(%+7). (5.5)
With this assumption the solution of eq. (5.4) is

sy, + v T n/ (O + y)] A

P(k, 5) = . 5.6
= A0 9, 7+ %, AR 9
For the square, simple-cubic lattices in d dimensions
5 1l %y (ka)
P(k, s) syt 2d +oe (5.7)
The mean-square displacement follows from eq. (5.7) by using eq. (2.19) in the time domain
Yr 2
R(t) - R(0O))*) = at, 1=0. 5.8
(LR - ROF) = (5:8)
The result contains the diffusion coefficient

This expression is in accordance with the form given by Lennard-Jones, cf. (5.1); note that 7*
corresponds to y, ', and the diffusion coefficient in the mobile state is D, = ya’/2d, cf. eq. (2.23).

The mean-square displacement eq. (5.8) is strictly linear for all times, not only asymptotically.
Hence, in this model and with the initial conditions assumed, the diffusion coefficient is frequency-
independent,
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D(w)=D. (5.10)

In particular, D(x) = D(0). The reduction factor in eq. (5.9) is interpreted differently at high and low
frequencies. At high frequencies it represents the fraction of particles in the mobile state, at low
frequencies the reduction through the average time spent in the immobile state.

While diffusion is simple in the two-state model, the structure of the Green function at general k is
more complicated. The dynamical incoherent structure function S, .(k, w) will be considered which is

obtained from P(k, 5) by application of eq. (2.34). The structure function can be decomposed into two
Lorentzians

Wo /m N W,w,/m

5.11)
w2+wf w2—+-eo-§ ’ (

Sinc(k’ w) -

where the widths are given by

w1,2 = %[A(k) + y[ + ‘yr] + §SQ ’

i o (5.12)
SQ=[(Ak) + v+ v) —4y, A",

and the weights by
Wi=31+3[n+y+tAE) (v~ v) (v +yVSQ, W,=1-W,. (5.13)

The widths and weights of a one-dimensional two-state model are given in fig. 5.2a. For comparison,
the widths and weights of a one-dimensional correlated-walk model are given in fig. 5.2b. In the limit

T T T T T T T T T
2.0
P 1.5 *E
L, iy
g g
= he=l
c
2 1 S
o 1%)
0 £
£ )
£ =
° =
=
0.5
0 0 P rw, 5 = —
B 0 V.L U.s V.0 V.U v
Wavenumber/m Wavenumber/m

Fig. 5.2. (a) The widths and weights for the two-state model in one dimension. The dash-dotted line represents the width of the Lorentzian in the
free state. The trapping rate is y, = 0.2, the release rate is y, = 0.1 and the transition rate is y = 1. (b) Widths and weights for the correlated random
walk in one dimension. The rate for forward transitions is ¥, =0.25 and for the backwards transitions it is y, =0.75. The dash-dotted line
corresponds to the uncorrelated random walk.



312 J.W. Haus and K.W. Kehr. Diffusion in regular and disordered lattices

k— 0 only the diffusive component remains,

A(k)— Dk,
(5.14)
W,=1-0(k'), W,=0(k").

Generally, however, there are two components. Their interpretation becomes especially simple near the
zone boundary under the condition y >y, v,

w, =Y, , w, =2y,
(5.15)
Wi=y/(v+v), W,=y/(y+v).

It is seen that for these k values one component exhibits the effect of release from the traps with the
appropriate weight of trap occupation. The other component exhibits essentially the free transitions to
neighbor sites, again with the correct weight. The results of the two-state model for general k, w were
applied to an interpretation of the diffusion of hydrogen in metals with trapping centers by Richter and
Springer [121]. They could verify the above-mentioned features in their experiments. For further details
see ref. [121].

5.2. Multiple-trapping models

In this section the multiple-trapping models are considered in more detail. A particle may assume N
different states at each lattice site, state N is the mobile state, the other N — 1 ones are immobile states.
Constant transition rates between the states are assumed in this section; this leads naturally to a
formulation in terms of master equations. Starting from the master equations, also the transformation
to a generalized master equation will be examined. Special attention will be given to the role of the
initial conditions. Two variants of multiple-trapping models will be considered,

1) The direct-access trapping model. This model has one mobile state N with a total transition rate y
to neighbor sites. For simplicity only nearest-neighbor transitions are assumed, characterized by the
spatial transition probabilities p, ., eq. (2.1). The N — 1 trapping states are reached directly from the
mobile state. The transition rate into the trapping state « is called y,, the escape rate from this state to
the mobile state r . The model is schematically shown in fig. 5.3 for d = 1. The behavior of a particle
according to this model is described by P_(n, t) the conditional probability of finding the particle at site
n in state o at time t. The initial conditions are specified later. The Green functions P, (n, t) develop
according to the master equations

N

Fig. 5.3. A multiple-trapping model with direct transitions from the mobile state to each of the trap states.
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d N-1 N-1
I, N(n’ t)=—2 An,mPN(m’ t)_ Z YQ PN(n’ t)+ 2 ra Pa(n’ t)’
m a=1 a=1

dt
(5.16)
d%Pa(n,t):—raPa(n,t)Jr'yaPN(n,t), a=1,...N—-1.
After Fourier and Laplace transformation the master equations read
N-1 . N-1 .
[s+ AR+ 2 yaJ Pyk,s)— 2 r, P,(k,5)= Py(k,0),
" - (5.17)

(s+r)P (k,s)—y, Pytk,s)=P,(k,0), a=1,...N-1.

Thus the random-walk problem for the trapping model is reduced to a set of N coupled algebraic
equations. Explicit solutions are easily obtained for smaller N, cf. the case N =2 in the last section.

ii) Ladder-trapping model. Also this model has one mobile state (N) and N —1 trapping states.
However, the trapping states form a ‘ladder’ such that state « is connected to states @ + 1 and « — 1.
The transition rate to state & + 1 is called ¢, and the transition rate to state « — 1 is »,. The ladder shall
be finite, hence v, =0. The rate {, is replaced by y, the total transition rate to neighbor sites. A
pictorial representation of the ladder-trapping model in d =1 is given in fig. 5.4. The ladder-trapping
model is described by the master equations

d

dt Py(n,t)= _% Ay Py(m, t)— vy Py(n, t) + Ly Py_i(n, 1),

d
a; Pa(”’ t) = Vyr1 Pa+1(n’ t) + §a~1 Pa—l(n’ t)_ (Va * ga) Pa(n’ t) ’ a=2,...N-1,

(5.18)

d
T P(n,t)=v, P,(n,t)—{, P,(n,1).

This set of master equations is transformed into a set of N coupled algebraic equations by Fourier and

Laplace transformation. Hence also this model is solved in principle.
Often one is only interested in the summary quantity

P(n, 1) = ; P.(n,1). (5.19)

An experiment, for instance neutron scattering, may only allow to determine the time-dependent
position of the particle, not its state. The question arises whether this summary quantity can be derived

—— -

-t -,

-+ -

— —_

Fig. 5.4. A ladder-trapping model with a hierarchy of deeper traps.
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for the trapping models more directly than by solving eq. (5.16) or eq. (5.18). Indeed, it will be shown
that the trapping models, in this ‘contracted’ level, are completely equivalent to single-state CTRW, or
to the generalized master equation.

The derivation will be made for the direct-access trapping model; it can be equally given for the
ladder model. All equations of (5.17) are added with the result

P(k, s) + A(k) P,(k, s)= P(k,0). (5.20)

The quantity P, is eliminated from this equation by using the second group of equations (5.11)
(¢=1,...N—1). The result can be written in the form

[s — d(k, s)] Pk, s) = P(k, 0) + I(k, 5) ,

where
. N-1 Y -1
b(k, s) = — A(k) <1+a§=]1 H_ra) ,
(5.21)
. N-1 ,y -1 N-1 1
I(k, s) = A(k) [<1+ El — ) 25T P,(k,0).

This equation is precisely of the form of a generalized master equation, cf. (3.23). Here the case of
‘separable’ CTRW appears, hence the kernel ¢ and the inhomogeneity I should be compared with eqs.
(3.28) and (3.29), respectively. The comparison gives the WTD

917(5)=7[7+S<1+N§—:l e )]Al. (5.22)

a=IS+ra

A discussion of the initial state of the system has been deferred to this point. The inverse Laplace
transform of eq. (5.21) would have the form of a homogeneous generalized master equation were
P =0fora=1,2,... N—1. This is the case when the initial state of the system is so prepared that the
particle finds itself always in the transport state. This situation is realized in photoconductivity
experiments where the electrons are initially excited on the surface of an amorphous semiconductor or
polymer; also this is a good approximation when muons are implanted at random in a metal with a
dilute concentration of traps. In other situations the system is not specially prepared and the
equilibrium occupation of the various states on a particular lattice site is appropriate; this is the case,
for instance, in neutron scattering experiments on hydrogen in metals.

The equilibrium occupation probabilities are easily obtained from eq. (5.16)

N—-1 -1
pﬂ=2Pa(n,oc)=1ﬁ(1+ > YE) . a=1,...N-1,
n ra g=1 rﬁ
(5.23)

NZ gy
PN:ZPN("aOO):<1+2‘B> .
n B=1 rB
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With these initial conditions, the comparison of eq. (5.21) with egs. (3.28,29) allows to identify

[1+2N‘1y/(s+r )]
(1'{'Z Y""‘)fmfl_‘*‘_zg 173 (S+r3)]} .

This is the Laplace transform of k() determined according to eq. (3.3) and eq. (3.4). Namely,
h(s) [1— y(s)]/1s, where W(s) is given by eq. (5.22) and

N-1 ,y
z‘=y*‘(1+ 21 r—“), (5.25)

is the first moment of the WTD (¢), as follows from eq. (5.22).

Thus it is shown that the contracted description of the multiple-trapping model is equivalent to
single-state CTRW with a distinct WID for the first transition. The WTD for the first transition
depends on the initial conditions; for start in the mobile state 4(r) = ¢(¢), in the stationary situation h(t)
is determined from the time average of ¥(¢). The conclusions concerning the frequency independence of
the diffusion coefficient in a stationary situation, which were given in chapter 3, hold in this model, and
are easily verified directly. Analogous derivations, with identical conclusions, can be made for the
ladder-trapping model.

The equivalence between multistate trapping models and single-state CTRW was established by
Schmidlin [112] and Noolandi {113] for the initial conditions P(k, 0) = P, (k, 0) where no distinct WTD
for the first transition appears. The equivalence was extended to include the case of stationary initial
condition by the authors [126].

(5.24)

h(s) =

5.3. Direct derivation of waiting-time distributions for multistate trapping models

In the last section the WTD for the direct-access multistate trapping model was obtained by
comparison of the CTRW theory with the results of the master-equation formulation. It should be
possible to derive directly the WTD of the multistate trapping models, once it is accepted that these
models are describable by CTRW. It is pointed out in this section how this can be done. Although only
constant transition rates for the elementary transitions will be used, the derivations can be easily
generalized to include more general WTD. First the direct-access trapping model will be studied.

The key to the WTD of the multistate trapping models is the observation that they are identical to
the first-passage time distributions to the set of neighbor sites at time ¢ when the particle arrived at the
starting site at time zero. Thus the problem of determining the WTD for the direct-access multistate
trapping model is equivalent to the first-passage time problem depicted in fig. 5.5a. The set of neighbor
sites is replaced by a fictitious level N + 1, and () is identical to the first-passage probability density to
level N +1 given that the particle arrived at level N at t = 0. The following integral equation is obeyed

by ¥(7)
() =y eXP[ (v + Z n) ]

fdt fdt” E Y exp[ ( + :/E: yﬂ) t”] rgexp[—ry(t' — )] Yt —t'). (5.26)
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Fig. 5.5. The states needed to calculate the WTDs as first-passage time distributions: (a) for the direct-access trapping model and (b) for the
ladder-trapping model. The absorbing site is shown as an open box.

The first term represents the WTD for a direct transition to the level N + 1; it is not normalized since
the particle can also fall into the trapping levels. The second term represents the sum of possible
transitions to trapping levels B with rates y,; from these levels the particle can be released with rates r,,
to make a first transition to the level N + 1 after a time lapse ¢ — t'. The Laplace transform of the
integral equation (5.26) is

Bo=(s+y+ 2 0) [v+ 3 i) (5.27)

a1 s-i—rﬁ

It follows straightforwardly that gZ(s) is identical to eq. (5.22).

The derivation of the WTD for the ladder-trapping model is made in an analogous way. In this case
the equivalent first-passage time problem can be given by introducing a finite chain with N +1 states,
see fig. 5.5b, the state N+ 1 corresponding to the set of neighbor sites. The first-passage time
distribution is required for the first transition of the particle to state N + 1 at time ¢ given that it arrived
at state N at t=0. This WID fulfils the integral equation

(1) =y exp[—(y + n)1]

4 '

+[ ar [ ar vy expl-(r + )T (0 = ) 0= 1) (5.28)

0 0

The quantity x, (1) is the WTD for the first transition of the particle to state N when it arrived at
state N —1 at t=0. Again the first term represents the direct transition from level N to level N + 1.
Iteration of this equation leads to a series that describes repeated transitions between the levels N — 1
and N, with possible excursions of the particle to lower levels included in the WTD y,, ,_,. The solution
of eq. (5.28) is obtained in the Laplace domain

d(s) = Y (5.29)
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Similar considerations as made above lead to the relation between the WID ., , and x, , _, for the
first transitions form a to « +1 and from « — 1 to «,

S
s + é(a + Va - Va /‘Yva,a—l(s) ’

Rarr a(5)= N-1za=2. (5.30)

Repeated substitution of x, ,, , in eq. (5.29) leads to a continued-fraction representation of the WTD
¥(s) of the ladder-trapping model. This continued fraction will terminate for finite ladders, since for the
lowest level

)?21(5) =45+ {). (5.31)

Hence also the WTD of the ladder-trapping model is obtained rather directly.

It is interesting to calculate the mean time the particle spends at given site according to the
ladder-trapping model. The mean time ¢ can be essentially derived from the continued-fraction
representation of y(s), for details see ref. [68]. The result is

- -1 Vy Uy Vy—1 by 1
t= (1+ + - +———) 5.32
Y gN 1 §N 1§N 2 gN—l”'{l ( )

When the transition rates between levels @ and a — 1 are not symmetric, then their quotient may be
interpreted as due to an energy difference between levels @ and « — 1, according to

v, /¢, =exp[Ble, —&,.)], (5.33)

where 8 = (k,T) . Using this expression the mean time ¢ can be given in the simple form

t= 7_1[1 +exp{B(ey — ey_,)} +exp{B(ey —ey_y)} + - +exp{B(ey — e} (5.34)

As an illustration, the WTD for the ladder trapping model with N = 10 and 20 levels will be shown in
fig. 5.6. The rates are uniform, v, + {, =, and v,/{, =exp(B A¢), and B Ae = 0.5 was chosen. The
WTD show a shoulder, which is essentially caused by the escape processes from the lowest levels. In
fact, the WTD of the ladder model can be approximated by the WTD of a two-state model when the
trapping rate is chosen as v, = [1 + exp(— 8 A¢)] ' y and the release rate is , = ¢ ' (cf. the dashed lines
in the figure). However, quite different behavior of (¢) can be obtained by other choices of the
transition rates v, {, on the ladder.

The WTD for the first transition to a neighbor site, in the multiple-trapping model, can be derived as
a thermal average by utilizing these methods. This will be exemplified for the direct-access trapping
models. The WTD for the transition to level N + 1 at time ¢ when the particle is in trapping level «
(a=1,...N—1) at t=0 will be called ¢, (z). It is related to () by

i, (1) =fdt’ ry exp(=r ') gt —1'). (5.35)

The thermal average of all J’a (s), including J;(s) will be determined as
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Fig. 5.6. The waiting-time distributions of the ladder-trapping model for N =10 and 20 levels. The dashed lines show the WTD of the
corresponding two-state model with trapping and release rates as described in the text.

FH6) = 3, p, 8,6+ 0y 506) (5.36)

The weights p_, p, will be taken according to the stationary solution of the master equation, cf. eq.
(5.23). The result is

1
ts

((5)) = hey(s) == [1 = 9(s)], (5.37)
with ¢ as given in eq. (5.25) and h.,(s) represents the time average of the WTD Jl(s). Hence the WTD
for the first transition in a stationary situation can be introduced either as the time average of ¥(t), cf.
egs. (3.3-4), or as the thermal average, cf. eq. (5.36).

The same conclusions can be drawn for the ladder-trapping model. Also in this model the WTD
¥, (t) can be introduced and recursion relations obtained for them. It turns out [68] that also for this
model the thermal average (y(s)) according to eq. (5.36) with the appropriate weights is identical to
h.,(s), derived from the time average of ().

5.4. Decomposition into number of state changes

There is an especially appealing way of treating multiple-trapping models, namely the method of
decomposition into the number of state changes. Suppose a particle can be in either one of two states 1,
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2. The conditional probability P,(n,t) of finding the particle at site n in state 1 at time ¢ can be
decomposed into an expression where no state change has occurred at all in the time interval (0, ¢) plus
an expression where the particle made one state change from 2 to 1 at an intermediate time ¢', plus the
terms representing repeated state changes. The decomposition is graphically shown in fig. 5.7, a similar
picture can be drawn for the conditional probability P,(n, 1).

Let R, (n, t) be the Green functions for random walks in a single state where the particle remains all
the time in state a (a = 1 or 2), and ¢, (¢) the WTDs for the transitions to the other state. R_(n, t) is not
the conditional probability of finding the particle on site n in state « at time ¢, the latter quantity is
determined below. The corresponding sojourn probabilities in the state a are @_(t). No distinct WTD
for the first state changes are introduced to keep the formalism more transparent. Hence the following
derivations are strictly valid i) for exponential WTD, as used for instance in the two-state model of
section 5.1, ii) for arbitrary WTD if the first transition can be described by the same WTD as all further
transitions. It is assumed that the ¢, (¢) are normalized and have finite first moments. Fourier
transforms of the conditional probabilities will be employed to avoid convolutions in direct space. The
conditional probability of finding the particle in state @ at time ¢ when it started in state 8 will be called
P_,(k,t). Evidently, see fig. 5.7

Py (k, t)=R,(k, 1) D()

+Jdt’fdt”Rl(k, ") d (") Rk, ' —1") (' = ")R (k1 —1') D (t— ')+~

0 0

(5.38)

The convolutions in eq. (5.38) become simple products in the Laplace domain. The Laplace transforms
of the products R, @, and R_ ¢, appear and they will be designated by brackets, ¢.g.,

[R,4,1,= | drexp(-s0) R, (k. 1) 6, (0. (5.39)

If the WTDs are exponential, then the Laplace transform of R appears with a shifted argument, e.g.,

P =W1{

b —_— —
+ - ’ j—————

+ -}

+Wof ————————————

b om———— —————————— —_—
b o—— - —

+ -}

Fig. 5.7. Graph describing the conditional probability of finding a particle in state 1 at time 1. The Green function of the particle being exclusively in
state 1 is represented by the solid line, the same quantity for state 2 is represented by the dashed line.
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B) = SR 6] =% R +,). (5.40)

The geometric series eq. (5.38) can be resummed with the result

P, (k,s)= R, %), . (5.41)
1- [R1¢1 ].y [de’z]s
Similarly, for the other states,
Pio(k.$)= D[Ry ], [R, )],
Poy(k.5)= D' [Riy], [R, ), |
. (5.42)
Py(k, s) = D™ [R,®], ,
=1-[R,,],[R,0,], .
The summary conditional probability is given by
P(k, $) = W, [Py (k. 5) + By, (k. )] + W, [Py (k. 5) + Pk, 5)]. (5.43)

where W, W, are the weights of the initial states 1 and 2. In the stationary situation these weights can
be obtained from the behavior of eqs. (5.41-42) for small s, corresponding to long times. It is seen that
the summary conditional probability is normalized, and

[
B(0.8), Pa(0, 5)—> + —1—,

=0 5§t
(5.44)
B,(0,5). .0, L_f
—_— — = =
21(0,5), Py (0, 5) S+
where
, = _‘9(;0/‘?5'\::0 .

The coefficients of eq. (5.44) can now serve as the weights in eq. (5.43). The final results for
exponential WTD ¢_(¢) can be brought into the form

ﬁ(k, s) = [D({l + [_2)]_1 {{1 [R, D], + 2[R, D], [R, D], + t_z[Rz(pz]s} . (5.45)

It is instructive to work out the case of the simple two-state model with exponential WTD,
R (k, 5)= P(k s) for simple random walk (cf. section 2.2) and R ,(k,s)=1/s corresponding to a
trapped particle. Of course, the results of section 5.1 are recovered.

The treatment of the two-state model by decomposition into the number of state changes and
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resummation of the series was given by Singwi and Sjolander {117]. They applied this formalism to a
description of oscillatory diffusion in liquids. The mathematical description of two-state renewal
processes was reviewed by Cox [127]. The two-state random walk with general WTD, including distinct
WTD for the first transition, was treated by Weiss [128, 129] who also included biased random walks.
Weiss was mainly interested in the derivation of asymptotic properties, such as the Gaussian form of the
conditional probability and the mean time spent in the two states. The advantage of the treatment of
the two-state model by decomposition into the number of state changes is that the Green functions of
the individual states R_(k,) are considered to be known, it is not necessary to derive them
simultaneously. This may save much labor. Expressed differently, in a multistate CTRW all site and
state changes are treated on the same footing. In the approach presented in this section the transitions
between sites, within the same state, are already summed up to the Green functions R_(k,¢). It is
obvious that the formalism can be extended to a larger number of states, although the calculational
efforts are increased. It should be noted [129] that the ordinary random walk can be considered as a
special case of the two-state random walk, with one state corresponding to the instantaneous transitions
to neighbor sites and the other one to the sojourn at a site. It is also worth mentioning that a
decomposition into the number of state changes is useful in other stochastic problems, for example in
chemical kinetics and its investigation by NMR (for a review see [130]), rotational diffusion of
molecules [131] and in the strong collision model of the depolarisation of rotating spins [125, 132].

6. Lattice models with random barriers
6.1. Introduction

Beginning with this chapter a new aspect of diffusion in disordered media is treated. In all the
previous chapters, the models were solvable by Fourier transform methods alone because the models
possessed translational invariance. With a degree of disorder in the medium averaging methods must be
developed to restore the translational invariance to averaged quantities. Perhaps the most intensively
studied lattice models possessing random transition rates are the random barrier models. One
compelling reason for studying this model is its simplicity and as a consequence, there is a wealth of
exact results that have been obtained [133-140]. These results can be used as benchmark tests of the
validity of approximate or more simply expressed solutions. The reader should not be discouraged from
investigating such models, because the solution remains incomplete; most results have been obtained in
one dimension and even for this case, a complete solution has been given only for the case when the
barriers are infinitely high. In higher dimensions the solution of the infinite barrier problem must be at
least as difficult as solving the bond percolation problem to be discussed below. Hence, there is a clear
need to develop useful and accurate approximations for application to higher dimensional systems.
These models, simple as they may be, find application in explaining frequency-dependent conductivity
experiments of disordered quasi-one-dimensional electronic conductors, conductive polymers, semicon-
ductor glasses and transport through composite materials.

The model is depicted in fig. 6.1. The sites are at the potential minima and the barriers over which
the particles jump have heights which are randomly and independently placed on the lattice. The
transition rate from site # to site n + 1 is the same as the transition rate from site n + 1 to n; this feature
is present because all the minima lie at the same energy. As might be expected from the pictorial
representation, the equilibrium solution corresponds to all sites having the same occupation probability.
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Fig. 6.1. Schematic representation of the random barrier (or mountain) model. All valleys are equally spaced and have the same energy.

6.2. Exact results in one dimension

The presentation is restricted in this portion of the chapter to one dimension. The dynamics of the
particle on a linear chain is described by the master equation:

dP(n,0)/dt=L{P(n—1,t) = P(n, )]+ I, ,{P(n+1,1) - P(n,t)], (6.1)

where the nearest-neighbor transition rates are labeled according to the larger site index of the pair.
The treatment outlined below is due to Zwanzig [138] and the results were extended by Denteneer and
Ernst {139, 140].

Consider a lattice of N sites with periodic boundary conditions; the lattice constant, a, is chosen to be
unity. The method of Zwanzig introduces the Laplace transform of the time variable and the Fourier
transform of the space variable to express the conditional probability.

The solution of the master equation, eq. (6.1), is formally written as:

ﬁwJ)=2(wHw4yﬁy*ngm, (6.2)

where the following matrices have been defined:

furr = B (€ = 1), (6.3)
and
1 ilk—k'")n
UW=NEe““Q. (6.4)

The matrix f has been defined so that it has an inverse. E is the previously defined unit matrix. The
matrix multiplying P(k’, 0) in eq. (6.2) is the Green function for the dynamical process; it is denoted by
G, . (s).

kffrom the Green function a connection can be made between the density of eigenvalues, which is
simply called the density of states, and the averaged Green function. The density of states is the sum of
delta functions having the eigenvalues in the argument averaged over the ensemble of configurations of
the system. This is called a spectral property of the model. The normalized density of states is:

p()= 5 2 (8(u=A,) (6.5)
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where the brackets denote an average over all configurations of transition rates. We note here that the
average is taken over the distribution of disordered transition rates in the medium. In previous chapters
averages have been implicitly taken over realizations of random walks and over thermally weighted
initial conditions. Here these averages are not distinguished with different notations and the meaning of
the brackets will be clear from the accompanying text. The eigenvalues beiong to the spectrum of the
matrix of transition rates; from eq. (6.2) the relation between the eigenvalues and the matrix can be
written as:

AV, =f-U-f*-V, (6.6)

where the eigenfunctions V are not further necessary for the density of states. The identity

1 1.
=P +imdu-A), 6.7)

v

where P denotes the principal part, is useful for making the connection between the density of states
and the Green function. Using eq. (6.7) in eq. (6.5) gives:

o= (13 ). (63)

T u—ig— A,

where Im is the imaginary part of the quantity and N is the number of sites introduced earlier. The
eigenvalues are replaced by the full matrix using eq. (6.6),

—Im 1 1
P(u)ZTEk:N<—(u—i6)E+f'U-f*>kk

= T S (Gl = (B0, ). (69)

Tk
The sum over v has been replaced by the sum over wave numbers k. Invariance of trace has been used.
s = —(u —ie) and the last equality shows that the density of states is related to the probability that the
particle is found on the initial site. This expression is generally valid. Using the matrix notation the
average Green function from eq. (6.2) is written as:

(G(s)) = (P (SE+£* £ U)o £%) (6.10)

This function is used as the basis for the derivation of the short-time and long-time properties of the
model.

The short-time properties of the Green function are found by expanding this function in powers of
1/5. To do this separate the matrix U, ,. into diagonal and off-diagonal contributions:

U = L8 + 84y (6.11)
with

1
L=+ 2 I (6.12)
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and

A Ngﬁf e (6.13)

where 81, = I’ — I, and I’ is the average jump rate expected for the short-time particle diffusion. The
off-diagonal contribution A is treated as a perturbation; the unperturbed Green function is

~

G (8) =8 [s + 21 (1 —cos k)] B 81 (5) . (6.14)

The diagonal portion of G~k7k,(s) is dominant, since the sums with k # k' oscillate; the law of large
numbers for independently and identically distributed random numbers averages out the off-diagonal
terms and they are negligible in the limit N—x. The Green function is rewritten in the form
introducing an average over all transition rate configurations. For this the following operator identity
for operators A and B is useful

(A+B)y'=A"'-A'BAT'+ A 'B(A+B) 'BA™', (6.15)
and the result is

<G~kk(s)> = g: - <g:fkkAkkftk§:> + <§;:fkk[A'f*((éx)_l +f'A'f*)71 f'A]kkftk§:> . (6-16)

Using eq. (6.13) it is easily seen that the second term in eq. (6.16) vanishes since 4, , = X, 81} /N. This
equation is further expanded with respect to 4 to obtain the short-time corrections. The mean-square
displacement is:

P

()60 = T (Gl
o, 1 B P
_?—?<[A-f G go( f-A-f*G*) - f A]OO>. (6.17)

From [ =0, the first correction to the leading term in eq. (6.17) is:

2<8F )

LS a1 0201 —eosk) 4,,) = 2L v 07, (6.18)

This short-time correction is proportional to ¢°. The correction is negative and reduces the mean-square
displacement found by using only the leading term. The mean-square displacement following from a
systematic expansion has the form

(x*)(s)=2D,(s)/s*, (6.19)

where

D.(s)= L1+ A,(L.Js) + A(Lfs) + ATLis) +--].
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The coefficients 4,, . .. 4, can be derived by this method and they are given in table 1. The real part of
D._(iw) is the frequency-dependent diffusion coefficient, derived here in a high-frequency expansion.
The ensuing short-time behavior of the mean-square displacement is:

(V)= 21 + SA, Tt + S A,(L0) + H A1) + -] (6.20)

The comparison of the exact results for the coefficients 4,, . . . 4; with numerical simulations of {x”)(s)
is deferred to section 6.4.2. Unfortunately, the short-time expansion breaks down for times of order
unity; for larger times the long-time asymptotic regime must be developed.

The formalism introduced above can be used to discuss the long-time regime. The development
needs only to be slightly modified. In this regime the limit s— 0 is taken; therefore it is necessary that
the matrix U in eq. (6.4) has an inverse. This inverse exists as long as I}, #0 for all n. The Green
function is written as:

(Gy=f (U (P E+sU™") T HE*, (6.21)
The matrix U™ ' is expressed in its diagonal and off-diagonal elements:
UI:kI’ = 6kk’/1:;] + A (6.22)

where I is the following average inverse transition rate:

Table 1
Coefficients of the diffusion
D.(s) 4, 4, A
ort 2
Exact ) ~g< 4> —6A2—4A,+§£‘—’
-2(07) 4(s0%) r; 2
7 — - 34,
" I (ar') .
EMA S8 64, -84, 4 4
D()(‘Y) [ 0, 8,
Exact RLPLL: & K Glik, 1345k
L3 4 8§ 16 % 2304
EMA ? L K K Tk, 2]
4 78 § 16 16 ' 6
Dz(s) &, 4
Exact 1 + K_z K KK K_;
127108 24 54 7
EMA 1 &
12 Y]

The coefficients «, are cumulants; those shown here are:

F- G = lE-ENE . = (- RN
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= 1 1
Ihvi=y 2 I (6.23)
and
_Z<__ ___) ik—k")n _ lzéiei(k~k')n (6.24)
L T, N2°T ~ -

Neglecting for the moment, the off-diagonal contribution in eq. (6.21), the Green function for the
uniform lattice is:

él(c)k’(s) = §1(5) e = B [s + 2L (1~ cos k)] ™" . (6.25)

The mean-square displacement derived from eq. (6.25) is a linear function of time as in the simple
random walk and I; expresses the exact result for the average transition rate at long times. The
diffusion coefficient of the random barrier model is thus given by D = I;a* and the average transition
rate in the expression is the inverse of the average of the inverse transition rates. This is a general result
in d =1, valid for more complicated models. The diffusion coefficient is related to the mobility by the
familiar Einstein relation and it is intuitively obvious that the mobility is limited by the small transition
rates or equivalently the large barriers, as expressed in fig. 6.2. The perturbation theory generating the
exact corrections to the Green function, eq. (6.21), can be systematically developed.

The Green function, G, ,(s), for long times is derived in a manner similar to the short-time
expansion. This function is expressed in the following long-wavelength limit (k— 0):

(Guels)) = (s + K*[Dy(s) = K* Dy(s) +-+-1) (6.26)
The most extensive results have been published by Denteneer and Ernst {139, 140]. They derive
corrections for the diffusion coefficient, D (s), and the so-called super Burnett coefficient, D,(s); these

coefficients appear in the expressions for the moments of the displacement. Some moments of special
interest are the mean-square displacement:

(x*)(5) =2Dy(s) /s’ ; (6.27)

the fourth moment of the displacement:

H

Fig. 6.2. The effect of high barriers on the average mobility as perceived by I. Villain.
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(x*)(s) = 24(D,(s) Is* + D}(s)/s) (6.28)

and the velocity autocorrelation function:

(s)= ; (x*)(s). (6.29)
The results will not be derived in detail, they are quoted to s*'* for D~0(s):
Dy(s) = I,{1+6,(s/[})" + 6,(s/T}) + 6,(s/T;)*"*} (6.30)
and to s''* for D~2(s):

D~2(S) =Ii{e, + ¢,(s/T;)'"*} . (6.31)

The coefficients are given in table 1. More details can be found in Denteneer and Ernst [139, 140].

Since the real part of D (iw) represents the low-frequency diffusion coefficient, the result eq. (6.30)
implies a correction term proportional to »'? at low frequencies. Further remarks on the significance of
this result will be made in section 6.7. The corresponding behavior of the mean-square displacement in
the time domain is:

(X)) = 2Ft[1+ 2 = 0,(Lr)”"" + 6,0 ;(E]t)‘”%...}. (6.32)

Hence for this model corrections to the asymptotic mean-square displacement appear, which begin with
t''* term. See section 6.4.2 for comparison with numerical simulations.
The previous analysis remains sensible for a transition rate distribution p(I") which vanishes
sufficiently rapidly as I'— 0:

p, = {1y = J dr p(N)IT" <=, (6.33)

where m may be arbitrarily large. The case where eq. (6.33) is assumed is sometimes called the weak
disorder limit. This language is not used here since it may cause confusion later; instead, the weak
disorder limit is used to denote an expansion in powers of 8I". Other distributions with divergent inverse
moments were considered by Alexander et al. [133-137]. Their method of solution using integral
equations has been formulated to determine the exact asymptotic behavior of P(O s) even under
conditions where eq. (6.33) is violated. If the particle is initially placed at site n =0, the occupation of
this site, after taking the Laplace transform of eq. (6.1), can be formally expressed as:

P0,5)=[s+ ¢¢(s)+ do ()] ", (6.34)

where

P(0, s)~— P(—-1,s) and d;J(s) s P(0, s~) ~ P(1.s)
P(0, s) P(0, 5)

b;(s)=T, (6.35)
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The functions d;(,i(s) can in turn be considered to be functions of their neighboring conditional
probabilities by using the master equation and repetition of this procedure develops a continued
fraction for the functions P(0, s)

$H”:(ﬂi.+s+$amo>] (6.36)
and

$”®)=(T%;+§:i;i—15)ml, (6.37)
where

$,;(8) =T, ,\[P(n+1,5) = P(n, 5))/P(n,s) (6.38)
and

_,,(S) [P( n,s)— P( n—1, s)]/P( n,s), (6.39)

The further development follows the method developed by Dyson and Schmidt for finding the density
of states of disordered one-dimensional systems [141].

The functions ¢, (s) are themselves random variables and are distributed according to the distribu-
tion functions:

4

ﬁ(x)=fdx' pey [arprys(x- (e =) ). (6.40)

s+x
0

(

where, again, the translation invariance of the model has been invoked so that the distributions for
(15 “(s) are assumed to be independent of n. Also, since d) (s) and ¢> (s) have no common transition
rates, they are independently distributed with the same distribution function f,(x). P(0, s) has been
previously expressed, eq. (6.34), as a function of ¢ “(s); therefore, the ensemble average of P(0, §) is:

(PWanjdfﬁujfdﬂﬁUU;¥$;7;. (6.41)

0

This approach to the problem makes no assumption about the distribution p(I"). In fact, even the
first inverse moment may diverge. This is a situation where no diffusion exists. Alexander et al. [136]
considered several classes of distributions and analyzed these distributions based on the asymptotic
form of the function f,(x) (s—0):

£ = —(ls—) hx). (6.42)
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For the case discussed in eq. (6.33), Stieltjes transforms and inequalities can be used to deduce the
scaled function ki (x); the details can be found in ref. [135]. The result is:

h(x)=8(x/e(s)—1), (6.43)
and the parameter &(s) is:
e '(s)=Vu_ls. (6.44)

The expansion parameter which determines the long-time properties is proportional to s'”?. From the
above equations, the expression for (P(0, s)) is:

(P(0,5)) = 1/[s + 2¢(s5)] . (6.45)

Recently Igarashi [142] considered corrections to this leading behavior and expressed P(0, 5) as:
~ 1 [1 &(s) ( #—z)

= —— — + — 7 _ <

<P(O,S)> S(S) 2 My 8 1 /“LZ—1

1 p, 1 9 u, 15 (u_z)z]

2 2 & ~=3 - P2 Y2
+ e ) (16 W, 6 128 2, 256 \4 (6.46)

Corrections to order &(s) were determined using the replica method by Stephen and Kariotis [143]; this
method is not further explained here. The interested reader is referred to their paper for details.

The real advantage of the Dyson-Schmidt method is realized when the inverse moments diverge.
One such distribution used in refs. [135-136] is

(l-a)yl'*, 0=I=1,

p(r) = {0, otherwise (6.47)

with 0<a <1. Using Stieltjes transforms [135], the scaling variable can be determined to be
e(s)=s""?"*. Furthermore, h,(¢) can be determined by using Mellin transforms [135,144]. This
method gives the asymptotic properties of the density of states, i.e. eq. (6.9). The diffusion coefficient
is calculated by assuming a scaling relation between P(n, s) and P(0, s):

(P(n,s)) = (P(0, 5)) F(nlg(s)). (6.48)
Requiring normalization of the sum over all the probabilities, the correlation length, E(s), is:

£ '(s) = 2s( P(0, 5)) . . (6.49)
Numerical simulations [135, 145] have provided the function F(z):

F(z)=¢ ", (6.50)

This result is used to calculate the diffusion coefficient as:
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~ @ 2 ai(2-a
D(s) = D3Cg s (6.51)
with
« . 1/(2—
Ci =4 w1 = a)/sin ma]' 7. (6.52)

This expression can also be calculated by the effective medium theory (see section 6.4) [135, 144]; the
result is:

C{'(EMA) = {[#(1— a)2°/sin ma]" "7 . (6.53)

There is a speculation in ref. [144] that eq. (6.53) is exact. At any rate for @ small, the effective
medium is in very good agreement with the result derived from the Dyson-Schmidt method and the
scaling relation.

In the time domain the mean-square displacement is:

, . - @)/(2=a)
(x*)(1)=2D; C G 3a)0—a) " (6.54)
6.3. The broken-bond model
A special case of interest is the distribution:
p(I'y=(1-c)s(I" =I')+c8(I). (6.55)

For this distribution all the inverse moments of the jump rate diverge. Moreover, the lattice is broken
up into chains of finite lengths. On each of these chains the transition rates are constant and equal to I".
This problem was analyzed by Heinrichs [146] using periodic boundary conditions on each chain. This
deficiency was corrected and the boundary sites were properly treated by Odagaki and Lax [147]. In a
manner similar to eqs. (6.19) and (6.29) D(s) is related to the mean-square displacement by
(x7)(s) =2D(s)/s* for equilibrium ensembles. In the time domain D(t) is proportional to the second
derivative of {(x”)(). For this model as t— % D(t)— 0. The static diffusion coefficient vanishes, but the
frequency dependence of this quantity is of interest here. They consider the average frequency-
dependent diffusion coefficient expressed as a weighted sum of the ‘diffusion’ coefficients for the finite
segments D, (s):

5(5) = Vil NC, D~N(s) , (6.56)
where .
2 N
D~N(S) = 2?\/2 nw%ﬂ (n— n())2 ﬁN(”» $ \ n,, 0), (6.57)
and C, is:

Cy=c(1-o"". (6.58)



J.W. Haus and K.W. Kehr, Diffusion in regular and disordered lattices 331

The ¢’ factor is the probability of two zero transition rates at each end, and the factor (1 —¢)" " is the
probability of finding N — 1 consecutive non-vanishing transition rates. The quantity NC,, is then the
probability that a particle, which is randomly placed on the linear chain, is found on a segment of length
N.

ﬁN(n, s|n,) is expressed using a simple tridiagonal finite-dimensional matrix:

~ 1 _
Py(n, s|n,) = N [CE+Ay) 1]”~"0 ’

where
[ -T ]
-r 2 -r
-r 2r
Ay= o . (6.59)
2r T
| -r I

The smallest eigenvalue of the symmetric tridiagonal matrix is:
A =0. (6.60)

This corresponds to the stationary-state eigenvector:

V,= \/N(l’ ,. 1) (6.61)
The other N — 1 eigenvalues are:
A, =2I'[1 = cos(mv/N)], (6.62)
v=1,2,... N—1. The corresponding unnormalized eigenvectors are:
V,=(C,. Gy, Conny) s (6.63)

with the amplitudes C, = cos(r7/2N). The segment conditional probability is expressed in this spectral
representation as:

NE LA L R L

R, (6.64)

Pnim= L2

The finite-segment diffusion coefficient, using this result and eq. (6.57) is:
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B N R N-=D"70+C,)
D _ 3 i ] 2v
~(8) —o7=~ 3 INT ,; (1-GC,) [2I(1-C,,) + 5]

(1+417s)" " 1 1
T RS R 1) ’ (6.65)

where Z, = (Vs = Vs +4I')/2VT. For the short-time regime the asymptotic resuit for 5(s) was given
by Odagaki and Lax as (s— ):

D(s)=(1— o) —2¢(1— )T s+ 2c(1+ o) (1= ) s* + - - -, (6.66)

and for the long-time regime the asymptotic result obtained by them is (s —0):

(1—c)s_(1—c)(1+c)2£

D(s) = 5o — =T (6.67)

The last expression reveals that the static diffusion coefficient vanishes, as required, for this model. It
should be remarked that the derivation of Odagaki and Lax does not include the possibility of effects
deriving from strong fluctuations in the segment lengths. These fluctuations may lead to a non-analytic
behavior of the diffusivities at low frequencies. Analogous nonanalytic effects appear in the survival
probability against trapping and they are discussed in chapter 9.

The probability of finding the particle on the initial site at time ¢ exhibits an interesting time
dependence. This is related to the previous development by the series:

(P(0, 1)) = E N C, (P(0.1)), . (6.68)

Using eq. (6.64) this quantity can be written in the form [148]:
(P(0, 1)) =c|1+I(1)]. (6.69)
The time-independent contribution in eq. (6.69) is derived from the stationary solution. The time-

dependent part is simplified using the disorder-independent initial occupation of site 0 and the
normalization of the eigenvectors as well as the inverse Laplace transform of eq. (6.64):

cl()=c \21 - il exp[—2ft(l — Cos %1)] . (6.70)

=1

I(¢) is an integral over the density of states p(u):
cl(r) = f du p(u)ye ™", (6.71)
0

with the density of states from eq. (6.64) and eq. (6.9) given by:
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a N;Nln(l—c) él-z—lvw—ﬁa(z— LU (6.72)

The dominant contributions from the sum over [ are the first few terms and the sum over N can be
transformed to a continuous Poisson distribution with |In(1 - ¢)|™" as the correlation number (¢ <1).
The density of states, expressing the sum over [ as a Heavyside function and using this to give the
integral over N a finite lower bound, is:

2

p(u) = %\/_u— [l + %] exp(— ma/Vu) . (6.73)

This is used to evaluate eq. (6.71) using a saddle-point approximation; the result is:

1 2/3 1/3
()= —— [1+ =3/27'"7y, 6.74
cI(t) (377_1;’,:142[ 7 Jexp(=3/2777) (6.74)
where
r=V2altin*(1-c¢). (6.75)

The probability of finding the particle on the initial site exhibits an unusual decay:
(P(0,1)) — c=exp(—at'"’). (6.76)

This behavior has been found in a number of other models of diffusion on disordered lattices;
therefore, further discussion of this behavior will be deferred to chapter 9.

6.4. Effective medium approximation

6.4.1. Discussion and general formalism

The exact results of the previous section have demonstrated the interesting frequency-dependent
properties capable of being derived from simple models with static disorder. The methods employed to
obtain those results are, with the exception of the replica method, only suited to deal with one
dimension; in order to make progress on the problem of transport in higher dimensions, other methods
must be sought. One simple method which can give reasonable results in any dimension for large
disorder and high concentrations of the defects is the effective-medium approximation (EMA)
[149-156]. The EMA is exact in the limit of high and low concentrations of defects and it provides a
smooth interpolation between the two limits. The reliability of the EMA can be gauged by comparison
with exact results and by checking the solutions against Monte Carlo simulations. The effective-medium
theories have been formulated in the spirit of multiple scattering formalisms. Their merit lies in the ease
of calculating explicit results within the formalism. However, extensions beyond the simplest approxi-
mations are quite tedious and there is no procedure to estimate the expected error in the procedure.
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In the EMA the effects of disorder are replaced by an average medium. To begin assume that the
conditional probability G(n, t) in the average medium satisfies a generalized master equation:

dic;(n, t)=fdt' -1ty 2 [Gn',t')— Gn '], (6.77)
! 0 {n'.n)

where the sum is over all nearest-neighbor sites around the site n. I'(¢) is an associated transition rate
for the effective medium; it contains the non-Poissonian properties of the disordered medium.

The formulation of the EMA provides a connection between the distribution of transition rates p(I")
and the associated transition rate for the effective medium I°(¢). This is done by considering a cluster of
bonds whose transition rates are taken from the original configuration of rates and embedding it into
the effective medium (fig. 6.3). For sites which are not connected to bonds of the embedded cluster, eq.
(6.77) holds. However, for sites within or contiguous with the embedded cluster, the transition rates are
random functions.

The system with the embedded cluster is described by the set of equations:

d
aP(n, 1) = E {]_;.n'An‘n'[P(n',l) - P(n_l)]

(n'.n)

+fdz’ I[(—1)y(1—4, )P ')~ Pn, t’)]} , (6.78)

where

A = { 1 if n and n' are nearest neighbor members of the cluster sites ,

0 otherwise . (6.79)

These equations are solved by introducing the Laplace transform of the time variable. The Fourier
transformation of the site index does not completely diagonalize the equations, but only elements for
those sites connected to the random bonds of the cluster appear as inhomogeneous terms in the
expression for P(k,s). The final set of linear equations can be solved by algebraic methods. The
function I(s) is determined by a self-consistency requirement; namely, averaging over the remainder of
the transition rates in the cluster should give the same expressions for G(0, s) as given by the solution of
the generalized master equation, eq. (6.77).

r r)

Fig. 6.3. In the effective-medium approximation all but a small cluster of transition rates is replaced by an effective value. Here a cluster of one
bond I'" between two sites is chosen.
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For a single random transition rate, [ ,, the self-consistency condition is:

)L,
< At N >= : (6.80)
1= Q2/2){[1 =5 G0, )T ()}(I(s) — Iy 1)
C~?(0, s) is the initial site occupation probability in the EMA.:
~ 1 d%
G(0,9)= m)* f s+zI(6)[1-pk)] (6.81)

The function p(k) depends on the lattice type. For the d-dimensional hypercubic lattices (i.e. linear
chain, square, simple cubic, etc.) the transition probability is given by eq. (2.5). The function G(0, s)
with I'(s) as a parameter has been extensively studied for other lattices in the literature [156-157].

6.4.2. Transport in one dimension
In one dimension the EMA results can be compared with those in section 6.2. For the case where the
moments are finite, the following asymptotic behavior for large s is found [153, 155]:

[(s) = L[1+ A(IL/s) + A(TL/s) + Ay(L/s) + -+ ] ; (6.82)

i.e., I'(s) is of the same form as D.(s) in eq. (6.19), the coefficients derived in the EMA are given in
table 1.

I, and A, were derived in section 6.2 and they are exact. The coefficient A, can be found in [136] and
it is also exact in the EMA. .

In the limit s— 0, I'(s) has the same form as D(s) in eq. (6.30),

I(s)=T[1+6,(s/T,)" " + 8,(s/T) + 6,(s/T,)* + -] (6.83)

The coefficients can be found in table 1 and they are compared to the exact results. Ij and 6, are exact,
see eq. (6.30). The results for the coefficients 6, and A, have been compared with Monte-Carlo
simulations of the master equation using the distribution:

p(I'")y=(1—c)8(I"' =T+ c&(I" = I'7). (6.84)

The results are shown in figs. 6.4 and 6.5 for the mean-square displacement and fourth moment,
respectively. One finds generally very good agreement between the simulations and the short-time and
long-time expansions. It is seen that it is necessary to include the coefficients 6, and 6, in order to get
agreement at long times. The EMA expressions have been used in the figures, but the difference
between exact results and EMA is not visible in the simulation. As mentioned previously the EMA also
gives results when the inverse moments diverge; this case will be discussed in section 6.5.

6.4.3. Transport in higher dimensions
It is an easy task within the EMA to derive explicit results in higher dimensions. The d-dimensional

results for the hypercubic lattices are available. In the limit s — %, I (s) is of the same form as eq. (6.82)
with slightly modified coefficients.
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Fig. 6.4. The mean-square displacement versus time for the di- Fig. 6.5. The fourth moment of the displacement versus time for the
chotomic random-barrier model in d =1 with ¢=0.5and I'" =0.17". random-barrier model. See fig. 6.4 for details.
The solid curves represent the EMA for the short- and long-time
behavior.

The coefficients I, and A, are identical to those given in 1 dimension. The higher coefficients are
given by:

A, =4((l' - LY)Y/IT: —(2d +1)4,
and
A, =—8((F =L)"Y Irs + A1 —64,+12(% — d)4, . (6.85)

A comparison of these results with Monte-Carlo simulations reveals that the short-time expansion
breaks down at a later time in higher dimensions than in one dimension (see figs. 6.6 and 6.7).

The expansion for small s requires that each dimension be separately treated, since the asymptotic
behavior of G(0, s) in eq. (6.80) determines the precise behavior of I'(s). The average transition rate,
I, in d dimensions follows generally in the limit s— 0 from:

r-r
< I - >=0' (6.86)
1_(17)—1“’)/‘”:)

For p(I') given by eq. (6.84), this average rate is:
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Fig. 6.6. The mean-square displacement versus time for the di-
chotomic random-barrier model in two dimensions. The parameters
are as described in fig. 6.4 and the curves have analogous meaning.

q 1
d-1) T 2d-1

I=5 yVa' +4d-DIT”,

defining g =(d - VD)[(1-c) + T~ —c —(1-)".
In two dimensions I(s) is:

f(s) = ]_?)[1 + 6, ln(321_“0/s) +o];
and in three dimensions the corresponding expression is:

[(s) = T[1+ 8,(s/T;) + 6,(s/T,)"* +-+].

The structure of the coefficients 6, is independent of the dimensionality:

= a0\ =y ! i vy

The coefficients A,(d) depend on the dimension and they are
A,(2)=1/4m

A,3)=G(0)=} and A,(3)=-1/4r.

TIME
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Fig. 6.7. The mean-square displacement versus time for the di-
chotomic random-barrier model in three dimensions. The parameters
are given in fig. 6.4 and the curves have analogous meaning.

(6.87)

(6.88)

(6.89)

(6.90)

(6.91)

As a consequence of this expansion, the velocity autocorrelation functions have negative long-time

tails proportional to t~“*%"2

. Figures 6.6 and 6.7 illustrate the behavior of the mean-square displace-
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ments. The solid curves show the EMA results for long and short times, and one recognizes very good
agreement between the simulations and the EMA results.

The renormalization group method [158] and the replica method [159] have been applied to this
model in d =2 and 3. The results are qualitatively the same as that found by the EMA; however, in
both cases the results would not provide accurate representations of the Monte Carlo simulations. The
renormalization group method is discussed in section 6.6.

6.5. The percolation problem

Another aspect of the random lattice is the random removal of bonds from an otherwise perfect
lattice in higher dimensions than one. This is the bond percolation problem, which has been intensively
investigated and finds application in a variety of experimental situations [160~162]. The lattice with the
removed bonds is like a board with a matrix of resistors some of which have been removed. After the
random removal of each resistor a voltmeter measuring the resistance across the matrix is used to test
whether there is still a closed circuit. After a certain fraction of resistors has been removed, the board
no longer conducts from one side to the other, i.e. there is an open circuit. If the board is large enough
(i.e. the number of resistors approaches infinity), the fraction at which the conductivity vanishes is a
constant. This fraction is called the percolation concentration. Another way of understanding this
phenomenon is that above the percolation concentration, in the limit of an infinite number of resistors,
there are no infinite clusters of connected resistors; whereas, below this concentration there is certainly
an infinite cluster. Even though all sites are not contained in the infinite cluster, it does connect the
opposite sides of the matrix as the number of sites goes to infinity.

The infinite cluster can have a very complicated structure with multiple paths and dead-end
branches. This is properly a critical phenomenon and the methods of that field have been extensively
applied to percolation problems. However, giving more details lies out of the scope of this review and
the reader interested in more details is referred to the following articles [161-164]. The results
presented below refer to the physical quantities derived from the EMA. This approximation is properly
called the mean-ficld approximation in the critical phenomena literature and as such, it cannot be relied
upon to yield accurate behavior of physical quantities close to the percolation concentration. Neverthe-
less, the quantities do have the proper qualitative behavior and because the frequency behavior is easily
derived in the EMA, dynamical phenomena are worth investigating to obtain new insights.

The distribution of transition rates is represented in eq. (6.55); the calculation of the diffusion in the
EMA using the self-consistency condition, eq. (6.86) gives the result:

zl (z -2 ) z=2
p,=ha={z-2\"z ) (6.92)
0, otherwise .

The diffusion coefficient is a linear function of concentration and vanishes at the percolation
concentration ¢, = (z —2)/z. This value is exact for one and two dimensions on the square lattice, but
for three dimensions the value ¢ = 7 [165], rather than %, is closer to the numerical value of the
percolation concentration. Furthermore, the EMA does not give the exact result for the percolation
concentration on other two-dimensional lattices, such as the triangular lattice.

Frequency-dependent corrections to the diffusion coefficient can also be derived from the self-
consistency condition. Only the low-frequency behavior is quoted here. In one dimension the static
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diffusion coefficient always vanishes and the corrections are (I"=1) [151]:

_(-9U+9. (1—0)(41+c) 0l (6.93)

D(w) 4¢* 8¢

These results are only in qualitative agreement with the exact results, eq. (6.67).
In two and three dimensions, three regions must be considered and each dimension treated
separately. For d =2 [151]:

icoIn w [7/2+iln64(c, — O)]w
- c , c<c
¢ dm(c,—c) 4m(c, —c) P
~ 1 . 142
— | +i)(— 2 = 6.94
D(w) N (1+)(~whw) c=c, (6.94)
- 32ca’o?’ > ¢
LT e —c o + F(1+(4a) ) P’
where a is the solution of the equation:
F(1+ (4a) ") =8(c—c,)e (6.95)

and F(z) is related to the Green function é(s) defined in eq. (6.81):

N

F(l + )) =2 1(s5) G(s) . (6.96)

zf(s

F'(z) is the derivative of F(z) with respect to the argument. Although the percolation concentration is
exact for this model, the frequency behavior of the diffusion coefficient need not be accurate. It would
be interesting to observe where the EMA result breaks down.

In d =3 the following behavior has been computed for the diffusion coefficient [151]:

F)e . . cC(1-i)w’?
w
12(c, - c) 36V2(c, — ¢)*"*’ P

D(w) =1 \/f% iw, c=c, (6.97)

1-V3(c-c,) . . [243(c—c,)—V2I(c = c;)]co’
[ e —c,) 1 3*x2c—c,) ’

D, +

c>c

p )

where F(1) =8 G(0)/3=1.51638....[166] and C = 3V6/2. These results have not yet been critically
analyzed and there is a need for more precise theoretical determination of these quantities.

Another quantity of interest is the average occupation probability of the initial site for long times,
(P(0,%)). Of course, if ¢ =1 the particle has no possibility of moving to another site; also if all the
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clusters have a finite extent, then the particle will never completely vanish from its initial site; this is
precisely the situation in the percolation regime ¢ > c,. Thus the quantity (P(0,)) can be used as a
definition of the localization, when it vanished the particle is not localized, otherwise it is localized. This
has been referred to as the strong localization condition [147].

Using the knowledge of the equilibrium state, i.¢., the probability of occupying a site in a cluster of
size N is 1/N, the value of (P(0, %)) is an average of the inverse of the cluster size:

(P(0,%)) = (1/N) . (6.98)
The self-consistency condition solved for this quantity gives the result:

z
7 (c—c,), ¢,=c
(P(0,)) = (6.99)

0, otherwise .

This linear function of concentration resembles the behavior of the diffusion coefficient in the regime
¢ <c,. The two properties are complementary to one another.

In one dimension the result in eq. (6.99) is exact [155]. In higher dimensions there appear significant
deviations close to the percolation concentration.

6.6. Renormalization-group methods

The renormalization-group (RG) method has been already mentioned in the previous sections and
was developed to high precision to study systems near criticality. Dynamical systems have been
investigated using field-theoretic methods [167, 168] and lattice methods [169]. The methods discussed
here will be those developed to analyze diffusion in disordered media [170-172]. The authors feel that
the potential of this method has not yet been achieved; this section outlines three of the methods which
have been applied to the problem with the hope that this will stir the imagination of the reader to
develop the method further.

The RG developed in each of the references differ greatly from one another. Visscher [158, 171]
defines a space-time coarsening transformation which acts on a discrete set of equations of motion.
Under repeated RG transformations, the system approaches a fixed point which is described by the
usual diffusion equation:

opldt=DVp . (6.100)

Corrections to this equation are obtained in an expansion of the disorder. This method, although only
applied to systems with weak disorder, is the only RG method to give results in Euclidean d
dimensions.

Guyer developed another RG method of studying one-dimensional disorder lattices. His method is
based on a decimation procedure acting on the master equation; in this procedure every other site on
the lattice is eliminated [172]. The master equation is written in the following form:

sB(n,s)=5,,~V, P(n,s)+ [, P(n+1,5)+ I,_, P(n—1,5). (6.101)
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The quantity V, =TI, +I,_, before the renormalization procedure is implemented. After the RG
transformation is apphed th1s quantlty is no longer a simple function of the renormalized transition
rates. The sites n = +1, +3, =5, ... are eliminated and the new equations of motion are:

5 P2n, s)= 8y, o — V5,(5) P(2n,5) + T,(5) P2n +2,8) + T3, (s) PQ2n—2,5), (6.102)
where the coefficients have been renormalized according to the decimation procedure to:

74,(5) = Vi (8) = T3,() Dy 1 () = T34 (5) Doy (9)

I;,(9) = f;n(s> Foer(®) Dy (9),

Iy, 2(6)= Ly 1(8) Ty 2(8) Dus(9)

D (s)=s+V,(s).

(6.103)

At this point the master equation no longer conserves probability, but by simply renumbering the lattice
sites 2n—n, P(2n 5)— P (n, s), the equation recovers its original form and the RG transformation can
be successwely applied.

The central simplifying feature of this procedure appears when the successive transformations
become so large in number that the effective coarsening of the lattice has become larger than the
diffusion length. In this regime the particle is bound to the central site and the jump rates to
nearest-neighbor sites approach zero. In this limit the equations reduce to:

1

PO, 5) = ——=— .
0.9 1+ V{(s)

(6.104)

The method could be numerically implemented and is especially suited to determining the density of
states [173]. Guyer approximated the RG transformations, but these approximations did not reliably
reproduce the diffusion coefficient or the long-time asymptotic corrections.

The RG method closest to the CTRW formalism was developed by Machta [170]. He also uses the
decimation procedure in one dimension. The fixed point in his case, as in the method of Visscher,
corresponds to diffusion of the particle on a regular lattice. The long-time properties are determined by
the fixed point, the approach to the fixed point determines the effect of the disorder on the diffusing
particle.

The waiting-time distributions for transitions from the site n to n+1 or n — 1 are:

U, () =T, exp[—(F, + I, )1,

g, ()=, exp[=(I, + I, )1].

(6.105)

The plus sign denotes a jump to the right from site n and the minus sign denotes a transition from » in
the opposite direction.

The reduction of the lattice sites through the decimation procedure is accomplished by considering a
lattice site 2n; the waiting-time distribution for the particle to reach site 2n + 2 without jumping to site
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2n -2 is a series of convolutions involving products of the waiting-time distributions. The result is
expressed as a geometric series whose terms are physically interpreted as the elementary transitions
between sites 2n — 1, 2n and 2n + 2:

J;;(s)~ ¥, (8) ¥s,.1(8) (6.106)

(- ST T 0 U, (5))

and

- *fz_"(s) ‘/’2"*1(:‘) - , (6.107)
(1= &, V0,5, )= 05,8 5, ,(5))

Yy (5) =

The new functions t/jt(s) differ from the previously defined functions, but when s =0 their sum is
normalized to unity. The new lattice has a length that is twice as long as the old one and rescaling the
length requires an additional factor A to rescale the time; let 2n— 1 and define:

1 (5) = ¥ (s) . (6.108)

The fixed point equation for this transformation is:

e WA
g*(s) = 20 Gy (6.109)

The asymptotic behavior of this function in the case where diffusion is present is:
V() —> 3(1- Ts). (6.110)

From eq. (6.109) A =4 is the only solution. This result is easily interpreted using the mean-square
displacement. This quantity remains invariant under the RG transformation;

(XY)y=Tlt=T1"r . (6.111)

Since, /' =2/ and ' = t/), invariance requires that A =4. I"is related to the inverse of the average stay
time 7T, approaches a fixed point value and does not change under further RG transformations. The
fixed-point equation for the waiting-time distribution has the solution:

U (s) = 4 sech (2VT). (6.112)

This result does not correspond to a Poisson process and the result is the same whether or not disorder
is present on the lattice.

The effective transition rates associated with the waiting-time distributions become frequency
dependent under the action of the RG transformation. It is easier to use the transition rates in the RG
transformation since they express the disorder in the master equation. To do this some knowledge of
the perturbation theory developed in section 6.2 is used and the parameter
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_
Tn = (44T

(6.113)

is chosen for the RG method. This parameter is related to the waiting-time distributions at s =0
through the equations:

&7 (0)=,(0)/[F,(0) + I,_,(0)] (6.114)
and
b (0)=1,_,(0)/[1,(0)+ I,_,(0)]. (6.115)

The quantity g, can be defined:

qn=%=‘ 1 ~ ~ n=0 (6.116)
e 32500 30

~ ~— ~ , 0
L ¢n+1(0) ¢n+2(0) ¢0(0)
with the property that the sum is
w200l |
N > q,=1, 7 (6.117)

n=-N+1
The quantity of interest is defined as:

_ qn
" ARNEY voq,

(6.118)

and it is related to the waiting-time distributions through egs. (6.114-115). The quantity has a simple
recursion relation:

mn=(r,+7,.,.,)/2. (6.119)
At the fixed point 7* = 1. For further details the reader is referred to the original papers. The master

equation with nearest-neighbor transition rates is expanded as previously done using the method of
Zwanzig. The generalized diffusion coefficient is:

D(s) = D(4"s) = <q><N){1 - % [1 + (M;’%)MJ}. (6.120)

Note the factor 4" from rescaling the time N times. As N— %, the moments in eq. (6.120) have the
following behavior:
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(e (1) (T 621

1

and

/ 1 : | 87‘ + o7 2\ (N 1\
5F2 (Ny _ 5 S 2\(N) 7< ol > :<_‘> 5 (~N- ”
< m> <1/11>_ < Tm> <l/]—v>_ ( 2 ) I <( Tm) >
(6.122)

Under repetitions of the RG transformation, the fluctuations are reduced by a factor of 2; the solution
for the diffusion equation is:

(1 o

D(s)=D (sD,)" ) (6.123)

Thus the result of Zwanzig’s method is recovered, cf. eq. (6.30) and table 1.

6.7. Non-Markoffian nature of results

Particle transport in the random-barrier model exhibits non-Markoffian behavior when it is consi-
dered in the ensemble average. This is evident in d =1 from the frequency dependencies of the
diffusion coefficient and the modified Burnett coefficient, see section 6.2, and in general dimensions
from the frequency dependence of the effective transition rate I(s), see section 6.4. In this section the
non-Markoffian nature is discussed in more detail, and also the correspondence with a single-state
CTRW description is examined.

The main result can be summarized as long-time tail behavior which shows up in the corrections to
the asymptotic mean-square displacements, as well as in the algebraic decay of the velocity autocorrela-
tion function (VAF). The coefficients of these corrections, or of the asymptotic VAF, are disorder-
specific, i.e., they are present when there is disorder and vanish only in its absence. Note that the
coefficients are present for quite regular distributions of transition rates where all inverse moments
exist. Thus the long-time tail behavior in the mean-square displacement can be regarded as a signaturc
of disorder. It is interesting to note that this behavior can be obtained in perturbation theory, or by
effective-medium methods. For these problems, the situation is not as extreme as discussed by
Anderson [174]. _

In d =1 the presence of a correction term xo "? in the VAF C(w) means that the frequency-
dependent diffusivity D(w) of a particle rises as w'"” for small frequencies, above the static diffusion
coefficient D(0). It is plausible that a strong increase of the diffusivity with frequency, for small
frequencies, appears in the random-barrier model as a consequence of the disorder. Consider a
random-barrier model with two barriers, I, I’ and I' = < I" and the high barriers have a concentration
¢ < 1. There are then segments of consecutive low barriers of varying lengths. The diffusion coefficient
at finite frequencies gives an estimate for the mean-square displacement of a particle in the time interval
27lw. If the frequency is increased, and thus the time interval reduced, the number of available
segments with squared lengths equal or larger than the new, reduced mean-square dlsplacement

increases. Of course, the qualitative result does not yet give the quantitative result D(w) — D(O) '’
It will now be dlscussed whether the averaged random walk of a particle according to the
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random-barrier model can be brought into correspondence with a continuous-time random walk. The
first problem is the determination of the average waiting-time distributions. There are two rather
different answers to this problem.

i) The literal WTD. The average WTD of a particle can be determined by applying literally the
definition of a WTD. Given a particle arrived at a site at 1 = (), the average WTD will be defined as the
probability density, in the ensemble average, that the particle makes its next transition to another site at
time ¢. The elementary WTD for transitions to nearest-neighbor sites according to the random-barrier
model are given in eq. (6.105). For simplicity a dichotomic distribution of transition rates is chosen, eq.
(6.84). An ensemble of linear chains with the distribution eq. (6.84) is introduced. It is assumed that
the ensemble is in equilibrium and the time origin is chosen arbitrarily. The average WTD for the first
transition after =0 is obtained as the ensemble average of the elementary WTD with the distribution
eq. (6.84). The result is

h(t) = 2T exp(=2~t) + (1 — ¢)* 2T exp(—2T1) + 2¢ (1= ¢) (I + T Y exp[~(I' + I'")1] .
(6.124)

The average WTD (1) for all successive transitions is obtained by inverting the relation eq. (3.3)
between A(t) and ¢(t) which applies for a stationary situation,

(1) =—tdh(r)/dr. (6.125)
The resulting average WTD is
Y1) =1{c* 2I")’ exp(=2I""1) + (1 — ¢’ (2T')* exp(-21)
+2c(1=c)(F+ I ) exp[—-(I'+ I')1]} . (6.126)
The mean residence time 7 on a site is given by the inverse of the transition rate in equilibrium,
t=[2er=+2(1-0)r)". (6.127)

It is also possible to derive the WTD for forward and backward transitions, relative to the preceding
transition. If the particle is found between two low (I') or two high (I'™) barriers, it will make the
transition in forward or backward direction with equal probabilities. If the particle is found between a
low and a high barrier, it arrived there with probability I'/(I" + I'™) by a transition over the low barrier,
and with probability I"*/(I" + I'~) by a transition over the high barrier. The probabilities of leaving the
site via the low or high barrier are given by the same factors, hence

Yo() =3ty +tc(1=c) (T =T~y exp[—(" + I )1], (6.128)

(1) = (1) = ¢, (1) . (6.129)

It is evident that a determination of the WTD by numerical simulations gives the literal WTD. In
these simulations, the definition of the WTD given above is implemented; details are given in [176].
Figure 6.8 contains the above results on the WTD, together with the results of the simulations. As
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Fig. 6.8. The literal waiting-time distributions of the random-barrier model in d = 1 calculated from Monte-Carlo simulations (dots) and analyticaily
(lines). The dash-dotted curves are the asymptotic resuits for the associated waiting-time distribution.

expected, the numerical simulations verify the correctness of the simple derivation given above. It
should be emphasized that renewal theory was instrumental in this derivation.

Unfortunately, the literal average WTDs give incorrect results when used in the CTRW formalism.
Only the short-time behavior is obtained correctly. In single-state CTRW the predicted diffusion
coefficient is incorrect and its frequency dependence is missing. The correlated CTRW according to
section 4.3, where () and ¢,(t) are used, also gives an incorrect static diffusion coefficient. A
frequency dependence of D(w) is obtained, however, it is analytic and does not show the expected '
behavior. Hence the major features of the random-barrier model are not obtained from single-state or
correlated CTRW with the literal WTD.

i) The associated WTD. An associated WTD can be obtained by comparing the results of section 6.4
on the associated transition rate of the effective-medium approximation with the single-state CTRW of
sections 3.2-3.3. The form of the kernel used in the EMA section 6.4 corresponds to separable CTRW.
Comparison with the exact results of section 6.2 shows that the first two leading terms of the
mean-square displacement and of the fourth moment at long times are given correctly by the EMA.
Hence the correspondence eq. (3.28) between the kernel of the generalized master equation and the
WTD can be used to determine the associated WTD ,(s) from the kernel I'(s) of the EMA,

b.(s)=I(s)/[s + I(s)] . (6.130)

Insertion of the large-s expansion of r (s) according to eq. (6.82) up to O(s™') and inverse Laplace
transformation shows that the short-time behavior of the associated WTD is given by

Y (=LA -A)Le+--]. (6.131)



J.W. Haus and K.W. Kehr, Diffusion in regular and disordered lattices 347

Substitution of I'(s) by its small-s expansion eq. (6.83) up to O(s""*) and inverse Laplace transforma-
tion yields the long-time behavior of the associated WTD,

b (1) = 3 er(rz)‘“ (6.132)

The asymptotic behavior of the associated WTD is indicated in the figure. Since no inhomogeneous
term is present in the EMA for the random-barrier model it is only consistent to assume that no distinct
associate WTD for the first transition must be introduced, which would correspond to an inhomoge-
neous term in the generalized master equation. This point will also be discussed below

The initial transition rate following from the associated WTD is given by I, = (2£) " It corresponds
to the average transition rate, whereas the literal WTD gives a slightly 1ncreased initial transition rate,
cf. fig. 6.8. The long-time behavior of y,(¢) is such that no second moment exists; this can also be
deduced directly from eq. (6.130) by using the small-s expansion of r (s). In contrast, all moments of
the literal WTD exist, since it decays exponentially.

The associated WTD has been determined in such a way that it reproduces, when used in a
single-state CTRW, the correct long-time and short-time behavior of the random barrier model for the
leading terms of the mean-square displacement and fourth moment. In order to obtain this associated
WTD, a solution of the random-barrier problem by other means (perturbation theory; EMA) was used.
Once such a solution is found, there is no apparent need to reconstruct the corresponding associated
WTD. On the other hand, no direct derivation of the associated WTD appears possible, at least at
present. Hence its usefulness is rather questionable.

A formal equivalence between averaged particle transport in disordered systems and the generalized
master equation or CTRW theory was established by Klafter and Silbey [177]. They assumed that the
random walks of the particle in the individual disordered systems are described by Markoffian master
equations. They referred explicitly to a lattice model with inaccessible sites, however, their derivations
are applicable to the random-barrier model as well. They used the Zwanzig-Nakajima projection
operation formalism [178, 179] and the projection operator D is defined as leading from a non-averaged
quantity A to the disorder-averaged quantity, DA = ( A). The result of Klafter and Silbey is that the
master equation, when averaged over the disorder, is of the form of a generalized master equation.
Since the GME can be brought into correspondence with CTRW, also the correspondence of the
averaged master equation with CTRW is shown.

In the course of their derivations they omitted an inhomogeneous term proportional to (1~ D)
X P(n,0) where P(n,0) represents the initial condition (see ref. [179]). This omission is justified for the
case of the random-barrier model where uniform initial conditions are adequate. However, in the case
of the random-trapping model (cf. chapter 7) or of the model with inaccessible sites (as described by
Klafter and Silbey) an inhomogeneous term should be included in the derivations.

The explicit realization of the correspondence between average transport in the random-barrier
model and the ensuing CTRW description was given above. The correspondence leads to the associated
WTD which cannot be interpreted as the average WTD of the particle in the literal sense. Moreover, it
is not obvious from the general formalism that the associated WTD are always positive semidefinite as
is necessary for a probabilistic interpretation. Since no inhomogeneous term appears for the random-
barrier model, no distinct WTD for the first transition is necessary. This means that the associated
WTD of the random-barrier model cannot be interpreted as describing a renewal process. Since the
presence or absence of an inhomogeneous term depends on the model, the question of the interpreta-
tion of these associated WTD as describing renewal processes is still open.
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7. Lattice models with random traps
7.1. Introduction to the model

The random-trap model is defined on a regular lattice, as was the random barrier model of chapter 6.
In this model detailed balance is also required, the transition rates to neighboring sites are symmetric:

r="r . (7.1)

where n +d is any nearest-neighbor site to n. The random variables {I,} are independent from one
another. A pictorial representation of the random-trap model in one dimension is shown in fig. 7.1. As
this figure suggests, the average stationary occupation of the deep traps, i.c. deep minima, should be
greater than that of the shallower traps because more energy is required for the particle to escape over
the barrier. From this picture is derived a colloquial name for this model, coined by Kitahara, ‘the
valley model’. In this same spirit, the model of the last chapter is called ‘the mountain model’. The
model discussed in this chapter is restricted to valleys of finite depth; this insures that a unique
equilibrium state is obtained at long times. Another aspect of the random trap model expressed in the
figure is its symmetry; there is no tendency for the particle to drift to the right or to the left from any
configuration of traps. Traps extending over several sites, where on the average the particle is pulled
deeper into them is a topic reserved for chapter 10.

Another manifestation of the simplicity of this model is observed in the elementary WTD of the
particle on site n. It has the form:

U, (1)=7," exp[-t/7,], (7.2)
where
D M (7.3)
d

and 7, is the sojourn time of the particle on the site n. For this model the averaging of the WTD for a
single site, as proposed by Scher and Lax [40, 180]:

d/(f)=JdT,. p(7,) (1) . (7.4)

|

Fig. 7.1. A schematic representation of the random-trap or valley model. All valleys are equally spaced. but have different depths. The mountain
peaks are all at the same energy.
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where p(7,) is the distribution of sojourn times, does not account for the different equilibrium weights
given to each trap; the stationary weights, as derived below, depend on the configuration of transition
rates on the lattice [181].

In the following section a simple proof is given that the diffusion coefficient is frequency indepen-
dent, when the initial conditions correspond to the stationary state. While this result, and other
moments of the probability distribution have been derived, the complete solution for the probability
distribution is unknown. In section 7.4 approximation techniques are used to calculate the probability
distribution and the results are interpreted by analogy with the CTRW models of chapter 5.

7.2. Exact result for the mean-square displacement

The mean-square displacement of a particle in the random-trap model is a linear function of time for
all times, provided that the initial probability distribution corresponds to a stationary distribution. In
ref. [32] it has been shown that the mean-square displacement is the same linear function of time at
short and long times and a proof suggested; the proof has been completed in ref. [182]. The main
ingredient of the formal proof is the symmetry condition eq. (7.1). Another requirement of the proof is
the positivity of all transition rates of eq. (7.1), as will be evident below. If these conditions hold, the
proof can be carried out.

An equivalent form of the result is the statement that the velocity correlation function of the hopping
particle contains a §-function at the time origin only. This means that each jump is only correlated with
itself; different jumps are uncorrelated on the average. In fact, when a particle has made a transition to
a particular site, it will jump with equal probability in any possible direction, hence forward or
backward correlations cannot appear due to the symmetry.

However, if one starts with a non-equilibrium situation, the mean-square displacement is not a linear
function of time. For example, with equal occupation of all sites, a particle is more likely to make a
transition into a trap than out of a trap, resulting in a net decrease of the mean-square displacement
with time. It is not justified to infer that the velocity autocorrelation function now has a more
complicated time behavior; in fact, this quantity remains delta-function correlated. The connection
between the velocity autocorrelation function and the second derivative of the mean-square displace-
ment makes explicit use of the stationary property.

The master equation for this model, using eq. (7.1), is:

% P(n,tlm,0)= 2 I, P(n+1tlm 0)—zT, P(n,t|m,0). (7.5)
{I.n}

The initial condition is explicitly retained in the notation of the conditional probability and the sum over
[ is over the nearest neighbors of n.
The mean-square displacement of the particle from its initial site is:

(1n—m|2>m=g|n—m|2P(n,t|m,0), (7.6)

The left-hand side indicates with a subscript that the initial conditions have not yet been inserted. The
stationary solution for the master equation needs to be included in the average and this quantity is:

P*(m)=nl"," . (7.7)
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where 7 is a normalization constant. For N lattice sites and one particle per lattice, the normalization
constant is:

1=%Peq(m)=n % gr;l. (7.8)

Letting the number of sites on the lattice approach infinity, the normalization constant is identified as
the inverse of the average sojourn time:

n ' =(I). (7.9)

The equation of motion for the mean-square displacement is:

d >
o (a=m]y, =22 n-mPT,. ,Pn+1tlm0)~z2 |n—m]’ T, P(n,t|m,0). (7.10)
i n n
The first term can be rewritten using the identity:
ln—m]*=[l>=21-(n+1-n)+|n+1-m|". (7.11)

The last term in eq. (7.11) cancels when inserted into (7.10); the second term in eq. (7.11) also cancels
because there is no tendency to drift along a particular axis for any configuration of traps. Multiplying
by the stationary distribution eq. (7.7), and summing over all sites m the average mean-square
displacement (for simplicity, cubic symmetry and |{|* =1 is assumed):

Lmm=m==1) . (1.12)

Hence, the anticipated result has been proven, namely, the mean-square displacement is strictly
proportional to time for all times when stationary initial conditions are taken. From this expression the
diffusion coefficient is:

D,=1/2dt, (7.13)
where
t =01/ (7.14)

and the lattice constant is unity.

The results in egs. (7.12-13) are exact for any dimensionality and can be generalized to non-cubic
and non-Bravais lattices. In d dimensions the expression for the long-time value of the diffusion
coefficient was derived by Schroeder [183] using scattering theory methods. In refs. [139, 140] the
following argument was given. From the stationary solution, eq. (7.7), the average jump rates,
weighted according to the occupation probabilities, are:

I =2(1) (7.15)



J.W. Haus and K.W. Kehr, Diffusion in regular and disordered lattices 351

where the double bracket indicates this average. Inserting eq. (7.7) shows that eq. (7.15) is equivalent
to eq. (7.14). The result, eq. (7.15), can also be obtained by noting that the long- and short-time
behavior of the mean-square displacement are identical for stationary initial conditions; hence, the
diffusion coefficient can be deduced from a short-time expansion of the master equation, i.e. eq. (7.15).
The Laplace transform of eq. (7 12) has a simple relation to the velocity autocorrelation function,
q. (6.29), C(s). Since, (r*)(s)«s™% then C(s) = D,. The velocity autocorrelation function is a delta
functlon which proves the earlier statement that the velocities for unequal times are uncorrelated in
their second moments. This is plausible in view of the symmetry in the transition rates (fig. 7.1). This
does not mean that the model has no disorder specific transport properties, but they must be found in
the higher moments, such as the super Burnett coefficient.

7.3. Exact results: Higher moments

The diffusion coefficient in the last section has precisely the same form as the diffusion coefficient for
the random-barrier model in one dimension. However, now the diffusion coefficient for the random-
trap model is known in all dimensions. This result can be used to develop a systematic perturbation
theory for the probability distribution in d dimensions. There is one essential difference from the
random-barrier model that must be considered; namely, the equilibrium condition needs to be included
in the derivation.

There are two quantities which can be discussed in this model and they do not have a simple
relationship to one another. One quantity, used in chapter 6, is the average Green function or more
explicitly, the average value of the conditional probability (averaged over the random transition rates).
This quantity determines the spectral properties of the model, such as the density of states already
discussed in chapter 6. The other quantity is the average probability, where the initial conditions are
included in the average, also called the response function in refs. [139, 140]:

(Pn, 1) = (S PO+ m. (] m.0) P(m). (7.16)

where P’(m) is a predetermined initial condition. For the stationary state the expression in eq. (7.7) is
used for P’(m).

The perturbation method discussed in chapter 6 has been generalized by Denteneer and Ernst
(139, 140] to apply to the random-trap model in d dimensions. Their method uses the Fourier-Laplace
transform of the probability distribution:

(P(k,s5)) = — Z exp(ik - n) P(n, s|m,0) P’(m) ; (7.17)
using the master equation, eq. (7.5), it is expressed as:
~ 1 ) 1 .
s{P(k,s)) = N > exp(ik - m) P’(m) — z N > I, exp(ik - n) P(n + m, s|m, 0) P°(m)

d
1 o
+(2 D, cos ka> I 2 I exp(ik-n') B(n' + m, s|m,0) P’(m). (7.18)
a=1 n'.m
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The last term in eq. (7.18) has been simplified by a change of variables n’ = n + d and the hypercubic

lattice has been assumed. The expression eq. (7.18) is written in a matrix form. The diagonal elements
of the matrix are simplified to the compact form:

(P(k,s)) = ([sE+z(1- p(k)) U] " P"),, (7.19)
and
U, = % 2 I explin-(k—k")] . (7.20)

Now the previous notation can be followed, the inverse of U is written as a diagonal and an
off-diagonal contribution:

U '=I(E+4A). (7.21)
I is the exact expression for the average transition rate and the off-diagonal contribution is

A= % 2 (Fl - <%>) explitk — k') n]. (7.22)
In this notation the initial conditions are expressed in matrix form as:

P'=(E+A). (7.23)
When these expressions are reinserted into eq. (7.19) the average probability is:

(P(s)) = ((E+A)[(s + Tz(1- p(k))E+ sA] "(E+4)),,. (7.24)
The Green function giving the long-time transport properties now in d dimensions is:

gus)=s+ 21 = p(k)] " (7.25)
and a systematic expansion can be carried out for eq. (7.24).

Denteneer and Ernst [139, 140] find a constant diffusion coefficient for all dimensions as required.

The super Burnett coefficient, D,(s), contains the effect of the random disorder. In one dimension the
result is:

PP
Dy(s)= 13+ w(;)

where the constants «,, 8, and 6, have been defined in table 1 in chapter 6. From eq. (7.26) the
asymptotic long-time limit for the fourth moment is:

1/2
+02f~+03<%> . (7.26)

(r'y (1) = 4'[5_2—2—1 +gj£% K, (') + <112 oz)f‘z+zag(fz/w)”2+--~]. (7.27)



J.W. Haus and K.W. Kehr, Diffusion in regular and disordered latiices 353

The term proportional to £’ is due solely to the fluctuations in the transition rates. This creates a
long-time tail in the higher-order correlation function.

In higher dimensions, the corrections to second order in the fluctuations are derived. The second
derivative of the fourth moment exhibits the effect of disorder in the form:

2

% (r'Y)=4T7(1+«, P(0,1)), (7.28)

where P(0, ¢) is the probability that the particle is found on site 0 as derived from the perfect lattice
Green function (see eq. (2.31)). For the hypercubic lattices, this function is a simple product of
exponential and modified Bessel functions. The asymptotic decay of the fluctuation contribution in eq.
(7.28) is proportional to ™

The spectral and transport properties of the 1-dimensional model have been published by
Nieuwenhuizen and Ernst [184] for transition rate distributions with divergent inverse moments (but
still insisting that the diffusion coefficient exists). They used the Dyson—Schmidt functional equation
method to calculate the density of states, localization length and Burnett coefficient.

7.4. Approximate treatments

The exact results of sections 7.2-3 do not give an explicit expression for the averaged probability (or
response function) of the particle in space and time. Hence approximation methods are required to
determine this quantity. The effective-medium approximation for the random-trap model has not yet
been worked out. One specific difficulty is the correct incorporation of the equilibrium initial
conditions. The standard multiple-scattering methods assume uniform initial conditions. These are the
correct initial conditions when the equilibrium state is uniform, as it is for the random-barrier model. In
the random-trap model the occupation of sites according to equilibrium is a random quantity itself, and
it is correlated with the random transition rates.

The random-trap model was treated for small trap concentrations in the average T-matrix approxi-
mation (ATA) in [185] and the correct equilibrium initial conditions were taken into account. In a first
step the non-uniform iitial conditions were removed by transforming the conditional probabilities. The
master equation for the thermally weighted probability P(m, t|n,0) was considered with the initial
condition

P(n,0|m,0)=Np,5, . (7.29)

where p, is the equilibrium occupation of site n according to egs. (7.7) and (7.9) and an explicit factor
N is introduced since p, = N~'. In the Laplace domain the master equation for P(n, s|m) reads

2 (s8,,+ A, ) P(L,s|my=Np,3, ,, . (7.30)
1

A, , 1s the transition-rate matrix for the trapping model. In the translation-invariant case the Fourier
transform of A is A(k) in eq. (2.18). In the trapping model studied the elements of A are either I’
(transition rate from a normal site) or '~ (transition rate from a trap site) and the traps occur with
concentration ¢. Uniform initial conditions are obtained by multiplication of eq. (7.30) with (Np,) ",
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2 [(Np,) 's8,,+ (No,) " A, ) (L, s|m) =5, (731)
i

It is easily seen from the condition of detailed balance that the matrix (Np,)™' A, , is symmetric. Note
that the transformation used here is different from the one employed in section 2.5, cf. eq. (2.74). After
the transformation, the master equation (7.31) is analogous to a vibrational problem on a lattice with
mass and force constant defects.

The calculation of the average probability from the master equation (7.31) can now be carried out
explicitly in the average T-matrix approximation. The defects are randomly distributed with concentra-
tion ¢ <1 over the sites of a simple cubic (SC) lattice. The concentration should be so small that
overlap effects of different traps can be neglected (note that after transformation to eq. (7.31) also
transition rates between neighboring sites and the defects are modified). The ATA in the low-
concentration limit, which is used here, takes a crystal with uniform transition rates I" as the
undisturbed system. In the first step, a single-site T-matrix ¢ for a single trap is calculated; this step can
be done completely. The actual calculation relies on group-theoretical simplifications, these technical
details can be found in [186]. The T-matrix for a single trap is equivalent to an effective defect, where
repeated absorption and emission processes on this particular trap have been included. Explicit
expressions are given in refs. [185, 187]. Only the pole which appears in ¢, for deep traps (exp(BE) > 1
with E the energy reduction in the traps) will be given,

s, = —{[exp(BE) — 1] P,(0,0]0)} ", (7.32)

where 130((), 0|0) is the Green function to return to the origin of a particle in the undisturbed lattice, at
s =0. The determination of the pole eq. (7.32) also assumed a 3-dimensional lattice. The pole is the
analogue of a resonance pole of a heavy mass defect in a lattice. As is seen below, it describes
effectively the escape processes out of the traps.

In the second part of the ATA at low concentrations the propagator of the particle between the
different effective defects is treated in an approximate way, whereby the propagation in the undisturbed
regions is described by the undisturbed Green function. An explicit form for the self-energy of the
defect-averaged probability is given in refs. [185, 187]. It turned out that the expansion parameter is
e = clexp(BE) — 1], i.e., the traps cannot be too deep in order that the derivations be valid. This means
that the fraction of time spent in the traps must be small.

In the limit of deep traps (but small ), the resulting averaged probability can be represented in the
form

/

(Blk,s)) = sty +y + AK) vy, ’ (7133)
s sty At K)
where
y,= —(1+¢)s, + e[6] — A(k)] (7.34)

and
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51
y.=cP;'(0,0]0). (7.35)

Expression eq. (7.33) is nothing else than the result of a two-state model describing diffusion in the
presence of traps, cf. eq. (5.6). (The last term of the numerator of eq. (7.33) is different from the
corresponding term of the two-state model; however, the difference is of relative order ¢ and is thus
negligible.) Equations (7.34-35) provide microscopic expressions for the parameters of this model. The
leading term of the release rate 7, is independent of the trap concentration c, as it should be and given
by the pole eq. (7.32). For deep traps it is given by I’ = =TI exp(—BE), apart from a numerical factor
which results from the lattice Green function. The capture rate is proportional to the concentration, as
it should be; the simple expression found above coincides with the result of the Rosenstock approxima-
tion for diffusion-controlled capture, see section 9.3. The diffusion coefficient which follows from eq.
(7.33) is of the form required by the two-state model, cf. section 5.1.

It is very satisfactory that the ATA of the random-trap model at low concentrations of the traps
(more precisely £ < 1) justifies the phenomenological two-state model, and leads to physically reason-
able values of its parameters in three dimensions. Moreover, the usual derivation of the capture rate of
a particle in a trap assumes that the trap is permanent, i.e., that the particle is never reemitted. The
random-trap model, on the other hand, includes capture and release processes, and leads, at least
within the approximations described above, to the same result on the capture rate.

Fedders [188] has generalized the ATA treatment of the random-trap model by considering extended
traps where the transition rate into the trap sites is larger than the transition rate in the free lattice. He
is also restricted to low concentrations of these extended traps which are not allowed to overlap.
Fedders applies his theory of motions of a finite yet small concentration of particles on the lattice with
random transition rates. He is able to overcome the limitation of small parameter ¢, i.e., his traps are
also allowed to be very deep, and the result for the diffusion coefficient appears in the form required by
the two-state model.

A discussion of the different behavior of random-barrier and random-trapping models was made by
Halpern [189]. However, this author only used uniform initial conditions at the time origin, correspond-
ing to equal probabilities of start at any site. An extension of the random trap model has been made,
for example, by Machta et al. [190]; they combine the two-state model of chapter 5 with random
transition rates into and out of the traps. These models will not be discussed in detail here, the
interested reader is referred to their work where additional references are given.

The random-trapping model has also been studied for the case of WTDs whose first moments do not
exist. Alexander [191] gave a heuristic discussion of the behavior of random-trapping models in general
dimensions, and contrasted it with the behavior of random-barrier models under analogous circum-
stances. He concluded that random-trapping models will exhibit anomalous diffusion with {R*)(t) = ¢**,
v<1 at d=2. Machta [192] investigated the random-trapping model in arbitrary dimension by
renormalization-group (RG) methods. His methods are similar to the ones applied by him to the
random-barrier case, see section 6.6. Although approximations are involved, his conclusions seem to be
valid. He finds anomalous diffusion in all dimensions. The dimension d =2 is a borderline dimension.
For d >2 and class ¢ disorder (see [192]) the fixed-point WTD is non-analytic; it is characterized by an
exponent « and v = a/2. For d <2 the fixed points are disordered random walks themselves. The
exponent v = (2+ d, — d)”' where d, is a fractal dimension and d, = d/a. The fractal dimension d, for
the class ¢ random trapping models can hence be larger than the Euclidean dimension. See [192] for
further details.
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8. Diffusion on some irregular and fractal structures

Up to now diffusion on regular (mainly Bravais) lattices was considered and the disorder was
introduced in the form of random transition rates. In this chapter more irregular structures will be
admitted that are, however, derived from regular lattices, either by deformation or by blocking of a
subset of the sites. One special case is the diffusion on percolation clusters near the percolation
threshold of site blocking. This case will be disregarded for the reasons given in chapter 6. Diffusion on
topologically disordered structures will not be included in this chapter, because this topic is not yet well
developed. However, diffusion on fractal lattices that are constructed in a regular manner will be
included here.

8.1. Diffusion on chains with irregular bond lengths

A model of a linear chain will be considered where the distances between the sites d are distributed
according to a given probability distribution u(d), and where the hopping process of a particle on that
chain is characterized by a Poissonian WTD (t) = (1/7) exp(—t/7) at each site. This model was
introduced by van Beijeren [193] and has been named ‘waiting-time model’ by him. It is a special case
of a stochastic Lorentz model and it gives a nice example of a solvable model with fixed spatial disorder.
Its solution is possible since the temporal development is simply solvable, and the combination with the
spatial disorder is tractable. The consequences of disorder can be followed explicitly, especially the
appearance of long-time tails in the velocity autocorrelation function or mean-square displacement.
Figure 8.1 gives a pictorial representation of the waiting-time model. The random walk of one particle
on this linear chain where the sites are characterized by the integer index m can be treated by the
methods of chapter 2. For the Poissonian WTD the conditional probability P(m, t) of finding the
particle at site m at time ¢ when it started at m =0 at t =0 is given by eq. (2.28) for d =1

P(m, t)=exp(—ti7) I (t/7), (8.1)

where 1 (x) is the modified Bessel function with index m. The probability density of finding the particle
at the coordinate x at time ¢, when it started at the origin at =0, in an ensemble of linear chains, is
given by

P(x, )= 8(x) P(0, 1) + mi—l <5<x - mEI d,-)> P(m, 1) + mi: <6<x + 'Em d,>> P(m,1t). (8.2)

i=0 i=—1

The brackets (---) denote the average over the spatial disorder, i.e., over an ensemble characterized
by the probability distribution u(d) of the d,. Equation (8.2) could serve as the starting point of further

ot —
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Fig. 8.1. Waiting-time model of van Beijeren. The vertical lines are the lattice sites at which the particle resides. They are Poisson distributed and
the particle performs a random walk between nearest-neighbor sites.
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derivations. Van Beijeren proceeds to deduce directly the velocity autocorrelation function C(t), cf.
[193]. It is given by

€= 3 Sl - x) =, ) P+ o () 8( L), (83)
m=—= 41 27 T

The first term describes the correlation of a jump at ¢ = 0 with another jump at ¢. It contains the product
of the average initial velocity (x_, — x,)/27 with the average final velocity (x,, — x,_,)/27. Some
careful considerations are necessary to establish the correctness of the first term [193]. The second term
represents the correlation of the jump at =0 with itself. This contribution can be derived by
considering jumps that have a duration ¢ and letting & go to zero. Let [ be the mean value and 4° the
variance of u(d). Since all d, are independent random variables, (d;) = A*+1” and (d,d,) = I° for
i # J. The velocity autocorrelation function is explicitly given by

-2 enl ) 18- o)

The long-time behavior of the velocity autocorrelation function is easily found from the asymptotic
behavior of the modified Bessel functions (cf. Abramowitz and Stegun [194])

) — - 472(‘2‘;),/2 (4 (8.5)

This ‘long-time tail’ in the velocity autocorrelation function is evidently caused by the disorder since it is
absent in the case A=0. Its physical origin has been discussed in great detail in the review [193] to
which the reader is referred.

The mean-square displacement is found either from eq. (8.4) by double integration, or directly from
eq. (8.2) by calculation of the second moment. One obtains

2 t t —t t t
<)C >(t)=lz ;+A2;exp<—7—>[lo<;>+ll<;>] (86)
The asymptotic behavior is
(x )(t)?l T+ an 7\ +eee (8.7)

The diffusion coefficient of the particle is D = /[*/27. There appears a long-time tail «¢'?> whose
coefficient is directly associated with the disorder. This derivation was the first one that demonstrated
the existence of a disorder-specific long-time tail in a stochastic random-walk model.

The derivations of van Beijeren can be extended to a simple solvable model for bond distortions of a
lattice in d dimensions. Consider a regular lattice dressed with several sites at each vertex, cf. fig. 8.2.
The physical origin of such a model might be a regular attachment of an atom to each vertex, but the
placement of this atom is random. An interstitially diffusing particle could be preferably attached to
these shifted atoms and at high temperatures the irregularities in the transition rates due to the different
bond lengths could be negligible.
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Fig. 8.2. A dressed lattice which has a single chosen site at each vertex on which the particle can reside. The thick solid lines show the deformation
of the perfect lattice.

The particle starts at position R, and moves along each bond with the same transition rate. This
model is thus isomorphic to the regular lattice, since each point is displaced from the vertex n by an
amount dn. The {dn} are a set of independent random variables. Let |8| < 3. The calculation of the
mean-square displacement is simple. The conditional probabilities are the same as for a regular lattice.
P(m, t) is the probability that the particle is on site R, when it started at R,

([R() = R,[") = 2 {[R,, = Ry]") P(m. 1)
=§ ([m+dm —80]*) P(m, 1) . (8.8)
Using the result for the mean-square displacement of random walk eq. (2.22) and
(130°) = (|om[*) =87, (3m-30)=8"35,,, (8.9)
it follows that

(R)*=2dD,t+28"[1— P(0, 1)) (8.10a)

where D, is the diffusion coefficient of the regular lattice and

& , d°P(0, 1)
— (R”) =2dD, §(t) - 26" —5—. 8.10b
1 (R =2dD, 8(0) 7 (8.10b)
The ensuing asymptotic behavior of the VAF is
i) in d =1, since P(0, t)x¢™'"?
C(t) = d*(x*) 1de* ~ 172 ; (8.11)

ii) in d-dimensional lattices, where P(0, ¢) « 2

C(t) ~ 97 (8.12)
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Again a disorder-specific long-time tail appears in the velocity autocorrelation function. In d =1 the
decay is faster than in the waiting-time model of van Beijeren. This may be related to a different
behavior of the mean-square displacement in both models. In the former model, the individual
distances d, add up to a value that deviates from its mean value #/ after n steps by An'’* on the average.
The mean-square displacement of a particle in this model has a correction term «t''% cf. eq. (8.7). In
the present model, in d =1 the individual distances add up to 0 + 8n, and the mean-square displace-
ment of a particle shows only a correction term o ¢ ', Hence the differing behavior in both models is
quite plausible.

8.2. Random walk on a random walk

A second example of the superposition of random walk on a linear chain with a spatially disordered
structure is provided by the ‘random walk on a random walk’ which was investigated in ref. [195].
Again the problem can be solved completely by using generating function techniques, or in CTRW. The
spatially disordered structure is given as a random walk itself, as indicated in fig. 8.3. These structures
need not be one dimensional; generalizations to random walks in arbitrary dimensions are possible.
However, the spatial structure thus constructed must be topologically equivalent to a linear chain. The
discussion will be restricted to the one-dimensional case. An ensemble of such spatial random walks is
characterized by the probability p,(x) of finding a distance x after v steps. It has been discussed in
section 2.1 and p,(x) can be taken from it, cf. eq. (2.7). The probability of finding the particle at site v

Fig. 8.3. A segment of a chain resulting from a random walk with position x, versus step, ». The particle performs a nearest-neighbor random walk
on this chain.
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of the spatial structure is given by

pio (3 /(=52 (42}

for a discrete random walk of » steps, or by

p(v, ty=exp(—t/t) [ (t/7), (8.13)

for a Poissonian continuous-time random walk of duration ¢. The average of the temporal development
over an ensemble of basic random walks, i.e., over the spatial disorder, is given by

P,(x)= 2 p,(») p,(x) (8.14)
or by
Px.0)= 2 p(r.1) p,(x). (8.15)

No simple closed-form expression for P, (x) is obtained, although the generating function for P, (k) can
be derived in Fourier space. The moments of P, are easily found, e.g.,

(x*),=2 % v pa(v) (8.16)
and
(x*y =2 % (3v” —2v) p,(v). (8.17)

Their asymptotic behavior is

172

(), — (2—n> : (8.18)

n—x T

and

<x4>j>3n. (8.19)
The proportionality of the mean-square displacement with n'’* is intuitively obvious, since two random
walks are superimposed in this model. As is already evident from these moments, the probability
distribution is not Gaussian for large n. A saddle-point integration shows that it is roughly given by

22,’3 3x4/3
P,(x)= Ga) a7 eXP(“zm—nW) : (8.20)

The continuous-time version of the random walk on a random walk leads to a closed-form expression
for the Fourier and Laplace transform of P(x, ¢),
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2I" — A(s) cos k|
2I + A(s) cos k)

Is(k, 5)= {[s(s +4M)]7?

where
A(s)=[s(s +4)]'"* —s—2rI . (8.21)

From eq. (8.21) follows the incoherent dynamical structure factor S, .(k, w) of this model by
application of eq. (2.34). Also the frequency-dependent mean-square displacement is easily derived
from eq. (8.21). The expression for the velocity autocorrelation function will be given in the Laplace

domain,
2Ts* A(s)

O = A (b + 4] =)

(8.22)

It is easily seen that lim_,, C(s) =0, i.e., no diffusion coefficient exists. C(s) is proportional to s''% for
small s, corresponding to a long-time tail behavior

C(t)— - L (5)”2 17 (8.23)

e 4 \qp

The asymptotic mean-square displacement in the time domain is

<x2>(t)::>2<%>1/2. (8.24)

The t'"*-law is expected as the continuous-time analog of eq. (8.18). Since no static diffusion coefficient
exists, in linear response no static mobility under an applied field exists [196].

Both the waiting-time model and the random walk on a random walk are examples of transport in
disordered systems where the temporal development of the stochastic process is known exactly, and can
be combined with the probability distribution of the spatial disorder in order to obtain the complete
time-dependent probability distributions. If an effective, averaged medium would be introduced before
the random-walk average is done, the specific results due to disorder would be missed.

8.3. Diffusion in lattices with inaccessible sites

In this section diffusion of a particle is discussed on lattices where some sites are not accessible to the
particle. See fig. 8.4 for a pictorial representation. The random walk on the accessible (or ‘open’) sites
is the same as on a regular lattice. It’is assumed that the density of the blocking sites is so low that
long-range diffusion is possible, i.e., that an infinite cluster of accessible sites exists. As said above, the
behavior near the percolation threshold where the infinite cluster ceases to exist will not be considered.
The motion of particles in finite clusters in two and higher dimensions will be ignored. In one-
dimensional chains only finite clusters exist at arbitrarily small concentrations of blocked sites.
However, the one-dimensional case is very similar to the one-dimensional model with broken bonds
which has been treated in section 6.3. Hence this case will be completely disregarded. There are several
physical examples of the model studied here, notably exciton transport in isotopically mixed crystals.
One species of molecules supports the transport of excitons (‘guest’ or ‘trap’ sites), whereas the
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Fig. 8.4. A lattice where some sites are blocked (shown with solid circles) in a random manner. A particle (small solid circle) performs a random
walk on this incomplete lattice.
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isotopically substituted species cannot participate in the transport (‘host’ sites). The problem discussed
in this section is identical to the one addressed by Klafter and Silbey in [177]. However, Klafter and
Silbey outlined only the general solution of the problem and no explicit expressions were given.

The main quantities of interest are the diffusion coefficient and, more generally, the averaged
probability of finding the particle at site n at time ¢. The simplest description of diffusion in a partially
blocked lattice is provided by a mean-field theory where the transition rate I"is replaced by (1 —-c¢)I’
where 1— ¢ is the mean number of accessible sites with ¢ the concentration of blocked sites. The
diffusion coefficient is given in this mean-field description by

Dyr=Dy(1-¢), (8.25)

where D, is the diffusion coefficient in the lattice without blocked sites. Evidently eq. (8.25) disregards
the backward correlations which are present in the random walk of the particle. Namely, when a
particle attempts to jump to a blocked site, it cannot perform this transition; this is equivalent to an
immediate return to the original site.

An expression for the diffusion coefficient beyond the mean-field expression eq. (8.25) can be taken
from the theory of Nakazato and Kitahara [98] for tracer diffusion in a lattice gas where the tracer has a
different transition rate than the other (background) particles, cf. also [197,198]. It is convenient to
introduce a correlation factor by defining

D =Dy filc). (8.26)

This correlation factor is obtained from [98] by letting the transition rate of the background particles go
to zero,

NK (-f)e ] -
c)= [1 + 1 . 8.27
0= 1+ s (8.27)
Here f is the correlation factor for diffusion of a tagged particle with equal transition rate in a lattice gas
with concentration ¢c— 1. The expression eq. (8.27) vanishes for c— 1, hence it does not predict the
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percolation concentrations in real lattices. Nevertheless, it is an improvement over the mean-field
theory and it compares well with numerical simulations at lower concentrations, see fig. 8.5.

An effective-medium description of particle diffusion in a lattice with partially inaccessible sites was
given by Kaski et al. [199], using multiple-scattering methods. They derived the diffusion coefficient and
the incoherent dynamical structure function S, (k, ). The diffusion coefficient was found to depend

nc

linearly on the particle concentration above the percolation threshold of the vacant sites,

ra’(l1-cle)), c=c,,
Dyrg = {0 : P c> Cz; (8.28)

where the percolation threshold is given by
c,=(1-2/z). (8.29)

For small c there is a similarity between this expression and the one provided by Nakazato and
Kitahara, since in a mean-field theory of the correlation factor f=1—2/z. The agreement of eq. (8.30)
with numerical simulations is similar to a resuit of Tahir-Kheli described below. To obtain S, (k, w)

Kaski et al. had to determine a function n(w) self-consistently, S, (k, ) is a functional of n(w) and no
more a Lorentzian. The first four frequency moments of the spectral density are exactly given by this
effective-medium theory for the SC and BCC lattices.

A different approach to the problem of diffusion in a lattice with blocked sites is the mode-coupling
theory of Keyes and Lyklema [200]. They obtain an integral equation for a diffusion kernel and their
expression contains a percolation threshold. They have to solve the integral equation numerically to
obtain the diffusion coefficient for arbitrary c. The results have the desired qualitative features,
although a quantitative verification is lacking.

Recently Loring et al. [201] performed a diagrammatic analysis of this problem. Their work is an
extension of the work by Gochanour et al. [202] on transport between completely randomly located
‘guest’ molecules; this work in turn was based on Haan and Zwanzig [203]. They represented the
self-energy for the conditional probability G (¢) of still finding the particle (excitation in their
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Fig. 8.5. The correlation factor for diffusion on a lattice with inaccessible sites as calculated by Nakazato and Kitahara (dashed line) and Tahir-Kheli
(solid line). The data is from Monte-Carlo simulations of the model on an FCC lattice. The vertical dashed line indicates the percolation
concentration.
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terminology) at the starting site at time ¢ in terms of diagrams and perform a partial summation. An
approximate conditional probability can be deduced from this partial sum; also here an implicit
equation has to be solved numerically. The results for the diffusion coefficient obtained from those
solutions appear reasonable. With the assumption of only nearest-neighbor transfer rates percolation
thresholds are obtained as a function of vacancy (‘guest’) concentrations, which compare well with the
known values in simple cubic, FCC and BCC lattices. For long-range transfer rates of the Foerster type
no percolation threshold is obtained, in agreement with the expectations.

The most advanced theoretical description of random walk of a particle on a lattice with blocked
sites has been developed recently by Tahir-Kheli [204]. His theory decribes diffusion of tagged atoms in
a multicomponent alloy consisting of several species of atoms with different transition rates, and
vacancies. Tahir-Kheli investigated the hierarchy of master equations obeyed by this problem and
neglects third-order fluctuations, as in [198]. He then improves two rate parameters of this theory by
self-consistent treatment. The case of one immobile species with concentration ¢, one mobile tagged
particle, and the rest vacancies is obtained as a special case in his theory. The following correlation
factor is obtained

TK c«(1-1)

R (C):l_f(l—c) ’ CSf. (830)
The expression eq. (8.30) is very similar to the result of Kaski et al. in eq. (8.28) and it has the
appearance of an expansion of the result of Nakazato and Kitahara eq. (8.27). However, it predicts a
percolation concentration for vacancy percolation, expressed in terms of the particle concentration
¢, = f. For example, in the simple cubic lattice f=0.653... whereas the critical concentration for
vacancy percolation, expressed as particle concentration, is ¢, =0.689 ... [205]. The result of Tahir-
Kheli agrees well with the computer simulations [206] over the full concentration range, cf. fig. 8.5.

8.4. Random walks on fractals

A way of breaking translational invariance, but retaining scale invariance is to model the transport
properties on fractal lattices. A two-dimensional example of these lattices, called the Sierpinski gasket,
is shown in fig. 8.6 [207]. In fig. 8.6a the basic building block of this fractal lattice is shown (think of this
as an organism under a microscope with a small field of view). When the field of view is widened, as
shown in fig. 8.6b, the shape of the object looks similar to the first view; however, a hole appears in the
center. Widening the field of view by another factor of two reveals a larger hole cut into the lattice (fig.
8.6c). Each time the field of view is widened a hole twice the size of the previous largest hole is
observed. Thus, on each scale the magnification could be set such that the structure looks just like the
structure that was previously observed. This is called scale invariance.

There are many interesting phenomena which have the property of scale invariance and a detailed
discussion can be found in Mandelbrot’s book [207]. Of special interest to the reader may be its
application to disordered solids [208], non-linear dynamical systems [209] and random walks on
percolating clusters already mentioned in section 6.5 [210-212].

From the reader’s own experience and from the above discussion it is obvious that below some
magnification, the fractal structure disappears for physical objects. Certainly a plastic or a piece of
glass, observed with the naked eye, appears to be homogeneous and the fractal structure is not
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Fig. 8.6. (a) The basic building block of the Sierpinski gasket, (b) three basic building blocks are used to form the magnified view of the lattice and
(c) the view is magnified again by using three composite building blocks from (b).

revealed. It is important to analyze in each physical situation where the regime with special fractal
properties can appear.

A discussion of fractals cannot be complete without defining some important dimensions. One
obvious dimension is the Euclidean dimension in which the fractal lattice is embedded. For fig. 8.6 the
Euclidean dimension is d = 2. There are two further dimensions which can be defined and they are not
necessarily integers (or rational numbers). One is the Hausdorff (or fractal) dimension [207], which is
denoted in this review as d; and the second new dimension is called the spectral (or fracton) dimension,
which is denoted by d..

The fractal dimension for fig. 8.6 can be introduced as follows. The number of points on the lattice of
size L is proportional to L raised to the Hausdorff dimension

N, =S,L%, (8.31)

where S; is a shape factor for the volume.

In fig. 8.6a, the length scale is set by the base length L, = b =2 segments. The number of lattice sites
is N,=6. In fig. 8. 6b the length is doubled L, =27 and the total number of sites is N, = 3- 6 — 3. Finally
in ﬁg 8.6c L,=2"and N,s=3(3-6—3) - 3. This process can be continued and in general

L,.,=2""" and Ny =3"[6-3(1-(1)")/2]. (8.32)

Inserting these expressions into eq. (8.31) and taking the limit n — o, the Hausdorff dimension for the
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d =2 Sierpinski gasket with base b =2 is:

d=1n3/In2=1.585. (8.33)

Gefen et al. [210] noted that this value is quite close to the Hausdorff dimension computed for the
backbone cluster in a percolating lattice in d =2. The backbone cluster is the infinite cluster at the
percolation concentration with the dead-end branches removed. Gefen et al. compared the Hausdorff
dimensions in each Euclidean dimension with the fractal dimension of the backbone cluster. Further-
more, they calculated the asymptotic properties of the conductivity (here the diffusion coefficient) on
the fractal lattice and compared these to the corresponding results for the percolating cluster. They
found the numerical values were close for 1< d <4. This led them to the conclusion that the fractal
lattice may already include the predominant features of the percolation problem.

In d dimensions and for general base length b of the elementary building blocks, Hilfer and Blumen
[213] have calculated the Hausdorff dimension for the Sierpinski gaskets:

d=In(*"¢"")/Inb, (8.34)

where (3) = N!/M!(N — M)! is the binomial coefficient.

The spectral dimension, as the name suggests, is intimately connected with the dynamical properties
of the model [208, 214-215]. As in the calculation of the Hausdorff dimension, the spectral dimension is
calculated using scaling arguments. One word of warning, the arguments given below are modified to
the diffusion problem, where the relation between frequency and wavenumber is @ = k”. In the quoted
literature the derivations are given for elastic vibrations where frequency and wavenumber are related
by w =k.

One definition of the spectral dimension (see Rammal and Toulouse [215] for this and another
relation for d,) is given by the asymptotic expression for the probability of the particle to return to the

origin:

P(0,1]0,0)~¢ %%, (8.35)
This is a natural generalization of the asymptotic properties of P(0, ¢|0, 0) on a Euclidean lattice where
d, = d. The Laplace transform of eq. (8.35) can be related by eq. (6.9) to the spectrum of eigenvalues.
The asymptotic dependence is

P(0, s]0)~ s " (8.36)
For s = —iw, the density of states is:

p(w)~ ™" (8.37)
From eq. (8.31), when the lattice size is scaled by b, then the number of sites scales as:

N, =bN, ,, . (8.38)

Similarly, since the density of states is related to the length scale by:
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p,(0)dox k" dk, (8.39)

then the scaling L— L/b implies k— bk. Hence, the density of states scales as
po(0) = b, (w"); (8.40)

w' is the frequency at the lattice scale L/b. The frequencies on two different lattice scales are also
related to one another by a scaling relationship:

0 =bw, (8.41)

where the exponent @ must be calculated for each specific model. With this assumption, the density of
states are related on each scale by

da) a —a riLa
Priw(@') = do’ p(@'/b%)=b"" p,(w'/b%). (8.42)

Choose the scale so that the argument of the density of states on the right-hand side is a constant,
b=w"" Replace this result in eq. (8.40) to find

p(@)=0""" p,(1). (8.43)
The exponent in eq. (8.43) can be related to the spectral dimension defined in eq. (8.37):
d, =2dla. (8.44)

The exponent g can be calculated for specific fractal lattices. Consider again the Sierpinski gasket, in
particular fig. 8.6b. The calculation follows Rammal and Toulouse [215]. The method of calculating the
exponent a is similar to the renormalization group procedure of Guyer [172]. In the figure a cluster of
sites is eliminated from the lattice, e.g. {r,, r,, r;}. The topology of this lattice does not introduce any
transitions to further neighbor sites on the renormalized lattice; for instance, S, is coupled only to its
four nearest neighbors on the new lattice {S,, S;, T, T,}. The new lattice resembles fig. 8.6a.

The Laplace transform of the master equations for the clusters of sites which are to be eliminated
(only homogeneous equations here) are:

(s+4) P(r,, 5) = P(S,, 5)+ P(S,, 8) + P(r,, 5)+ P(r,, 5) , (8.45)
where (i, j, k) are cyclic permutations of the triple (1,2,3). The analysis focuses on site S,, but it
should be clear by the symmetry of the lattice (z = 4 for all sites), that the same results are derived for
all remaining lattice sites. The equation governing the evolution of P(S,, s) is:

(s +4) B(S,, )= P(r,,s) + P(r,, 5) + P(Z,, 5) + P(Z,, 5). (8.46)

Equations (8.45) can be directly solved for f’(rl, s)+ ﬁ(rz, s) with the result:
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[(s +4)(s +3) = 2] (P(r,, 5) + P(ry, $)) =2(s + 4) P(S,, 5) + (s + 6) [P(S,, 5) + P(S,,5)] . (8.47)

This result and a similar result for IS(ZI, s) + f’(Z3, 5) can be substituted into eq. (8.46). After factoring
the quadratic polynomial, the result is:

(s+4)(s+1) (s +6) P(S,,5)= (s +6) {P(S,.5) + P(S,,5) + B(T,, 5) + B(T,, 5)} . (8.48)
This equation has the same form as eq. (8.45) with a scaling of the frequency scale:

s'=s(s+5). (8.49)
In the asymptotic limit s— 0, this corresponds to (recall s = —iw):

w' =2 =50;
the exponent a is:

a=In5/In2. (8.50)

This is substituted into eq. (8.44) to obtain the spectral dimension. A more detailed calculation for d
dimensions (but b = 2) [215] gives:

d =2In(d +1)/In(d +3). (8.51)
Results for b =3 can be found in ref. [213].
The fractal properties of the underlying lattice can also be expected to be manifest in the particle’s

mobility. Since the particle is forced to move in a reduced volume on the fractal lattices, a slower
growth rate for the mean-square displacement can be expected:

()~ (8.52)
For ordinary Euclidean lattices, the exponent » = ;. This exponent is related to the Hausdorff and
spectral dimensions by the following heuristic arguments. The volume that the particle covers in time ¢
is:

V() ~ (). (8.53)

The particle also escapes from the initial site inversely proportional to the volume that the particle has
covered:

P(0,t]0,0)~V()™". (8.54)
Using eq. (8.35) and eqs. (8.52-8.54) the exponent v is:

v=d/2d . (8.55)
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Thus, the diffusion properties contain both topological and dynamical properties of the model. Guyer
has used renormalization group calculations on various fractal lattices [216] to obtain the spectral
dimension for these lattices. Another complication can be added by using master equations with
memory kernels. This has been discussed by Blumen et al. [217]; they use a WTD with the asymptotic
time dependence,

Yoy~ (8.56)
and find that the mean-square displacement behaves as:
(F) ()~ 1% (8.57)

Finally, Derrida et al. [218] have evaluated the density of states for the d-dimensional bond
percolation model using the effective medium approximation as in section 6.5. Their results show that
the density of states exhibits a crossover from a low-frequency regime, where results are consistent with
Euclidean dimensionality, to a high-frequency regime, where fractal behavior is found. The crossover
frequency is shifted to lower frequencies as the percolation concentration is approached. They have
used this crossover behavior to explain anomalous conductivity observed in experiments on amorphous
materials [219]. However, this interpretation is controversial and more work needs to be done.

9. First-passage time problems

In this chapter problems are described where the probability of the first transition of a particle to a
specified lattice site (or group of sites) is required. Numerous physical applications of these problems
exist, notably capture of particles that perform random walks on lattices with traps. The first-passage
problem on a discrete line is closely related to the corresponding problem of diffusion on a continuous
line. See, e.g., [220] for some pertinent references.

9.1. First passage to a site on a linear chain

This problem has already been considered in chapter 5, where traps with internal states were
modelled as linear chains and the waiting-time distribution was derived for first passage to a final site on
this chain that represented the transition to a different site in the lattice. Here the first-passage problem
on a linear chain is considered in a more general manner. For instance, infinite chains are admitted.

In section 5.3 the probability density of a first passage to a site i at time ¢ when the particle arrived at
site i — 1 at £ =0 was derived by setting up a recursion relation which relates this probability density to
the probability density for first passage from site i —2 to site i — 1. If the linear chain is finite, the
repeated application of the recursion relation terminates and one obtains the expressions studied in
section 5.3. It is useful for many applications to treat the infinite uniform linear chain in the same
manner.

A particle performs Poissonian random walk on an infinite linear chain, with transition rates I’
between nearest-neighbor sites and it is assumed that the particle arrived at site { at t=0. The
probability density is required for the first passage to site i +1, x,,,(¢). Similar to section 5.3, an
infinite series for the Laplace transform ;. ,(s) is set up and resummed, resulting in
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_ L
Xi+1.i(s)_ s+2r_r/\‘;ij‘1(s) . (91)

If x., ,(0)=1, then also x,.,,;(0)=1. Now, in the infinite uniform chain x,,, (s) depends on the
difference between i + 1 and i only, and is identical to y,, ,(s). Hence

)=
S N O

(9.2)

The solution of this equation is

i1,0(§):§+1_V§(§+2)s (9.3)

where {=s/2I". Only the negative sign of the root is admissible, to ensure the correct short-time
behavior. In the time domain y, ((s) is a modified Bessel function [221]

X1.0(t)= % I,(2I't) exp(—21t) . (9.4)

By expanding eq. (9.3) for small s it is seen that the first moment of x, ,(s) diverges, i.e., the mean
first-passage time to a neighbor site diverges in the infinite chain.

The above derivation of the first-passage time distribution is rather direct. There are other methods
that deduce the quantity from the conditional probability of finding the particle at a given site at time ¢.
The general relation between both quantities will be discussed in the next section. In this section the
method of images will be reviewed for one dimension. It is described in detail in [15] for one absorbing
site and discrete RW and in [7] also for two absorbing sites. Here the CTRW formulation will be given.

Consider an absorbing site, say i, in a linear chain. When only nearest-neighbor transitions are
considered, and when the particle starts at a site kK <i, the first transition to the trapping site occurs
from site i — 1. Hence the conditional probability P(i — 1, ¢|i) of finding the particle at this neighbor
site is required, under the condition that i was not visited until time ¢. The transition to site i then takes
place with rate I'. The method of images constructs these conditional probabilities in such a way that
the boundary condition of vanishing probability at the absorbing sites is satisfied. If i is the only
trapping site in the uniform chain, the method of images is applied as follows. The paths of
continuous-time random walk on the uniform chain are divided into allowed paths which do not reach i,
and forbidden paths, cf. fig. 9.1. The contribution of the forbidden paths are subtracted in form of their
mirror images, in an unrestricted RW these would occur with equal probabilities. One has

P(j, tli)=P(j,t)— PQi—j 1), (j=i). (9.5)

The initial condition of start at say k =0 has not been noted explicitly. The probability density of first
passage to site i is then given by (set j=i—1)

Xo)=T[P(i—1,1) = P(i +1,0)]. (9.6)

The conditional probability P(i + 1, t) is expressed by modified Bessel functions, as in eq. (8.1), and the
recurrence relation [194] is applied,
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Fig. 9.1. The method of images applied to the trapping site /. Paths that go through i are forbidden. These contributions are subtracted by using
their mirror images.

L2y -1, = 2—21% L(2I71). (9.7)
The final result for i =1 is eq. (9.4).

One could argue that the probability density of first passage to the trapping site i should follow from
the convolution of the probability P(i — 1, ¢'|i) of finding the particle at site i — 1 at time ¢', and the
waiting-time distribution for a transition to site i, I' exp[—2I'(t — ¢')]. This reasoning leads to a wrong
result. The derivation is rectified by using the probability density Q(i — 1, ¢'|i) of a transition to site
i—1 at time ¢, and by convoluting this probability density with the waiting-time distribution for the
direct transition from i — 1 to i. P(i —1,¢|i) is related to Q(i — 1, ¢'| i) by the probability of sojourn at
site i — 1, as discussed in section 3.2, cf. eq. (3.12). If this relation is taken into account, eq. (9.4) is
regained. Continuous-time random walk requires sometimes careful analysis!

The method of images can be readily extended to two absorbing sites at, say, —k (k > 0) and ; this is
already the general case in d =1. The particle is assumed to start at site 0 at =0, the boundary
condition of vanishing probability at the two absorbing sites. By this method the following relation is
used

P(j, t|=k,i)y=P(j, t|—k,2i +k)— PQi—j t|—k,2i + k).
This is iterated to obtain

P(j, t|~k, i)= Z (P(j+2Gi+k), t|—k)— PQi—j+2l(i + k), t|—k)}.

Again by the method of images,
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P(j, t|—k)=P(j,t)— P(j +2k,1),

and using symmetry the sum can be written as:
P(j, t|—k,i)= 2 {P(j+2(i+k), 1)— PQi—j+20(i+k),0)}. (9.8)
[=—=x

This equation may serve as a starting point for the trapping problem in d = 1. The infinite sum eq. (9.8)
can be reduced to a finite sum (as many terms as the number of free sites between the traps); these
manipulations are described in [7] for discrete RW, but they are the same for CTRW.

In this section the individual transitions were assumed to form a Poisson process. First-passage time
probability densities with more general WTD were considered, e.g., by Balakrishnan and Khanta [222].

9.2. Relation between first-passage time distribution and conditional probability and applications

There exists a fundamental relation between the first-passage time distribution to a site and the
conditional probability of finding the particle at this site at time ¢. The relation expresses essentially the
fact that for a Markov process the probability of occurrence of an event at step v is composed of the
probability of the first occurrence at step », and of the probability of first occurrence at step v’ <,
times the probability that the event again occurs after the remaining v — »' steps. Schroedinger [223]
applied this reasoning to the first-passage time problem on a line. As in the previous section, the
relation will be formulated from the outset in continuous time. Since the Laplace transform of the
continuous-time problem is equivalent to the generating function of the discrete-time description [24],
both formulations are equivalent.

A uniform lattice of arbitrary dimensionality is considered. Let F(n, t) be the probability density of
first arrival at site n at time ¢; the particle starts at site n =0 at t =0. The start is not counted as an
arrival event, hence F(n=0,0)=0. In other words, for >0 F(0, t) describes the first return to the
origin. P(n, t) is the conditional probability of finding the particle at site n at time ¢ with P(n,0) =5, ,.
Then the following relation holds

P(n, t)=Y(t) 5, , +jdz’ F(n, 1"y P(0,t—1"). (9.9)

For lattices with non-uniform transition rates, the start and end sites must be noted explicitly in the
derivations. Laplace transformation of eq. (9.9) yields

P(n,s)— ¥(s) 5, ,

F(n, 5)= B0y —

(9.10)

The usefulness of the relation relies on two facts: i) The conditional probability is more readily available
than the first-passage time distribution, especially in higher dimensions, and ii) the conditional
probability can be calculated without considering the point under question as a special one. To
demonstrate the use of this relation eq. (9.3) will be rederived, taking n =1,

Xi0(5) = P(1,5)/P(0, 5) . (9.11)
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The quantities f’(l, s) and P(0, 5) can be taken from eq. (2.33). Their quotient is identical with eq.
(9.3).

One consequence which can be drawn from eq. (9.10) is the well-known dependence of the
probability of return to the origin on dimensionality. It is given by the time integral of the waiting-time
distribution for return; hence in continuous time the question arises whether this waiting-time
distribution is normalized or not. From eq. (9.10) follows

F(0,0)=1-1/P(0,0). (9.12)

Here ¢ is the mean residence time of the particle at a lattice site. The last term contains the inverse of
the time integral over the probability of finding the particle at the origin; after dividing the integral by ¢
the mean number of visits at the origin is obtained. The calculation of this quantity is discussed in detail
in the two reviews [7, 8]; only the result is quoted. £ ~' P(0, 0) is infinite for d =1, 2 and finite for d = 3.
Hence the waiting-time distribution for return to the origin is normalized in d = 1, 2, or the probability
of return is unity. In d =3 the probability of return is less than unity and the particle can escape to
infinity without further returns. Explicit numbers for the return probabilities in various 3-dimensional
lattices are found in the literature [86)].

The mean time until trapping at a given point or return to the origin can also be discussed starting
from eq. (9.10). First the mean time of return to the origin in d = 1 and 2 is considered. It follows from
the waiting time distribution for the first return,

IF(0, 5)

fdttF(o, t)y=-— s (9.13)
0

s=0
For n =0, eq. (9.10) reads
F(0,5)=1—¥(s)/P(0, s) . (9.14)
For Poissonian random walk in d =1
U(s)=(s+2I) ",
and
P(0, 5)=[s(s +4I)] .
Hence the small-s expansion reads
F0,5)=1-(s/[)"* +---, (9.15)

and no first moment of F(0, ¢) exists. Consequently the mean time until return to the origin is infinite,
as already deduced in section 9.1. A similar result holds in d =2, where for the square lattice

Y(s)=(s+4T) ",



374 J.W. Haus and K.W. Kehr, Diffusion in regular and disordered latiices

and P(0, s) is given as an elliptic integral [24]. Its expansion for small s is

~ 1 2r
Hence
F0,5)—>1— - (9.17)

—0 ~ In(32[s)

and the first moment of F(0, ¢) diverges.

In three dimensions the same method can be used to derive the mean time until return at least for
the lattices where the lattice Green functions P(0, s) are explicitly known, including their expansions for
small 5. This derivation would yield the mean time until trapping under the condition that the particle is
actually trapped. The particle escapes to infinity with finite probability; hence the complete mean time
until return to the origin should diverge. Montroll and Weiss [24] performed a calculation which
exhibits these effects by considering finite, large lattices. They calculated the mean time until trapping
at a general point n and evaluated the leading term which they found proportional to the number of
lattice sites N in d = 3. If each site is a trapping site with finite probability ¢, a mean trapping rate can be
deduced. The result is identical to the result of the Rosenstock approximation which will be discussed in
the next section. Therefore no explicit expressions are presented here. A very careful investigation of
the average number of steps until trapping for several classes of RW’s and arbitrary dimensions was
made recently by den Hollander [224].

Next the mean number of distinct sites visited until time ¢ is considered in a random walk on a
d-dimensional uniform lattice. This important quantity follows quite easily from the probability density
of first return to a site, F(n, t). As before, the calculations are performed in continuous time with the
hope that this variant of the usual description may be useful in some cases. The derivation is an
adaptation of the procedure of Montroll [225] to continuous time.

One defines
A(t)= 2, F(n,1). (9.18)
n#0

After normalization with the number N of sites this is the probability density of arrival at time ¢ at an
arbitrary not yet visited site. Hence A(¢) d¢ is the average increase of newly visited sites in the interval
(¢, £+ df). The mean number of distinct points visited until time ¢ is related to A(f),

t

(S())y=1+ J' de" A(t') . (9.19)

0

or in the Laplace domain
(S()) =[1+ A(s))/s . (9.20)

In this relation eq. (9.18) and the expression eq. (9.10) for F(n, s) is introduced. The sum L P(n,s)
gives 1/s because of normalization. Hence
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(S(s)) = 1/[s* P(0,5)] . (9.21)

It is quite easy to deduce the known asymptotic results in d =1 and 3 from (9.21). For instance, in
d=1

P(0, s)—> (4I's) "% (9.22)
Hence

(S(s)) —> (41)"* 577, (9.23)
and

($()) —> (16?) - (9.24)

Identifying 2I't with the number of steps n the usual result in discrete time [7] is recovered. The
asymptotic result in d =2 is less readily obtained since the inverse Laplace transform involves Volterra
type functions whose asymptotic properties are not easily accessible.

The approximate asymptotic behavior of (S(¢)) in d =2 can be conjectured from the corresponding
asymptotic behavior of (S,) for discrete RW which is now known as a series [226]. The leading
asymptotic term of (S5(¢)) can be obtained from the leading term of that series by the substitution
n=t/t, cf. also [24]. For the square lattice

(S(t)) —> —ﬁ—t_héﬁj_ (9.25)

A more complete derivation of (S(r)) including more than the asymptotic term in CTRW is desirable.
The dimensionality 3 is simple again, since P(0, s) approaches a constant value in the limit s— 0.
Hence

(8(5)) —> 1/[s°P(0,0)], (9.26)
or
(8(t)) —> /[ P(0,0)]. (9.27)

The result will be rewritten as
() —> (1=p)eit

where eq. (9.12) was used and p, is an abbreviation for the return probability 17“(0, 0).

It is easy to extend the results presented in this chapter on first-passage time distributions to random
walks with internal states, in the sense discussed in chapter 3. The basic relation between the
first-passage time distribution and the conditional probability holds irrespective of the internal structure
of the random walk. P(n s) must be interpreted as the summary probability of finding the particle at
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site n, after the internal states have been summed over. Of course, the quantitative behavior of f’((), 5)
depends on the nature of the random walk under consideration.

This point will be illustrated for the correlated random walk in d = 1 discussed in section 4.2. It can
be derived from the expression P(k,s), eq. (4.6) that P(0, s) is given by

(6 + L)ls* +25(h, + 1) + 46,1 + (1 - 1) O(s)

P(0,s)= 2 ——=——— o ,
AT, F IT0()
~ ; (9.28)
Q(s)y=[s(s +21)(s + 2I7)(s + 21} + 21})]“ .
In the limit s— 0 this quantity behaves as
P(0 ( 5 )M’L JEEL 9.29
TR TH T TV Ty o=y R 6-29)

This behavior can now be used to deduce from eq. (9.21) the mean number of distinct sites visited by
the correlated random walk. The result is

(S(1)) —= 8L, + [felm] 2+ 1= f +++-, (9.30)
where f is the correlation factor,
f=T/I,. (9.31)

The asymptotic result for correlated walk is obtained by rescaling the time in (9.24) with the correlation
factor f. This result was obtained by Keller [227]. The correction to the asymptotic behavior was derived
by Kehr and Argyrakis for discrete RW [228]; it does not obey scaling. Numerical simulations verify the
correction term, cf. fig. 9.2.

The mean number of sites visited by correlated walk in higher dimensions was also investigated in
ref. [228]. The model with restricted reversals and the forward stepping model were studied for discrete
RW in d =2 and 3. Asymptotic expressions could be analytically derived for the model of restricted
reversals. The leading term in d =2 can be obtained by scaling the step number with f; again there
appear corrections that do not fulfil scaling. In d =3 the form obtained by scaling and the correction
term are of the same order.

9.3. Survival probability of particles diffusing in the presence of traps

In this section the survival probability of a particle is examined that is put randomly on a lattice with
a random distribution of traps and then performs a random walk. The waiting-time distribution is
requested for first arrival at a trap where the particle is assumed to be annihilated or permanently
trapped. This waiting-time distribution may be expressed in discrete time, ¢, , or in continuous time,
(t). The survival probability ¥, after n steps or W(¢) after time ¢ is related to ¢, or ¥(¢) by

Y(n)=1- E /M (9.32)

m={)
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Fig. 9.2. The mean number of sites visited by a correlated random walk on a linear chain versus time. The solid circles are Monte Carlo simulations.
The solid lines represent the asymptotic expression with the term 1 — fin eq. (9.30), whereas the dashed curves neglect this term.

or
Y =1 —jdz’ Wty . (3.1)

The waiting-time distributions ¢, or ¢(r) include a double average over the random-trap distributions
and over the different possible random walks. The combination of the two averages led to some
surprising results, which found much attention recently.

The permanent traps are assumed to be randomly distributed over an infinite lattice, with probability
c of finding a trap at any site, and no correlations between different sites. Let §, be the number of
distinct sites visited in an n-step random walk. The survival probability after n steps is evidently given
by

v, =((1-o)™). (9.33)

In this expression only an average over different random walks must be taken; the average over the
random-trap distribution has already been performed in the expression given above. Stanley et al. [229]
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verified eq. (9.33) by performing explicitly the average over different trap configurations; they also
elaborated the role of the weight factor p =1 - c.

To perform the average eq. (9.33) it suffices to know the probability distribution p (S§) of the
number § of distinct sites visited by an n-step RW. It is also convenient to define

p=(1-c)=exp(—A). (9.34)

The survival probability is thus given by the average

V= 2 p(S)e = (e) (9.35)

ie., each walk is counted in the average with a weight factor exp(—AS). The case n =0 where
po(8) =38, and ¥, =1~ c is included.

The same reasoning as above can be made in continuous time. Thus, when the survival probability is
requested in continuous time, the following average must be studied

W)= ((1-c)"). (9.36)

where S(¢) is the number of distinct sites visited up to time . Also this average can be understood as an
average over the probability distribution p,(S) of the number of distinct sites visited up to time .
Applications of the previous expressions were mainly made for discrete RW.

An approximate evaluation of the survival probability will be given now in continuous time. The
approximation, done in continuous time, consists in replacing S(¢) in eq. (9.36) by its average value

v ()=(1- )", (9.37)

This approximation is due to Rosenstock [230] who calculated essentially a waiting-time distribution for
luminescence using this approximation. Later work by him and Straley {231, 232] was mainly concerned
with the mean time until trapping, which can be derived from the survival probability. The asymptotic
behavior of the mean number of distinct sites ( S(¢)) visited up to time ¢ was reviewed in the preceding
section. Using these expressions, the asymptotic behavior of the survival probability is obtained in the
Rosenstock approximation, in continuous time

b

exp[—A(8t/mt)""?], 1
2, (9.38)
3.

d
Y (t)= exp{—()mt)/[t_ln_(St/t_)]} , d
exp[—A(1 - p,)t/t], d

v

The result for d =2 is valid for the square lattice. In the Rosenstock approximation, the survival
probability decays exponentially with time in 3 and more dimensions, and a time-independent capture
rate can be identified from eq. (9.38). It is given by

I=x1-p)it. (9.39)

For small ¢ the capture rate is proportional to ¢, as expected. The result eq. (9.39) represents the
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capture rate for diffusion-limited trapping where the diffusion occurs on a discrete lattice. For small ¢, it
is identical to the result in eq. (7.35) of the average T-matrix approximation for the random trap model.

One may ask whether the Rosenstock approximation made in continuous time is equivalent to the
analogous approximation in discrete time, when the step number is identified with n = t/t. When the
CTRW is Poissonian the equivalence can be justified by the arguments given in section 2.3. The simple
transcription of the discrete into the continuous-time result may no longer be possible when the
elementary jump process is described by a more complicated waiting-time distribution. For instance,
non-exponential waiting-time distributions may occur as a result of multipolar long-range transfer, as
considered in ref. [233].

The survival probability can be derived beyond the Rosenstock approximation by employing
cumulant expansion techniques [233, 234]. In fact, the average eq. (9.35) can be expressed in the form

v, = exp[g k(= A) ]l,] , (9.40)

where the «; , are the cumulants of order j of the distribution p, (§). Restriction to the first cumulant is
identical to the Rosenstock approximation. Zumofen and Blumen [234] have numerically determined
some cumulants from simulations of p (S). Figure 9.3 shows their results for the survival probability
(normalized to one) derived from the numerical cumulants, in d = 1. There is good agreement between
an exact expression (see below) and the direct simulations of the survival probability. The successive
inclusion of higher cumulants yields survival probabilities that approximate successively better the
correct ¥,, but the expansion always breaks down for larger steps numbers. These results also
demonstrate that Rosenstock’s approximation is very poor in d = 1. d = 1 is the least favorable case; in

T 1 1-D

50 ' 100

Fig. 9.3. The survival probability, @, in one dimension as a function of step number, #, calculated using Monte-Carlo data (solid circles) and
numerically determining successive cumulants of order j=1,2,3 and 4 (from Zumofen and Blumen [234]).



380 J.W. Haus and K.W. Kehr, Diffusion in regular and disordered lattices

d =2 already the inclusion of 2 cumulants gives good results for intermediate step numbers, while in
d =3 already the Rosenstock approximation gives a useful description of the decay laws [234]. A
related work is the article of Weiss {235] in which he derived ¥, in d =3 from the distribution p, (S) of
distinct sites visited. In accordance with results of Jain and Pruitt [236] a Gaussian form of p, (S) was
used, with specified mean and standard deviation. Hence this procedure is equivalent to a second-order
cumulant expansion.

It became clear in recent years that the survival probability does not behave asymptotically as
predicted by the Rosenstock approximation or its extensions. The correct asymptotic behavior of ¥(t)
in continuous time and for a continuous diffusion for small trap concentrations ¢ <1 and long times was
found by Balagurov and Vaks [237]. They found

2C2t>1u2 [ 3723 , —1/3] ~
8<3m- exp 5 (ct/t) |, d=1,

(1)~ 1 exp[—Vvau,(ct/t)' 7], d=2, (9.41)

8/5
T 5 -
| exp[—<§> ?ﬁ(c‘2 3t/l)3/5j|, d=3,

where u, is the first zero of the Bessel function J,(z). Balagurov and Vaks solved in d =1 the diffusion
equation for a particle on a finite segment of a line, bounded by traps, with the boundary condition of
vanishing probabilities at the traps. The solution of the diffusion equation was then averaged over the
distribution of the lengths of these segments. While the survival probability decays exponentially in a
given, fixed, segment the average over the distribution of the lengths leads to the anomalous behavior.
There are large trap-free segments, although with small probabilities, and the particles may survive
abnormally long in those segments. Similar considerations were made in higher dimensions. There is a
close analogy of the trapping problem to the problem of the density of states of an electron in a medium
with random impurities; this problem was extensively discussed by Lifshitz [238].

The work of Balagurov and Vaks [237] did not reach general attention. Some time thereafter
Donsker and Varadhan {239, 240] proved rigorously that the survival probability behaves asymptotically
in a way consistent with eq. (9.41). They gave their proof first for continuous diffusion in continuous
time [239] and they extended it later to random walk in discrete time [240]. For the random walk the
theorem requires no bias of the walk and a finite second moment. It reads, specialized to nearest-
neighbor jumps, and for A >0,

lim MEPCAS)) ~k(A, d), (9.42)
n

et di(d+2)

where

2id+2) d+2 <2_#é>d/(d+2)

N e

and p, is the smallest eigenvalue of the Laplace operator A/2 in d dimensions on a unit sphere with



J.W. Haus and K.W. Kehr, Diffusion in regular and disordered latiices 381
Dirichlet boundary conditions. For instance, in one dimension u, = 77/2 and
3 2/3_1/3
¥ ~exp[—3(mA)"n ). (9.43)

A = ¢ for small ¢ and one recognizes the asymptotic equivalence with (9.41). Also the rigorous proof of
Donsker and Varadhan remained largely unnoticed up until recently [241].

The trapping problem obtained general attention through the work of Grassberger and Procaccia
[242]. They considered Brownian motion in continuous time and a random distribution of traps. They
started from the physical consideration of fluctuations of the trap densities and were able to derive the
asymptotic behavior

(1) ~exp(—at”“ ), (9.44)

from the contributions of the trap-free regions of different size. Below an adaptation of their argument
to random walk in discrete time will be given. The derivation of Grassberger and Procaccia gives a
lower bound to ¥(¢); an upper bound for W(¢) was established by Kayser and Hubbard [243] for
Brownian motion in continuous time in the presence of random spherical traps. It was found that
asymptotically both bounds were identical.

The following qualitative derivation can be given [244] for the non-integer exponent of the
asymptotic behavior of the survival probability. Consider start of the particle in a trap-free region with
S sites. The probability to find such a region is p° = exp(—AS) with A defined in eq. (9.34). The linear
extension of a (compact) region is up to numerical factors R =S''* (lattice constant is unity). This
quantity is a measure for the distance to be traversed by a random walk until capture. The mean
number of steps necessary for traversal by a random walk is thus given by (n) = R* = §*'“. For a fixed
configuration of traps an exponential decay of the survival probability is obtained, with f, «exp(—n/
(n)). The configuration-averaged survival probability is

¥ = exp(—AS) exp(—n/{n)); (9.45)

or, after replacing the sum by an integral and inserting (n)

v, = J dS exp[g(S)] . (9.46)

0

where
g(8)=—-AS—nS ¥,
The maximum of g(S) is at
S_=(2n/d\)"? (9.47)

and saddle-point integration yields
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d +2 - 2 di{d~+2)
¥ ~exp[—TA (« )<7”) } (9.48)

Apart from a numerical factor this estimate is equivalent to the result of Donsker and Varadhan.

Explicit expressions are to be expected in d = 1 where random-walk problems can be solved exactly
to a large extent. Movaghar et al. [246] derived the solution of the random-walk problem between two
absorbing traps by scattering methods and averaged it over the trap distributions. To obtain a closed
expression they introduced an approximation valid for small ¢ only; their result is identical to the one
derived by Balagurov and Vaks in d =1, cf. (9.41).

Anlauf pointed out in his work [244, 245] that the asymptotic behavior of the survival probability can
be deduced from the published asymptotic representations of p,(S). Two different forms have been
given in the literature [7] in the form of infinite sums. It is important to realize that the weight factor
exp(—AS) in eq. (9.35) favors the small S values. In fact, pn(S) has a maximum at S = n'’* while the
combined quantity p, (S) exp(—AS) has its maximum at § = n'’ of. fig. 9.4. Hence that representation
of p,(S) should be used which converges most rapidly for small S values. Only a few (one or two) terms
are necessary to obtain an excellent approximation for p,(S) for § values left of the maximum, cf.
however the discussion below. Anlauf deduced the leading asymptotic behavior and the corrections to it
from the first term of p,(S). The following scaling variable can be introduced

=[mA]""n"", (9.49)

where A is defined in eq. (9.34). The survival probability was derived including corrections up to
relative order x~*. It is given by

)

8 ( 23\, a, a, a, a,
v =— —) x'Texp| =3x/2+ —+ 5+ 5+ 5+,
n T 377. p X X; x3 x4
where
al = }-}Zw a',v:—\74 aj;: 7"46"4 and a4: % . (9'50)

The leading term coincides with the one given above. The numerical simulations agree well with eq.
(9.50) for concentrations up to 0.5, cf. fig. 9.5; for details see refs. [244,245]. Also the scaling property
eq. (9.49) could be verified by the simulations.

NS T\ Pa(S)

~nl/2
Number of distinct sites visited

Fig. 9.4. Tllustration of the distribution of distinct sites visited p,(s) and the exponential factor appearing in eq. (9.35).
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Fig. 9.5. Numerical simulation of the survival probability in d =1 versus scaled step number for several concentrations. The dashed curve shows
Rosenstock’s first cumulant approximation; the solid curve is eq. (9.50). Figure from J.K. Anlauf [245].

Thus far results were considered following from the asymptotic expansion of p,(S). At very large
trap concentrations where the survival probability becomes small for small step numbers, yet another
type of corrections must be taken into account. These corrections arise from the difference between
asymptotic and exact expressions for p, (§). Exact representations for p (§) can be obtained by the
transfer matrix method, the results are equivalent to those following from the method of images.
Evaluation of the exact expressions in the asymptotic limit (i.e. for large x) leads to a modification of
the result eq. (9.50) by the factor [A = ~In(1 - ¢)]:

2

&
C= , 9.51
(1-¢)[-In(1- )] ®:31)

and correction terms in the coefficients of a,, a,, . ... For example, the coefficient a, is modified to

. _)[g _ wzlnz(l—c)]
2l (9.52)

The higher-order coefficients are modified in a similar manner. The c-dependent additional factor C
deviates from 1 in the limit c— 0 as

2

C=1+ f—z +0(c%); (9.53)

hence it is near to one for small and intermediate c. Even at ¢ = 0.5 a deviation of only 4% has to be
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considered. Exact numerical enumeration techniques confirm [244] the correction terms discussed
above in the case of large trap concentrations.

Presently not much work has been done on the trapping problem in higher dimensions. According to
Zumofen and Blumen [234] in d =3 the Rosenstock approximation and its improvement by the next
cumulant seems to represent well the survival probability for moderate step numbers. Lubensky [247]
studied the trapping problem by path-integral methods. Using an instanton technique, he could derive a
general form of the survival probability in arbitrary dimensions. The exponent contains a series in
powers of p@ @D DD Of course, the coefficient of the first term must coincide with the
result of Donsker and Varadhan. The following coefficient can only be calculated approximately for
d>1. The form of the survival probability obtained in d =1, cf. eq. (9.50), agrees with the general
result found by Lubensky [247]. Recently Havlin et al. [248] did numerical work by exact enumeration
techniques on the survival probability of particles in 2 and 3-dimensional lattices with moderate and
large trap concentrations. They showed that their data scaled as the asymptotic behavior of Donsker
and Varadhan for step numbers where already ¥, = 10~" Tt is not known how in d =3 the changeover
from the exponential decay at smaller step number to the asymptotic decay x exp(—an’”) occurs
quantitatively. Investigation of the changeover as a function of trap concentration is a pressing problem.
Since in many instances simple exponential WTDs for trapping and the accompanying concept of a
time-independent trapping rate has been used in d =3, the range of validity of these ideas must be
critically examined.

9.4. Reemission and recapture

In the last section the waiting-time distribution was studied for the first capture of a particle which
performs a random walk in the presence of randomly distributed traps. In many applications reemission
processes of trapped particles must be taken into account, in particular particles may escape from the
traps by thermal excitation. Typically this process is an activated transition process over a barrier. It
may be described by a waiting-time distribution for escape ¢,(¢). In the simplest case this waiting-time
distribution is exponential,

(1) = v, exp(=¥1) , (9.54)

where 7. is the escape rate. Some discrete stochastic models for deriving more complicated waiting-time
distributions were considered in section 5.3. After the particle escaped from the trap, it may be
recaptured by the same, or by another, randomly located trap. One should note that the two-state
model of section 5.1 assumes that the waiting-time distribution for recapture is exponential,

(1) = vy, exp(— 1) , (9.55)

where v, is a rate for (re)capture. Almost no explicit determinations of the precise average waiting-time
distribution for recapture have been made. Anlauf [244] pointed out how the waiting-time distributions
for capture at the same trap and for capture at the other traps can be calculated by the same formalism
as used for deriving the waiting-time distribution for random implantation. This formalism leads in
principle to waiting-time distributions with the same leading asymptotic behavior as the previous ones.
Intuitively one expects a strong tendency for recapture at the same trap after a few steps and a behavior
similar to the waiting-time distribution for random implantation after a long time.
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Den Hollander and Kasteleyn [249] have provided a theory that effectively relates the summary
waiting-time distribution for first recapture at an arbitrary trap to the waiting-time distribution for first
capture after random implantation. This theory is formulated in discrete time. It will be reviewed here
with suitable simplifications for the present purpose.

Den Hollander and Kasteleyn consider a regular lattice with two kinds of points (‘white’ and ‘black’
points). The colors of the points shall be randomly distributed over the lattice, with ¢ the probability of
finding a black point. The random walk of a test particle on the lattice is assumed to be independent of
the color of the points, i.e., one has random walk on a regular lattice. Two different processes are
considered, (0) the particle starts at an arbitrary site, and (1) the particle starts at a black site. Consider
first process (0) and introduce P, , as the joint probability that the particle is at a black point after
step n and that it again is at a black point after n, steps, after n, steps, etc. and the ith time after n,
steps. Similarly, F, , , is the joint probability of first reaching a black point after n steps and
performing i returns to black points with the step numbers n,, ... n,. Process (1) is characterized by

Fy ., ... since the particle starts at a black point. Den Hollander and Kasteleyn deduce from the
translation invariance of the probability distribution of black points that

Pn,nl....n,»:P(],nl,..,nl (956)
In particular

P =P=c. (9.57)
The following relation between P and F can be established

Pn,nlwuni = Fn.nl..“ni + mZZI Pn~m,m,n1,u.n,- M (958)

The argument leading to eq. (9.58) is similar to the one used for eq. (9.9) in section 9.2, i.e., the
particle arrives at a black point either first at step n, or it was already on a black point at a prior step.
Here no product terms are necessary because the definition of the quantities P, includes repeated

visits at black sites before step #, in the first index. Equation (9.56) is used o siﬁlplify the relation
between F and P,

F =P,

n
nAyL N U,nl..un-_ E PO,m.nl.“.n»‘
m=1

i i i

(9.59)

Now F, is the discrete analog of the waiting-time distribution for a first visit to a black point, or first
arrival at a trap, if black points are identified with temporary traps. Hence (P, = ¢)

F =c- Z P, (9.60)
Setting n=0and i =1, n, = m in eq. (9.59) one obtains

FO,m = PO,m ’ (961)
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and thus
Fo=c- 2 F,. (9.62)
1

The quantity F, ,, can be interpreted as the waiting-time distribution for first recapture at a black point,
given that the particle started at a black point at step 0, multiplied by the probability of start at a black
point, P, = c. Hence eq. (9.62) gives the relation between the discrete waiting-time distributions for the
first capture in a random situation and for recapture after release. Note that F, , includes the return to
the same black point and arrival at other black points.

Relation eq. (9.62) is given in discrete time. Transcription of this relation to continuous time would
give

t

w0y =1~ [ar w)). 0.6

0

where (1) is the waiting-time distribution for first capture after random implantation and () is the
waiting-time distribution for return to any trap after release. However, in eq. (9.63) retardation effects
are neglected, resulting from longer stays in the traps. If one would consider different waiting-time
distributions for steps originating on white points or on the black points one should correct for this
difference in the derivation of eq. (9.63). This appears to be simple for exponential waiting-time
distributions.

Den Hollander and Kasteleyn [249] have discussed how the moments of process (0) (random start)
and process (1) (start at a black point) are related. Generally the moments of process (1) are related to
the moments of (0) of one order less. Analogous derivations can be made in continuous-time random
walk. For instance, eq. (9.63) shows that the mean time until recapture at a black point is given by the
zeroth moment of the left-hand side, which is one because of normalization. Hence the mean time until
recapture is proportional to the inverse concentration of the black points. Of course, this argument
must be modified if the escape from the black points is governed by a different waiting-time
distribution.

In summary, the behavior of the WTD for capture of a particle by random traps after random
implantation appears to be closely related to the behavior of the WTD for recapture after release from
the traps. If no anomalous time dependencies are brought in by the WTD for release, the WID
considered above should exhibit similar asymptotic time dependencies.

10. Biased random walks
10.1. Introduction

During a biased random walk the particle drifts in a preferential direction. The field causing the
biased drift may be local, i.e. restricted to a few lattice sites, or it may be global, extending over the
whole lattice. An applied static electric field or a static elastic deformation of the sample can be used to
induce a drift in a preferential direction on the whole lattice. Whereas, local charge centers or defects in
the lattice can cause a local drift into a region of lower potential energy.
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These random walks can be important in understanding significant physical properties of materials.
For example, static electric fields in microelectronic circuitry result in large electric fields in gate
connections and welds; as smaller gate sizes are sought and higher densities of gates on chips are
achieved, there is a corresponding larger current density in the wires and solder connections. The atoms
in the solders are mobile and they can be swept from the contact region by a process called
electromigration [250-252]. Internal structures, such as atomic impurities, dislocations or vacancies can
locally distort the lattice over several lattice sites. Evidence for this internal elastic deformation is found
in Huang scattering experiments and Zwischenreflex scattering [253,254]. The extended internal
structures cause a local drift as the particle falls into and again climbs out of the distorted regions. The
understanding of the interrelationship between both of these types of bias mechanisms could very well
advance the stability and lifetime of the microchips.

Bias appears quite naturally when general models with disordered transition rates are considered,
i.e. when the restrictions of symmetry of transitions between sites (chapter 6) or of the transitions
originating at the site (chapter 7) are relaxed. The transition rates I, .. between nearest-neighbor sites
are thus considered as independent random numbers. A one-dimensional potential leading to such
transition rates is depicted in fig. 10.1. One recognizes regions with local drift; also global drift is
present in the general situation.

The simplest version of a biased random walk is a single-state CTRW with constant transition rates
on a d-dimensional hypercubic lattice. This example serves to illustrate the biased random walks.
Suppose that the static field is applied along the positive axis in the d direction. The transition rates in
the master equation for the directions v=1,2,...d —1 are set equal to I'. For the v=d axis the
transition rate is I'=I'b~', when the transition is to a neighbor in the negative direction and it is
I', = I'b, when the jump is in the positive direction. The factors b™' =exp(+BE) are due to the
relative changes in the potential barrier as seen from the central site and E is the static applied field
with unit distance between neighboring sites.

The conditional probability in the Fourier-Laplace representation is:

P(k,s]0) = {s +y[1-p(0)]} ", (10.1)
where the structure function of the biased random walk is

pk) = [EI cos k, + (exp(—ik )b + exp(ikd)b_])/2]/[d —-1+(b+ bil)/2] (10.2)

and vy is the summary transition rate,

y=T2(d-1)+(+b7)]. (10.3)

Fig. 10.1. Schematic representation of a model with random transition rates. A portion of a one-dimensional potential on a lattice is shown where
both the maxima and minima are random.
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The first moment is non-zero only in the direction of the applied field and it is along the positive axis:
(x ) O)=T(b-b"")t. (10.4)

This is the first new property of biased random walks. It is a first-order effect, i.e. linear in the field at
small field values. It is easy to calculate the diffusion tensor from the expression for the conditional
probability, and the second new property of biased random walks is the field-induced asymmetry of the
diffusion tensor:

0 r :12 d‘l,
D, _{F(b+b Y2, w=d. (10.5)

This is a second-order effect in the applied field, i.e. quadratic in the ficld at small fields. The
mean-squre displacement has the following behavior:

(MY =y +T(b-b"")r. (10.6)

The first term expresses the field-dependent diffusion and the last term is the square of the drift caused
by the application of the field. The expression eq. (10.1) can be transformed back to the space-time
coordinates (n =n,e, + - ne,)

P(n, 1]0,0) = exp(~y0)1, (21') 1, (2T'0)-+- I, (2T1)b"™ (10.7)

where [ (z) is a modified Bessel function (194]. The occupation of the initial site asymptotically falls off
as an exponential function of time, rather than as an algebraic power of the time. This model is so
simple that no frequency dependence could be expected for the diffusion coefficient; it is interesting to
speculate as to whether this situation is altered if the waiting-time distributions are not exponential,
even when the first jump is treated as an equilibrium renewal process. This question is taken up and
answered in the following section.

10.2. Biased CTRW models

Consider now the problem of bias using the CTRW description when the waiting-time distributions
are not exponential. Here it is assumed that the system is in a steady state. This is possible by
considering a finite lattice of N sites with periodic boundary conditions. In this situation, if each site is
equivalent on the lattice, then they have equal occupation probabilities, even in a field. All translation
invariant models satisfy this criterion; in particular, two models which satisfy the criterion of equal
occupation probabilities on each site are the trapping models in chapter 5. As in the previous section,
transition probabilities to nearest-neighbor sites are altered by the factors b™'. It is assumed that the
spatia) effect of the bias on the RW is incorporated in the structure function in eq. (10.2). The WTD
h(t) and y(t) describe the temporal behavior of the first, and all other transitions to neighboring sites,
respectively. The derivations in chapter 3 can then be utilized without any modification; in particular,
the conditional probability P(k 5|0) is represented by eq. (3. 15) where p(k) is given by eq. (10.2).
From that equation the average displacement along the ath axis is:

_ -h(ﬁ) dp(k)
xe ) = S(1=d(s)) Ok, Ix=0’

(10.8)
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The mean-square displacement is:

—ﬁ(s> 3°p(k)
—§(s) ok,

In eqs. (10.8) and (10.9) the first-jump waiting-time distribution appears explicitly. For an equilibrium
renewal process h(s) [1- W(s)]/st. In this case the moment equations simplify to:

_2U(s) h(s) (ap(k)

—— . 10.9
=0 S IO » (10)

(%, )()—

<xa>(s)=sizt-354(:) k=0 (10.10)
and
L a'pk) | 29()  (opR)| Y
()=~ = T e sz(l—w(s))f< M) : (10.11)

From eq. (10.10) it is evident that the mean displacement is a linear function of time in the direction of
the applied field. The result is the same as for a CTRW with Poissonian WTD, eq. (10.6), with y =~ !
The first term in eq. (10.11) contains the diffusion tensor in the presence of a field; again, with the
identification of y with the inverse of the mean stay time this term is equivalent to eq. (10.4). The last
term in eq. (10.11) contains two contrlbutlons one is the drift contribution to the mean-square
displacement and this is proportional to > This contribution can be subtracted by using the Laplace
transform of the square of the mean displacement. The remaining portion provides a frequency
dependence to the diffusion tensor. The components of the tensor are frequency independent in the

directions orthogonal to the field. In the direction of the field the diffusion coefficient is:

5 (= btb R S A ON
Dul) = T e e f<2(d—1)+b+b“) <1_¢(s) m) (10.12)

In linear response there is no frequency dependence of the diffusion coefficient and the field-
dependent diffusion coefficient eq. (10.12) is unchanged by a reversal of the field. It is of interest to
note that if A(s) = ¥(s), as is appropriate for transient experiments, then the mean displacement is no
longer a linear function of time. The linear time dependence is appropriate for the steady state.

The results of this section have been developed by Tunaley [255]. Nelkin and Harrison [256] used
these results as a basis for the discussion of the origin of 1/f noise [257, 258]. In particular, they have
taken the multiple trapping models (chapter 5) as a particular realization of single-state CTRW. A

quantity of interest to experimentalists studying 1/f noise is the current noise spectral density given by
[255]:

2ne2Aw

P(f)= fdt ((x,(t) = x,(0))*) cos(wt) (10.13)

where f= w/27, A is the samples cross-sectional area, e is the carrier charge, n is the carrier density,
and [ is the length of the medium in the direction of the field.
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For the stationary state the noise spectral density is expressed as (x,(0) = 0):

()= - A Re( ()5 =10} (10.14)

Equation (10.14) shows the simple connection between the mean-square displacement in eq. (10.11)
and the quantity P(f). Within the framework of these models, the appearance of 1/f noise can be
achieved by appropriately modelling trapping states and determining the corresponding waiting-time
distribution [256]. The first term in eq. (10.11) is related to the background current fluctuations and is
equivalent to the Nyquist theorem [255]. The origin of 1/f noise in these models is attributed to the
excess noise following from the last term of eq. (10.11) or equivalently, the second term in eq. (10.12).

It was noted in chapter 2 that the diffusion coefficient is constant for an unbiased CTRW with h(¢)
chosen from an equilibrium renewal process; nevertheless, the fourth moment of the displacement
(super Burnett coefficient) has a complicated time and frequency dependence. This was used by Stanton
and Nelkin [259] to study the band-limited noise power, as suggested by Voss and Clarke [260]. This
quantity is related to a fourth moment of the displacement and the modelling of 1/f noise is again
reduced, using these models, to a calculation of the WTD for a distribution of traps.

As previously mentioned, it is possible that the trap and release rates are also affected by the bias
field. Such models were considered by Boettger and Bryksin [261] (in a different formalism) and by
Barma and Dhar [262]. The physical motivation for this generalization by Barma and Dhar was the
percolation problem introduced in the previous chapters. The backbone (i.e. infinite) cluster is
simplified to a one-dimensional lattice. There are many branches on the backbone which can be
assumed to be finite for the moment; these branches resemble the trapping sites on the ladder trap
model, but the trapping rates are affected by the bias field as they may lie partially in the field direction.

The two-state model in one dimension is sufficient to demonstrate the salient features which
bias-dependent trapping and release rates has on the results. In these models the trap rate is increased
by y* = by,, and the release rate from the trap is reduced by y* = v/b. Using the results of chapter 5,
the WTD for this model is (eq. (5.22)):

YN Y
w(s) = y+s[1+ybl(s+yb™ ") (10.13)

and the first-jump WTD is:
Y[+ 3b/(s +yb )]
{y + syttt vb7y,)

where vy is the unbiased summary transition rate to nearest-neighbor sites, see fig. 5.1. The average
waiting time is given by the expression:

h(s) = (10.16)

£= (v, + vb*) vy, (10.17)

It is a straightforward matter to calculate the average steady-state drift velocity for this two-state
model. The result is:

—1
y_1lb-b (10.18)

fbh+b !
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The velocity increases for small applied fields, but it vanishes as 1/b for sufficiently large field
amplitudes. The reason for this behavior is the increased steady-state occupation of the traps in very
high fields. The diffusion coefficient is frequency dependent. In the Laplace domain

~ 1 1 <b—b">2 yb’ly
.1 r 10.19
DO=gt 2o ST yb (10.19)

As b— = the diffusion coefficient also vanishes.

The above results provide qualitative explanations of field-induced trapping treated by other authors
(White and Barma [263], Barma and Dhar [262], Boettger and Bryksin [261], Pandey [264]). The
generalization to a random number of trapping states at each site has been treated by White and Dhar
[263]. They found that, when the maximum number of trapping states on a site was allowed to become
infinite, the average velocity identically vanishes above a threshold value of the applied field. Precisely,
how the diffusion coefficient vanishes in high fields for these models remains an open problem. It is
worth reminding the reader that the diffusion coefficient would be obtained from the coefficient for
linear growth in time of the mean-square displacement at long times. Clearly though, these models
warrant further investigation in higher dimensions.

10.3. Random lattices with a constant bias

The previous section has demonstrated that an applied field can cause a frequency-independent
diffusion coefficient to become frequency dependent even without introducing a statistical treatment of
the randomness. Now, it is appropriate to return to the previously considered models of random media
and investigate the changes in the dynamical properties when a field is applied.

Most of the results developed with bias and randomness apply to the random barrier model in one
dimension [265, 266]. However, some results in higher dimensions have been reported and the lattices
with random traps have also been treated [267-269].

The model for the one-dimensional infinite random-barrier problem discussed in section 6.3 has been
extended to include an applied field by Khantha and Balakrishnan [270]. They use the stationary
solution of the N-site chain with reflecting boundary conditions at the end of each segment which is
given as:

PY(m)=b"""(1-b*)/(1-b"), _ (10.20)
for 1=m = N. The diagonalization of the tridiagonal matrix is performed analytically and the results

for the N-site chain diffusion coefficient D,(iw) are presented. Two special limits of interest are the
high-frequency limit:

PN b+b”{ 1 2[ (b—b‘y ]nb+b”)
DN(I(D)—F 2 I_N N 2(N_2) b b*l -1 T

) e

and the low-frequency limit:
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~ [N N{+b) 0+b™y (141062 +bY)]
DN(lw)——lw[? T 0o (b + Za-by | +0(w?), (10.22)

where b has been defined above eq. (10.1). The calculation of the diffusion coefficient, after properly
weighting and summing the coefficients D (iw) is discussed in their article. In the strong-field regime
simple analytical results are given; otherwise, the expressions are suitable for numerical summation.

The next step in considering models with a bias is the solution of the random-barrier model and the
random-trap model. For these models analytic results are also available. Consider the master equation
with arbitrary jump rates:

dP(n,t
g; ) _ o Pn+ L, 0= L, P, )]+ (L, P(n—1,0)—T,_, , P(n,1)]; (10.23)

define the probability current over the barrier between site n and site n + 1 as:

(=T, 0, Pa, )= T, ., P(n+1,1). (10.24)
The master equation can now be written in the shortened form:

dP(n, t)/dt=j,_(t)—j.(2). (10.25)

In the steady state dP(n, t)/dt =0, the time independence of the solutions requires that the current
over each barrier be a constant independent of the position on the lattice:

j=v, (10.26)

where v is identified as the average value of the current. Instead of a lattice with an infinite number of
sites, a lattice is considered which is restricted to N sites and periodic boundary conditions. Otherwise
source and sink terms may be added at the ends. The limit of an infinite lattice is taken after the
calculations are performed. A recursive solution of eq. (10.24) is:

P*(n) = A h P(n+1); (10.27)
IwnJrIAn Iwn+1‘n ’ .

continuing the recursion relation and using the periodic boundary condition, the solution is:

Pst(n):[ L NEI 1 ﬁ Fn+i41,n+i]/|:1 | QL*_‘] (10.28)
L L j=r L ’

Fnzl,n j=1 n+1=+j,n+/' i=1 fptin+i-1

The constant v can, under restricted circumstances to be discussed below, be explicitly calculated.
To calculate the average velocity in the biased random-barrier model [266], set

I,

nn+l

=b"'I, and I,,,,=bl,. (10.29)

n+l,n n
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The stationary solution eq. (10.28) is

PS‘(n)—vi /(1 by . (10.30)

‘I—;l+]

In this case it is assumed that b < 1; however, if b > 1, then it is a simple matter to rewrite the series to
obtain an expression in powers of b~* Summing eq. (10.30) over » and dividing by N, the left-hand side
is set equal to unity. Finally, taking the limit N— o, the average velocity can be determined:

v=(b-b"H/mr)y™". (10.31)

This expression has the same form as the average velocity calculated from the CTRW model in eq.
(10.4).
For the biased random-trap model the rates are:
r, ,=bl, and T, ,=b7T,. (10.32)

nt+l.n n

The result for the average velocity is the same as in eq. (10.31). Short-time dynamical properties are
calculated by using the solution of the master equation in powers of the time:

2

P(n, 1) = P(n, 0) + {[T- P(0)], + % [C-T-PO)], +-, (10.33)

and for the initial condition P(n,0), the steady-state solution is used. For the random-barrier model,
the distribution when the particle is initially at n=0is (b <1):

(1-b%) b
%0 TIT) E

P(n,0)= (10.34)

(1+p)

The diffusion coefficient calculated for short times is [266]:

(b"'-b)

D(s)=b{(I') + St

{2b (MY =b(b+b (I +b (b =)y )+
(10.35)

The next term in the expansion can be found in Biller’s article [266]. It is interesting to note here that
the diffusion coefficient at short times has terms with (I'), as well as (1/I"), the latter dependence
occurs because of the complicated steady-state occupation probabilities given in eq. (10.34).

This method can also be extended to calculate the dynamical properties at low frequencies; the
equation of motion used by Biller [266] is:

dw(n, t)/dt=—j (t) tv (10.36)

where j, is the probability current and v is the average velocity. The set of functions {w(n, t)} are
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related to the conditional probabilities by
P(n,t)=w(n,t) —wn—1,1). : (10.37)

The functions w(n, ) are summary probabilities for the particle to be in the range {—2, n}. The initial
condition is P(0, 0) 6(n), where P(0, 0) is given in eq. (10.34) and 6(n) is the Heavyside function.

The equations of motion in eq. (10.36) are solved by using Laplace transforms and the average
Green function for the system. Assummg the partxcle is initially on site m, the average unperturbed
Green function satisfies the equation (I'=(1/I") ")

566 = [5G ()~ 60,60 1 (G006~ Gy o) =, (1038)

The solutions of these coupled equations are calculated in a manner identical to the development of eq.
(2.33):

~0 1 AT n=m,
G, a(s)= 01 (10.39)

AT n<m
where

L=ASITY A b+ b7 = {(SITY 4+ 2(b+ b)Y (sIT) + (b — b)Y}
This solution is found, as in section 2.2, cf. eq. (2.33), by simple contour integration. The perturbation
series, now in real space, is similar to the calculations in section 6.2, and the diffusion coefficient for
small s is:

-G (N e ) e

The frequency behavior of the diffusion coefficient depends on the field strength. At high fields, i.e.
(sITY<(b—b ")2(b+b™"), the expansion of D(s) has integral powers of s. Whereas, there are
intermediate frequencies (or correspondingly small field strengths), where the half-integral powers of s
are approximately recovered.

Similar results were discussed in the weak disorder expansion by Derrida and Orbach [265]. Their
method has been generalized to higher dimensions by Derrida and Luck [271]. They use a weak
disorder expansion of the master equation with the ordered state being the zeroth order result. The
average velocity V, and the diffusion coefficient D, of the unperturbed system are used in the
expansion. The disorder is measured by the second moments of the transition rate fluctuations (37, ,.):

C=2(n,—n))’ [, ) = (3L, .. 8L,.,)]. (10.41)

They find the disordered systems possess an upper critical dimension d, =2. Above this dimension, the
average velocity vanishes linearly as |V,|— 0:
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V=V,(1+K,C+"). (10.42)

However, at d =2 and below anomalous behavior of the velocity is observed. The disorder is important
even if it is weak. Their average velocity for d =2 is:

V=V, (1-n+3n"+--), (10.43)
where 7= CIn(D}/V)/4wD,. For 1 <d <2 the average velocity is:
V=V,[1-K,CV* ], (10.44)
and the average velocity for d =1 is:
V=V, —sgn(V)[C/2D,+--]. (10.45)
A field-theoretical renormalization group approach [272] gives the average velocity in d =2 as:

|% Yy 10.46

Cin(K,/VY) (10.46)
Comparison with eq. (10.43) shows that the parameter n now appears in the denominator, indicating
importance of the higher-order terms in the series in eq. (10.42) as d—2.

These results show the importance of the disorder is qualitatively different in dimensions higher than
2. The effect of strong disorder, i.e., transition-rate distributions with diverging inverse moments, and a
more detailed analysis of these systems remain as open problems.

Results for the biased random-trap model have quite recently appeared [190, 267, 268]. The diffusion
coefficient and the super Burnett coefficient have been calculated in d dimensions. Nieuwenhuizen and
Ernst [268] have studied distributions where all moments of the transition rates exist and also the
strong-disorder case. In the first case where all the inverse moments of the transition rates exist, they
calculate the dynamical properties using the response-function method described in chapter 7. The
strong-disorder case was treated using an effective medium theory, the occupation probabilities of the
initial sites was, of course, not the equilibrium stationary state. This model has 1/f noise when the
distribution function for the transition rates has a non-zero value for very deep traps, i.e., f > v,.

10.4. Models with a random bias

Models which have not been considered in this review so far are those containing a random bias
[273-278]. Models of this type have been formulated to analyze replication of polymer chains [273], and
the diffusion of vacancies in alloys [274,275]. The results have mostly been obtained for one-
dimensional systems (see Kalikow for results in higher dimensions [276]).

As an example of this class of systems, consider the stationary probability distribution eq. (10.28)
and take the transition rates to be

I,,=bI and T, =b'T. (10.47)
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The bias fields b, are assumed to be independently distributed. The stationary probability density is:

SR TS 3 B O I

n+1 n+j =

The model is restricted to the case, (ln(b;1)> <0; this requirement insures that the denominator
converges to unity in the limit N— . This can be seen as writing the product as a sum over In b, in an
exponential function. Summing the result and using the normalization of the stationary probability
distribution the result is:

1=%<%%§<%>{ (10.49)

When it is assumed that the series, i.e., (b >) <1, the average velocity is then:

ra-{1/p%))
= = 1b) (10.50)

If the average (b %) is greater than unity, the inverse moment (b*) may be less than unity and the
series analogous to eq. (10.48) can again be summed. However, it is easy to create distributions where
both of these moments are greater than unity; in this case the velocity vanishes [277]. The long-time
asymptotic behavior of the mean displacement has been analyzed by Sinai [279], Derrida and Pomeau
[280], Derrida [281] and Bernasconi and Schneider [282]. Their models and methodology differ from
that presented here; only the results will be discussed.

Derrida {281] has calculated the velocity and diffusion for the model where the transition rates have
the distribution:

p(lwnJrl‘n’ ]—:1,n+]) (1_C) 8( n+1n—r )8( n.ntl _F)+C5( n+l.n F) 6( nn+1 F<)
(10.51)

This distribution has regimes where the velocity is finite and where the velocity is zero. As long as the
condition:

<F+1,n/[;|,n+l><1 or <I:1,n+l/r

n n+1,n

) <1 (10.52)
is satisfied, the velocity is non-zero and its expression is (assuming the first inequality holds):

U=<1/ nn+1> 1_< n+l.n nn+1>]_ (1053)

eq. (10.52) is violated for concentrations c:
l<esII(I+I)=c,, (10.54)

where I'" < T
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The diffusion coefficient for this model is given by the expression:

- e ()32 ()

nn+l n,n+1 n.n+l
(10.55)

This holds as long as the condition:
(Toy Ty i)Y <1, (10.56)

is satisfied. Otherwise the diffusion coefficient diverges. The concentration interval where eq. (10.56) is
violated is:

l<esT(IP+Tr%)=c,. (10.57)

This concentration interval is different from that for the vanishing of the velocity, see fig. 10.2. It is to
be expected that higher moments have anomalous behavior at other concentrations, as well.

Bernasconi and Schneider have considered a diode model [282]; these models are a variant of the
usual random barrier model. They have the property that the particle can jump across certain barriers
only in one direction; the reverse direction acts like an infinite barrier. There is an anomalous regime in
this model and the particle’s average position grows with a non-integral power of time, ¢’, where v <1
(see also Solomon [277]). Also, the asymptotic time dependence of the average position is modulated
by a function of In(¢).

0 72

Fig. 10.2. The diffusion coefficient and the velocity in the model of Derrida versus concentration of right-biased transition rates. The diffusion
coefficient (dashed lines) diverges and the velocity (solid lines) vanishes at different concentrations. Figure adapted from Derrida [281].
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The discrete-time models of Solomon [277], Kestin [278] and Derrida and Pomeau [280] have a bias
in the right transitions, p , and the left transitions, g,, from the site n. The distribution of values of

p,=1—gq,is:
p(p,)=cd(p,—p)t(-c)d(p,—(1-p)). (10.58)

Figure 10.1 is representative of this model; the barriers fluctuate according to a random walk
displacement with a global bias when ¢ # 5. For § <c¢ <p, the average displacement is [278, 280]

() () ~1", (10.59)

where v =1In{c/(1—¢)}/In{p/(1 - p)}. The velocity in the long-time regime vanishes even though a
global bias has been imposed on the particle. This special feature occurs because the typical barrier
height is not representative of the highest barriers. As fig. 6.2 illustrates, the average velocity of a
particle is limited by the highest obstacles and not by the average barrier heights.

In the special case of no global bias ¢ = ; Sinai [279] showed that the displacement divided by the
square of In :

y=x/(Int)", (10.60)

has a limit distribution.

The case without global bias resembles a random walk on a random-walk set by the potential on the
lattice and the result in eq. (10.60) can be heuristically explained as follows. The average potential
difference AU from one point on the lattice to another point separated by a distance L is

AU=KVL, (10.61)
where K is constant. The time required to diffuse the distance L on the lattice is
t~ecxp(BAU)=exp(BVLK). (10.62)
Since L is taken to be the average distance covered by the particle in time ¢, the solution of eq. (10.62)
for L(t) has the dependence found in eq. (10.60). Marinari et al. 283] showed that the power spectrum
defined by:
2

(10.63)

,
1 1 ift
P(f)_]FLIgT Udte x(1)

0

by the same heuristic arguments used above, has approximately a 1/f behavior as f—0. This
dependence is modified by logarithms of the frequency:

P(f)~(n* f)If . (10.64)

They further studied a random bias model in two dimensions by Monte-Carlo simulation and found a
behavior which was consistent with the one-dimensional model.
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The review ends here, but it is hoped that this presentation has whetted the reader’s appetite for
these problems and she/he will penetrate deeper into the subject. The emphasis of the review was
necessarily restricted in order to keep the presentation reasonably coherent and pedagogical. This
restriction has meant that omissions were made; for instance, field theoretic renormalization group
methods have not been discussed in detail, although there are publications in this area [272,284-286).
Furthermore quantum-mechanical lattice models also have a large literature [44], but very little
progress has been made on these models with disordered transition rates. The theoretical problems are
many in this field, so be bold and take up the challenge!
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Notes added in proof

The flow of publications on the subject of the review does not diminish, although the emphasis on
particular topics is shifting. Below some references on developments will be given which we found
interesting. Of course, we could not be complete. Another review with emphasis on complementary
topics, e.g., percolation, many diffusing particles, etc., is in preparation [287]. Applications of
stochastic hopping models to the calculation of correlation functions are described in the book [288].

More complicated jump models for two-dimensional diffusion were considered in [289] and the
diffusion coefficient for models with multiple transition rates was derived in [290].

The fact that multistate CTRW does exhibit a frequency-dependent diffusion coefficient was
demonstrated in a quasi-one-dimensional model [291]. A model equivalent to non-Poissonian WTD was
treated in [292] and correlated-jump models with general WTD were considered in [293]. An interesting
extension of multistate random walk to networks where partial summations on internal states are
performed is given in [294]. New results for correlated random walks that are continuous in space and
discrete in time are found in [295].

Experiments on photoconductivity in amorphous materials over many decades in time showed a
transition from dispersive to nondispersive transport [296]. This is consistent with models discussed in
chapter § if a finite maximal trap depth is assumed. The two-state model was used in the analysis of
quasielastic neutron-scattering experiments on hydrogen diffusion in a metglass [297].

A simplified treatment of the low-frequency conductivity of the one-dimensional random-barrier
model was given in [298]. An anomalous long-time behavior of the diffusion process of the broken-bond
model was found in [299], after averaging over the distribution of the segment lengths. The random-
resistor network, corresponding to two different transition rates, was studied in a systematic density
expansion in [300]. Quasi-one-dimensional models with a power-law distribution of the conductivities
were considered in [301]. An interesting extension is the case where one transition rate becomes
infinite; this gives the ‘termite models’. They were studied, e.g., in [302] when the other transition rate
is zero, and in [303] when this rate is a random quantity. The frequency dependence of the diffusion
coefficient of such models was studied in the frame of the EMA in [304].

It was recently asserted [305] that there are oversights in the proof [182] of the strictly linear
behavior of the mean-square displacement in the random-trap model. Reference [182] establishes this
behavior for infinite lattices, including the case of periodic boundary conditions. It is obvious that
corrections appear for reflecting boundary conditions and they are derived in [305]. A previous article is
concerned with nonstationary initial conditions [306].

The model of random walk on a random walk was applied to diffusion in channels in [307]. A model
of diffusion of hierarchical lattices was studied in [308]. The problem of diffusion in the model with
randomly blocked sites and bonds was treated exactly in a low-density expansion by the Utrecht group
[309, 310]. A subject matter of recently growing interest is random walk in ultrametric spaces, here the
reader is referred to [311-314] as examples.

First-passage time properties such as probability of return to the origin and mean number of distinct
sites visited were investigated in [315] for multistate random walk. The application to correlated
random walk was made in [316]. The exponential decay of the survival probability in a finite lattice with
a single trap was established in [317, 318]; these references contain also other useful exact results. The
survival probability of a particle diffusing by correlated walk in the presence of traps was derived in
[319]. An important numerical technique for studying the trapping problem in higher dimensions was
devised in [320]. The survival probability and trapping probability on a site were calculated for partially
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absorbing traps in [321]. The survival probability of a particle diffusing in medium with connected traps
was considered in [322]. Also the influence of bias on the survival probability of a particle on a linear
chain has been discussed, cf., e.g., ref. [323].

The frequency-dependent conductivity in a model with random barriers, random sites energies, and a
static bias field was investigated in [324]. A Monte-Carlo study of similar models was undertaken in
[325]. Diffusion in one-dimensional models with attached random ladders and a ‘topological bias’ were
considered in [326,327]. ‘Anomalous ballistic diffusion” was found in a superconducting linear chain
model with randomly inserted resistors [328]. We reiterate that these references represent only a
selection of some recent developments in this field.
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