
Rogycob Ванерий Devempul Bur Поменект пекций по курсу: " Пермодинамика и стат. днизика" студенники оризико- шехнического дракумотета Mynnon IIIa Kanewi Anenor Angheebuor -20122 -

Макроскопические параешетры 13.09. всии всим сиси содержануть басыное 20121 нагож в пр-ве Дия это-вводит разур. нагож исти макроскопиг парами-ов: Breensure napam-por onpeg-en roopguna.
manne raculus, romopore me brogen в эту
спетему. ai; i=1,..., n

H-p: cb-fa raja в cocyge. Выстрыние парам - ры опред-са коорд. «астим систем» зависим от высимия параметров. вј = вј (ai) · menen-pa b ceremence] = - и еще от одного парам - ра: от мосим вероненностьюми хар-р и ивы са св-вам перенодинами. э сиси. - температура Ти этирония S- их мевориожано свесии к имай Определеносную раго спрант высинене парам. пот и однем су T/S - неговисинение пар м. Инсено независ нароже - ров определени состо-ямие системог. n+1 ванная простав сист. хар-си 2 им парми. не хамическим и еще сущим правыченом. Н-р: идеаным. газ N=6.10 23

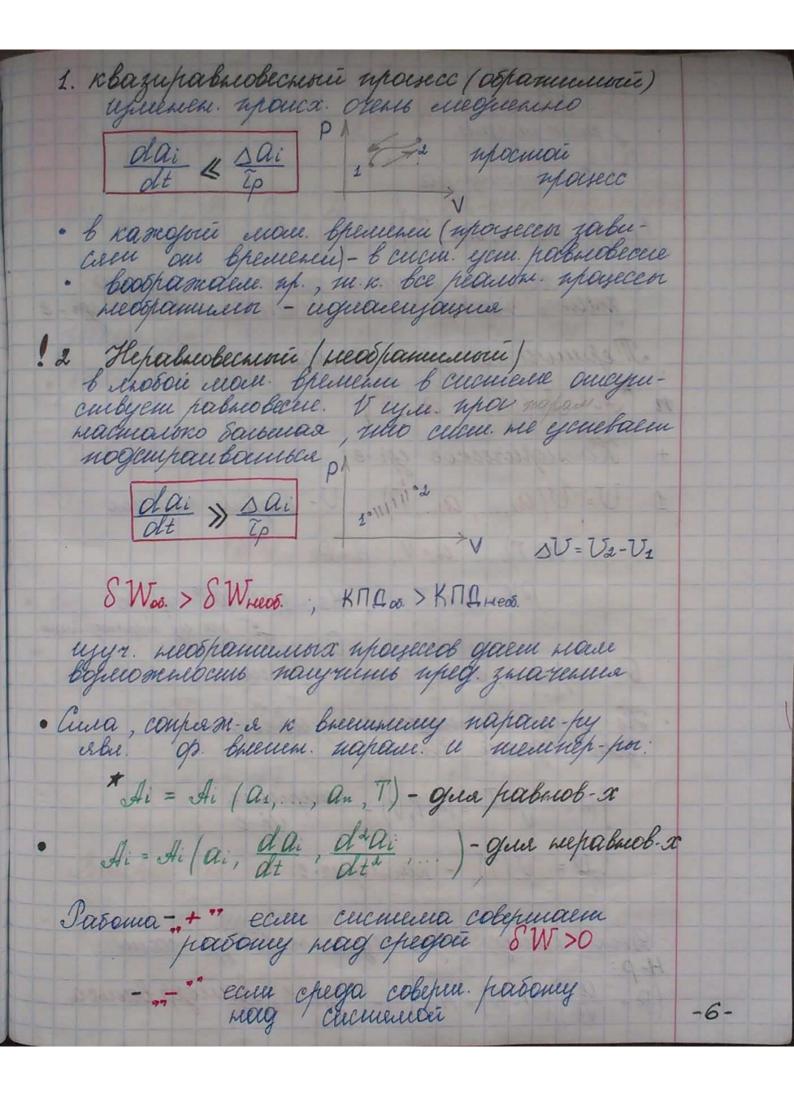
Зпертренение и высилие пакане-ры
Знеутренние и вышимие парашеры
Инешененьные - шакие макрокович марам-ког
Именисивают - мажие макрасконих марам ры коморы не зависям от ком-ва весь-ва (Р)
Эксиненсивание (аддинивание) - зависение от кои ва вись ва (эт газа, наперизание)
om kon-ta veles-ta (sm. taga, manspusius)
Ушови ввести поменене
Периодинамическая сиси опешена,
собрения ванные чине частия, дися
собрением вание жине частия дист
Периодинаническое равновесие-
Мериодинаническое равновесие-
bel marpocronur nap-por ebil-ce nocuorementene et nel gabeliere am Epecelenen) a: + ai(t) \(\ta ai = 0 \)
все макроскония мар-ры явл-се постолениющи
et nel jabelleeu au épeceleneu) ai + ai(t) Vui =0
Врения ренежсонием - Ср - вреня за которое
жения приходим в равывовесием самост. Пина конимактов системы со средой:
m voilenne he celebrate
Munis commicante cuculture co chique.
Ol and al. 10 arrestances to 10010 Rosa and
De cucm. elbu. Janermymonien u negaberc., ecreu ne calene cer mepuere u berez-bone me/y coporé.
the carlethe Cel may more in very - vern my y capite.
$E_i = const$
1 2 Ni = const
2 d m- unn
Пенновой коминаки - общем змертией
Orienework reministration
1 2 Ni = const
-2.

Euse: E = E (as, ..., an, T) T = T (as, ... an, E) bj = bj (a1, ..., an, E) Как происходини общем этерини му • нет обменей этергией, веня-вым -замкнут • Облен этершей <u>с измень высим</u>. уси - совер-Паения дифоререшений df (x,y) = fx dx + fy dy => fxy = fyx Пораффова форма-ме мви намыми диф. $d\Psi(x,y) = N(x,y) dx + M(x,y) dy$ $\frac{\partial N}{\partial y} \neq \frac{\partial M}{\partial x}$ Thousecon & T.I.

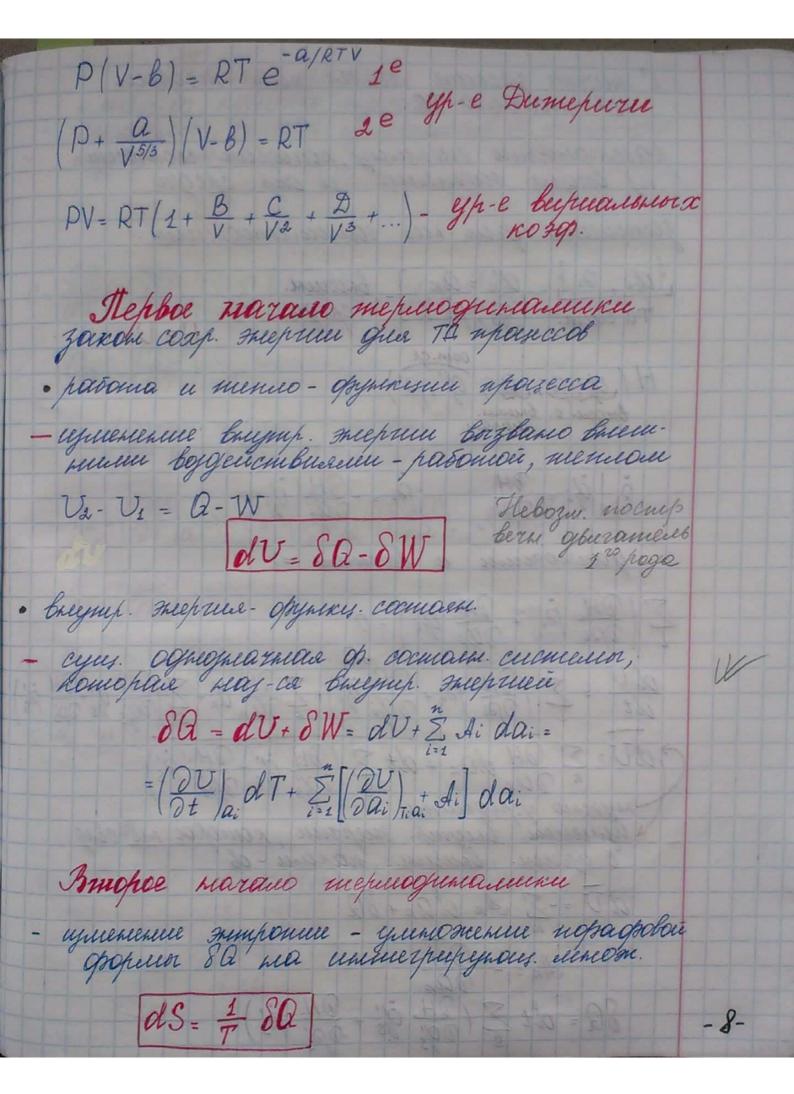
Yh-a cocmorning. 1º marano T.I.

Themsoemrocms 20.09 20122. Сущ состояние в консорон ai(t). Паких состояний ува.

Easte: E = E (as, ..., an, T) T= T (as, ... an, E) bj= bj (a1, ..., an, E) Нак происходини общем этерини м/у • нет обичени этерничий, вин-ваш-зашкинут. • Облен этершей <u>с измет выши</u> уси - совер-SW, SQ- elber opyring.


μροίς τος α, πο πε οργακη.

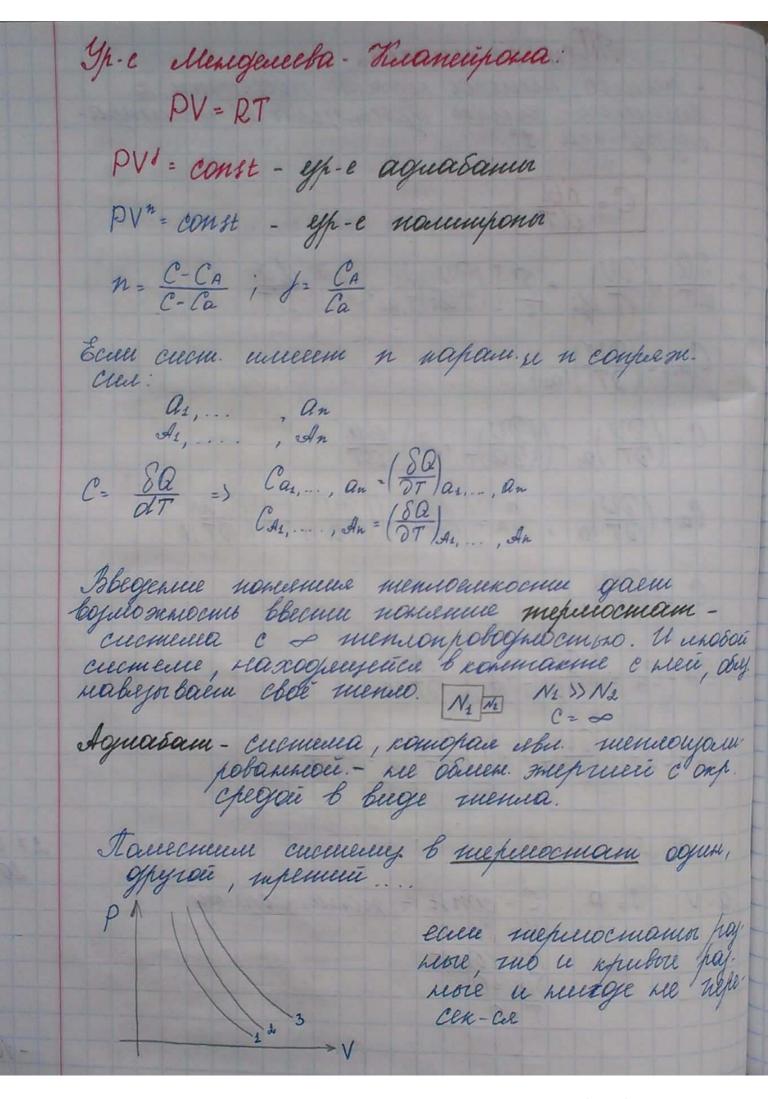
Σεμ αμετεπ. <u>βατειπ.</u> μαραια-οβ
<u>πενιευ</u> SQ

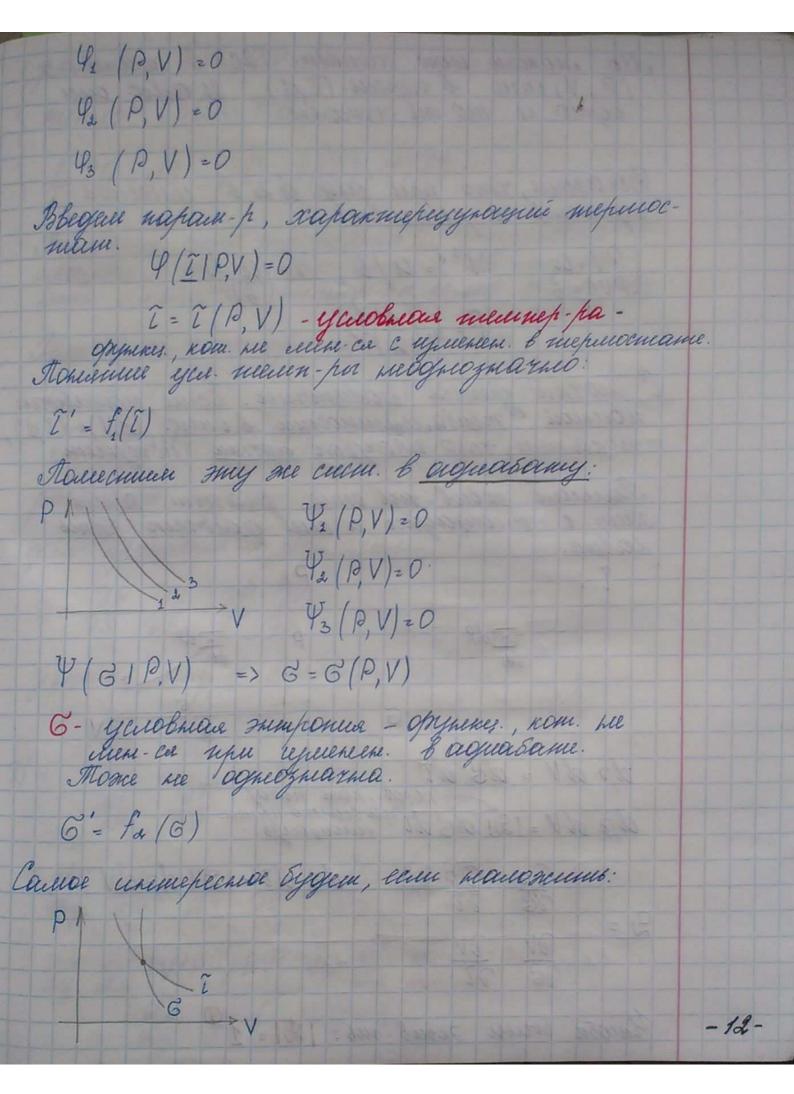

Ττα επευτε οργαφορερεπειματε df (x,y) = fx dx + fy dy => fxy = fyx Порафорова форма-ме иви настым диф. $d\Psi(x,y) = N(x,y) dx + M(x,y) dy$ $\frac{\partial N}{\partial y} \neq \frac{\partial M}{\partial x}$ Thousecon & T.I.

yp - a cocmosume. 1º marano T.I.

Themoem rocms 20.09 20122. Сущ. состояние в которон ai(t). Паких состанний ува.

ecue à cuculeur nogrageem menno, n + 2 mennep-pa bj=bj(a1,..., an, T) Если хошин описамь сменену, педочью змань махор n+1. И писамь n+1 ур-г Перишческое ур. е состояние: n $Ai = Ai(a_1, ..., a_n, T)$ + Нашорическое ур-е: 1 U= U(a1,..., an, T), U-breynip meepreux $(a,T) \quad a=V, \ A=P$ $PV = N\kappa_{5}T$, $K_{5} = 1,38 \cdot 10^{-10} \text{ Jpr}/\kappa$ $Q = \kappa_{5}T$ we by metalogunan. $Q = \kappa_{5}T$ · Не сущ мериодимани равмовесия дия одной хасницы $\int P = \frac{N \kappa_{\delta} T}{V} = P(T, V) - mepinier.$ yh-eU= V(T) - Kameopeer-e Deux heery raya cyres. ~ 150 yp. cocm. H-p: $(p+\frac{a}{v^2})(v-b)=N_{KB}T-yp-e$ Barryep Barroca


l' morke greaux recreek-kum meopine рассионирения сисиния, конорая состоит из выден сисиния и окр. среден замишеми диск ше ганинившити TA cucu. {q's, p's }] - Breenen. HEU H (g. p; Q; g', p')
bugen c. baceman.
napaun. pi | gi = OH) pi = - OH | gi дошножими и вачием =) E (OH pi + OH gi) = 0 ol V = Z (DH pi + DH gi + Z DH an + Z (DH g's d's + DH p's COV = S. DH dax + dt Z (DH g's + DH p's)


regrene yepegnums

regreneen. Briefine mapaier - ob

c aguen. Breesen. napaier - ob dV =- Z AR dax + 8Q AR = - OH 8a = alt & (OH g's + OH p's)

Мениосикость - шенего, консорое мужно подвесии к сисиений, чисти присешения ей тентраsuggest mea 10 $C = \frac{\delta Q}{Q T}$ C= SQ = (DV)qi + [[(DV)T, ai + Ai] dai Gail = (DV) fail $C = \left(\frac{\partial U}{\partial T}\right)_{\alpha} + \left(\left(\frac{\partial U}{\partial \alpha}\right)_{T} + A\right) \frac{\partial \alpha}{\partial T}$ $Ca = \left(\frac{\partial U}{\partial T}\right)a$; $C_A = \left(\frac{\partial U}{\partial T}\right)a + \left(\left(\frac{\partial U}{\partial a}\right)_T + A\right)\left(\frac{\partial a}{\partial T}\right)_A$ $C_{V} = \left(\frac{\partial U}{\partial T}\right)_{V}$ $C_A - C_a = \left(\left(\frac{\partial V}{\partial a} \right)_T + \mathcal{A} \right) \left(\frac{\partial a}{\partial T} \right)_A$ CP-CV = ((DV)T+P)(DV)P = PR a, A 27.09. 20122 C = const - novementonioni a=V, A=P V = const P = const SQ =0 T = 0 -10-

Мо можем онис составы. ТЭС в перешен-х (Р, V) ими в переше. (г, в). И онис. они однео и то же состоям. Докажен, что при зад. а и в шесения единств - е решений: {PV=a V=1= a/B; V= (a) = 1=1 P= 8. (8) 2-1 С мочки зрения нестемрии. Если попребует помыст эквиваленимостии в опис. (Р, V) → (г, в), покажен, что произволе мочти истериет. Ягания живов-шь оше. змачин: берен змен устыми вышь равия. dp dV = dS dT dp dV = 121 d6 dt na crouseroge old oli = 151 olp olv Ушобы бысеа эквив-шь: 121=1°

3 parsona: 8W=-PdV
mennes: SQ = T dS
$\frac{1}{7} \delta Q = dS ; C_{\nu} = \left(\frac{\delta Q}{\delta T}\right)_{\nu} = T\left(\frac{\partial S}{\partial T}\right)_{\nu}$
Лока жене, чино требование Ф устранием працевы и дани воригожных высты пория- працьой и дани воригожных высты пория- ний абсолить. теменер-ры не абс. этиронии.
Рассионувши ней пришере сед паза:
6=6(P.V) [S=S(PV) = (S/y) *
T = T(P.V) T = T(P.V) - T(x)
распиши ековисии:
дни просшения эх, оборисании
9 = 2P 2V - 2P 2V 77 - 27 75
учисем, чино Р-сионешим другиния
25 25
$\mathfrak{A}' = \begin{vmatrix} \frac{\partial S}{\partial P} & \frac{\partial S}{\partial V} \\ \frac{\partial T}{\partial P} & \frac{\partial T}{\partial V} \end{vmatrix} = \frac{\partial S}{\partial P} \frac{\partial T}{\partial V} - \frac{\partial S}{\partial V} \frac{\partial T}{\partial P} =$
= ds dy dt dx dv - ds dy dt dx op =
= ds dT (V&P-JPVJ-1V) = dS dT V&P(1-j) = dy dx (V&P-JPVJ-1V) = dy dx
= dy da (2-3) 3-1

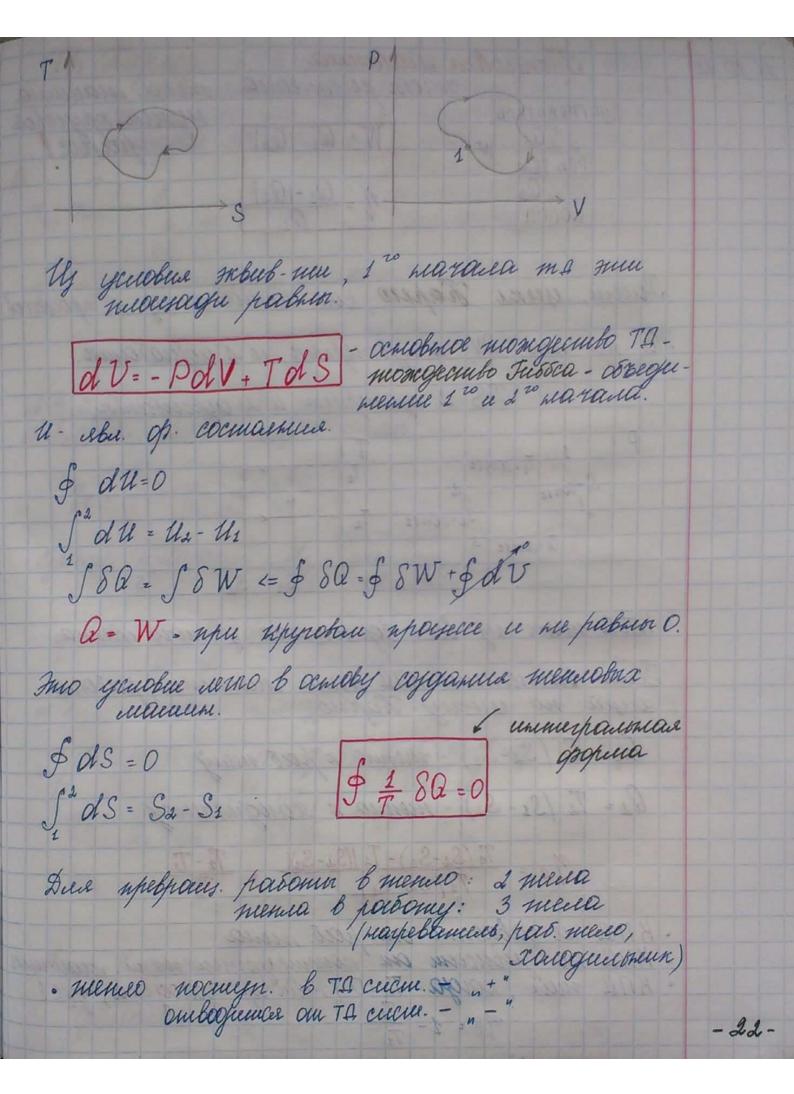
elloreur nepennecount: upays. const $\frac{dT}{dx} = \frac{dy}{dS} \frac{1}{(1-j)y} = \left(\frac{1}{R}\right) = > gbe gb. kabnen enemogy cooper each onen const.$ $\frac{\partial T}{\partial x} = \frac{1}{R} \quad \frac{\partial y}{\partial s} = \frac{1}{R} \quad \frac{1}{R}$ $dT = \frac{1}{R} dx = T = \frac{1}{R} x + 0$ $\frac{R \text{ oley}}{(1-f)^2 y} = dS = S = \frac{R}{(1-f)} \ln y + C$ $T = \frac{1}{R^2} PV + \theta \quad S = \frac{R}{1-f} \ln PV^4 + C \quad \text{const} \quad \text{3 const}$ Immponeero moramo nefemicanio. Zoroprekcupejani cocue arnelie, xapakmeepiejanomiereca: P_0 , $V_0 = >$ $S-S_0 = \frac{R}{1-J} \ln \frac{PV}{P_0 V_0^4} =$ if хошим записать этирошию в переш. · V, T: P= (T-0)R = R ln (T-0) Vd-1 P, T : V = (T - 0)R $= \frac{R}{1 - f} \ln \frac{P(T - 0)P^{\delta}}{P^{\delta}P_{\delta}(T_{0} - 0)P^{\delta}} - \frac{R}{1 - f} \ln \frac{P^{1-\delta}(T - 0)P^{\delta}}{P_{\delta}(1 + f)(T_{0} - 0)P^{\delta}} \right]$ · P, T: V= (7-0)R

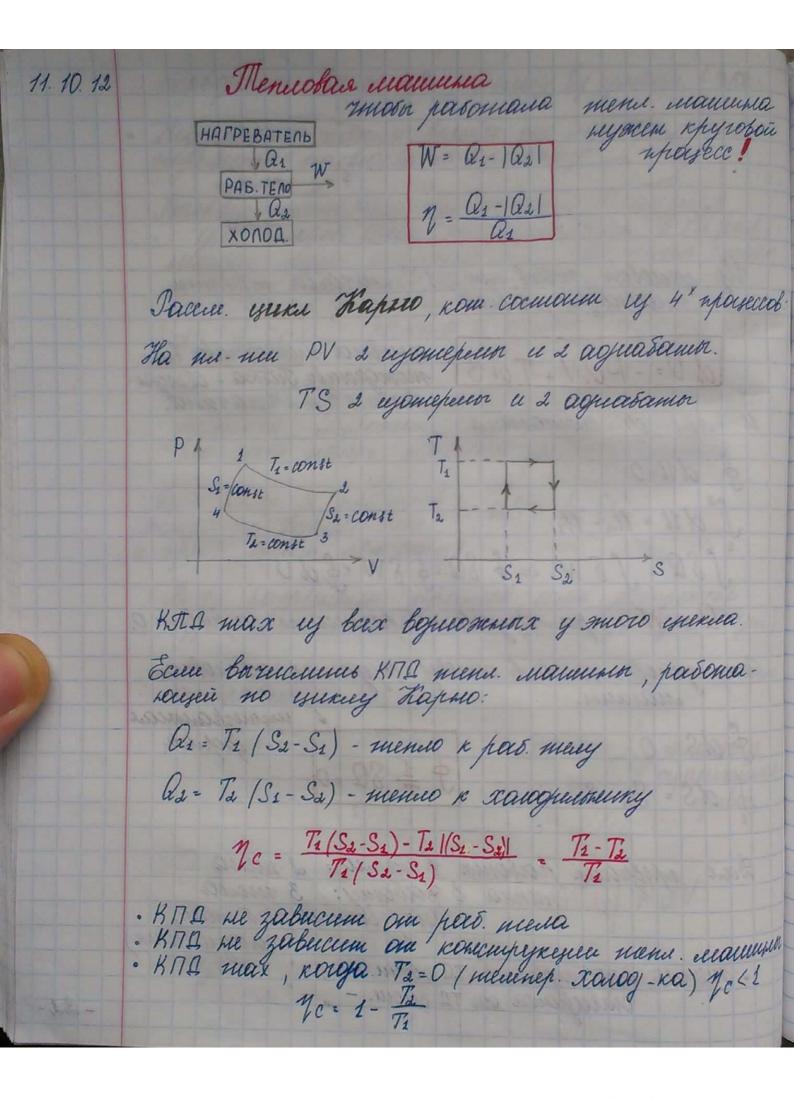
Этисии пениовенковине: $C_{v} = T \cdot \frac{R}{1-J} \cdot \frac{1}{T-Q} \Rightarrow uagreeun, runo memoener.$ $nepamyper, ruo euer zhealek, runo muo me

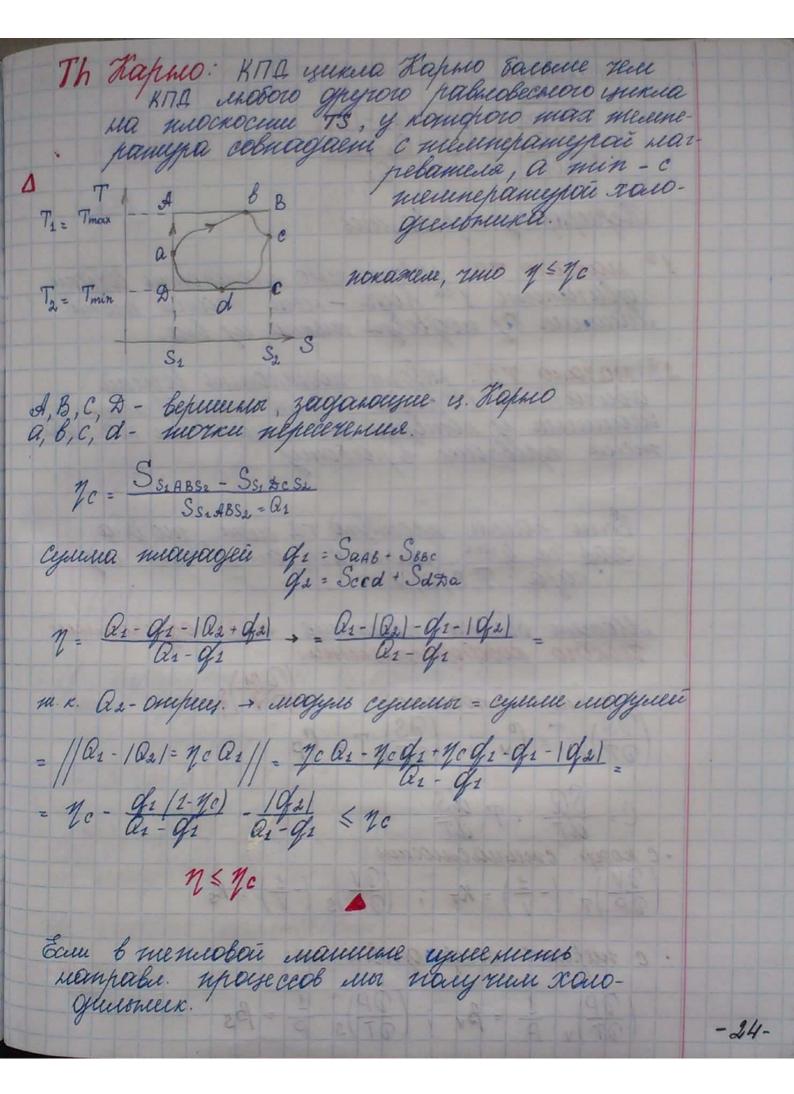
<math>nepamyper \Rightarrow Q = 0 \Rightarrow C_{v} = R$ ранера и обс. жирония. Эмом метод введения примения к Усиси. The heur of une accurate moment accurate and server our representation of x and x are x and x and x and x are x are x are x and x are x are x and x are x are x are x are x and x are x $f(x) = -\frac{\partial V}{\partial x}$ Уз тертодинанения: Работа - функи процесса 8W = Ada paceue pasoury, rouga cuiem b aguasame:
(S= const) 8Ws = - Palls if memponeur me nermonnue : dV = -PdV + LdS
V- miepruir cuculium

tomposegem nong, ruo pasama mo
gosuls nomeniquomen => -16-

SWs = - PolVs = olVs P=-(DV)s yeu Hauen-Immana: $-(\frac{\partial P}{\partial S})_V = (\frac{\partial L}{\partial V})_S - yeu borp. D esbu.$ 3 dV(x, y) = (DV) y dx + (DV) x oly = = P(x, y) dx - N(x, y) dy4.10.12 Вспошним и проведем амамочено SW = f(x) dx = -dV(x) $f(x) = -\frac{dV(x)}{dx}$ 8 Ws- рабона при пост. эттропии - огдиабания. SWs = PdVs = - dVs 8Q = TdS a=V, A=PP = - (2V) dV = -PdV + LdSyou. Kouen-Immana, compose elven banamasement


$$\begin{array}{l} \partial^{4}V = \partial^{2}V \\ \partial S \partial V = \partial V \partial S \\ -\left(\frac{\partial P}{\partial S}\right)_{V} = \left(\frac{\partial L}{\partial V}\right)_{S} \rightarrow \frac{\partial \left(P,V\right)}{\partial \left(S,V\right)} = \frac{\partial \left(L,S\right)}{\partial \left(V,S\right)} \\ & \text{becoming yours obstitution annulum mempt. accommon.} \\ & \frac{\partial \left(V,S\right)}{\partial \left(P,V\right)} = \frac{\partial \left(L,S\right)}{\partial \left(V,S\right)} \\ & \frac{\partial \left(P,V\right)}{\partial \left(P,V\right)} = \frac{\partial \left(L,S\right)}{\partial \left(V,S\right)} = \frac{\partial \left(L,S\right)}{\partial \left(V,S\right$$


 $dv = \delta Q - \delta W = \delta Q - P dV$ 8Q = TdS - адиаб. тершодинан. пош. дважине выедтр. эксергия A buyup. mepuer esbu. TI nomenus. U= U (V,S) => (DP) = - (DT) - yourbue Koun-Immana U = U(V,T) Вменир. этергино пучие полими через перешените V, T Uzomehunreckui npasecc yonus TA nomenus. $SW_T = PdV_T = -dF_T P = -\left(\frac{OF}{OV}\right)_T$ dF = -PdV + BdT F = F(T,V) $-\left(\frac{\partial P}{\partial T}\right)_{V} = \left(\frac{\partial B}{\partial V}\right)_{T} - y_{U}u$ Koum- Punana - guopopeper $\frac{\partial(P,V)}{\partial(T,V)} = -\frac{\partial(B,T)}{\partial(V,T)} = +\frac{\partial(B,T)}{\partial(T,V)}$ $\frac{\partial(\beta,T)}{\partial(P,V)}=1$ Восполезурние уси конивровки: $1 = \frac{O(PV)}{O(T,S)} \frac{O(B,T)}{O(P,V)} = +1$ $\frac{\partial(\beta,T)}{\partial(T,S)} = 1; \left(\frac{\partial\beta}{\partial S}\right)_T = \frac{\partial(\beta,T)}{\partial(S,T)} = -1$


 $\left(\frac{\partial B}{\partial S}\right)_{T} = -1$ ур е негко интегрируется $\beta = -S + \Psi(T) \qquad \int \Psi(T) dT$ $\beta = -S$ dF=-PdV-SdT nauyr. bopaon. elber. novemen guesp-evan: P= -(DF), S= -(DF), F- yourepuur. The nomenyuan (clob. meprus)
of (V-F) = TdS + SdT = d (TS) d (V-F) = T dS + S dT = d | TS)

V-F = T.S suepure - me nepex. & porsony
V=F+TS P=-(OF)T P= - (2V)s $T = \left(\frac{\partial V}{\partial S}\right)_{V} \qquad S = \left(\frac{\partial F}{\partial T}\right)_{V}$ Яроведи эту амамочно, понучини SQ=TolS Второе начано ТД дия 1º mearano: SQ = dV + SW (meopumur. - DA, экспер-то - HET) · Herege mener ou mener marpemoro mener -20-

передосив бане магрешану, бу ириемем. в прир • Невориожие шешо, вреша от одного шена перевесии пастостью в работу. Виервые манививани-ки описане Кледузице в 74 равдия имовой систи, махоорищейтие в 74 равновесии сущ одрагодна числе оруменные состоямия - этипропия, свед с изнистем шения. $dS = \frac{1}{7} SQ$ работа и шению - орумен, ироуссеа. 8a, как исрадова орорена инеен иминери-рупации инпожини. 1/Т и при унеможе. ней него пануч понный диорореремення Died medop. x uporfeccob: $dS > \frac{1}{T} SQ$ (этирония возрасшаем, a upu обраст. elbu. const.) В ТА разрешения процессы, если эттропия возрастает метро не метемения (дые замкнут.) Алобая меравновения сист. яви-си источникан этиропееи. SQ=TOLS
TA PA PA PA Muousage, nuousage, orpaniuremman kpuboù Bbeggen nomenue kpyroborx proeseccob:

HAPPEBATEND

Q1

PAB. Teno

$$Q_2$$
 Q_3
 Q_4
 Q_4

Переорорициированиев.

1° мачано ТД: меворию ясто ностроить вечной увичаниемь 1° рода — мет макой тепи. нашими без подвода тепиа из вые.

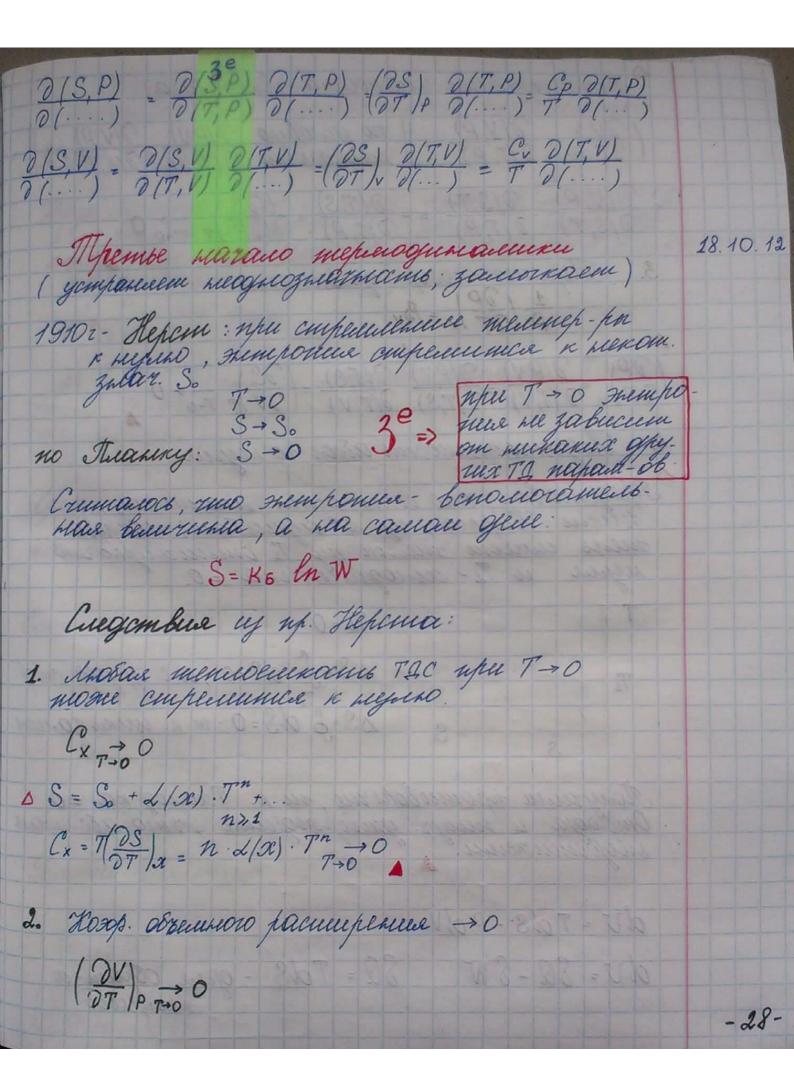
2° μαναπο ΤΩ: μεβοζια πος προμουμο βετμενί βρινα πιειε 2 προφα - μετα πιακοί περικι. ειταιιειεμεν γ κοπιόρου βού πιενικο στα ματρεβα-πετε πρεβρεχει. Ε κειδονιες

Eun palue upoemyno TI cuem. mo oma xap-ca 4 m napanulmpanu. Bela ueg.

Можем ввесни понемине теринодимами.

• c menuoenerocurso:
$$(\frac{DM}{DT})_{\nu}$$
 $T = C_{\nu}$; $(\frac{DS}{DT})_{\nu}T = C_{p}$

$$C = \frac{\delta Q}{dT} = T \frac{dS}{dT}$$
 $\cdot c \kappa \rho s q \rho \cdot c a c u u a e u c c u u$

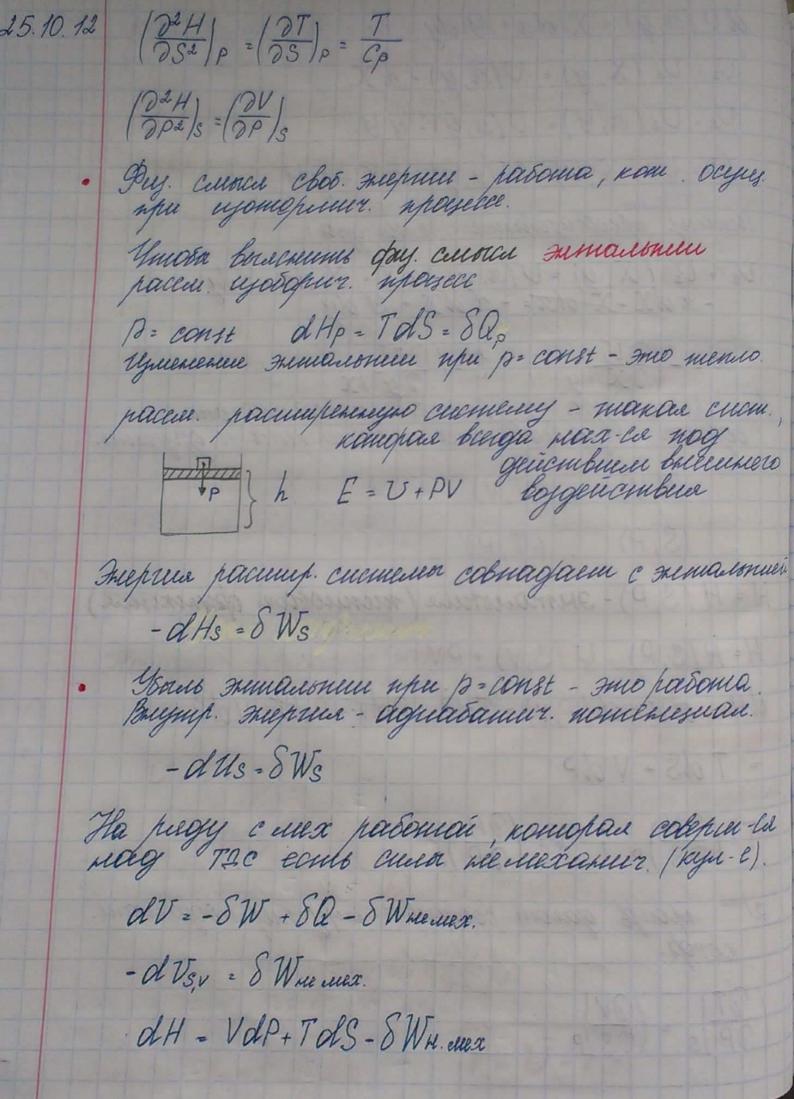

$$\left(\frac{\partial V}{\partial P}\right)_T \cdot \left(-\frac{1}{V}\right) = K_T \; ; \; \left(\frac{\partial V}{\partial P}\right)_S \cdot \left(-\frac{1}{V}\right) = K_S$$

. с теришя коэф устычия:

$$\left(\frac{\partial P}{\partial T}\right)_{V} \frac{1}{P} = \beta_{V} ; \left(\frac{\partial P}{\partial T}\right)_{S} \frac{1}{P} = \beta_{S}$$

. с козор.	шепиовог	о расширени	cue:		
$\left(\frac{\partial V}{\partial T}\right)_{P}$	$\frac{1}{V} = Lp$	$\frac{1}{3}\left(\frac{\partial V}{\partial T}\right)_{S} = \frac{1}{V}$	= Ls		
$\left(\frac{\partial S}{\partial V}\right)_{T}$		(25)p			
(DS)N		$\left(\frac{\partial S}{\partial P}\right)_{T}$		400	
$\left(\begin{pmatrix} \frac{\partial V}{\partial P} \end{pmatrix}_T \right)$	$\left(\frac{QP}{QT}\right)_V$	$\left(\frac{\partial T}{\partial V}\right)_{P}$	= -1	THE STATE OF THE S	
$\left(\frac{\partial S}{\partial T}\right)_{V}$	$\left(\frac{\partial T}{\partial V}\right)_{S}$	$\left(\frac{\partial V}{\partial S}\right)_{T}$	= -1	TA TO	
$(\frac{\partial S}{\partial T})_{P}$	$\left(\frac{\partial T}{\partial P}\right)_{S}$	$\left(\frac{\partial P}{\partial S}\right)_T$	= -1	To state	
	$\left(\frac{OP}{OS}\right)_{v}$		1	· 175	
· if neplus	enevae culi	en -1	e cuepone	, neo	
	$\int_{S} \left(\frac{2V}{2S} \right)_{T} =$		10 8	1800	
2(S,V) 2(2(T,V) 2(=> noueyr.	7.5) D(V,T) 1,5) D(S,T) 4 yp-2	=- 2(T,S) 0(T,V) Cheque	O(T, V) = -	1	
14 yaubu 2 (T,S) 7 (P,V)	The state of the s	spobrei:			-26-

/ 5 условие $\left(\frac{\partial T}{\partial P}\right)_{V} \left(\frac{\partial T}{\partial V}\right)_{P}$ = (2T) v (2S) p - (2T) p (2S) v = 1 $\left(\frac{\partial S}{\partial P}\right)_{V} \left(\frac{\partial S}{\partial V}\right)_{P}$ • Даниожин Д * 2(T, V) | 2(T,S) = 1 $\frac{\partial(T,S)}{\partial(T,V)} \frac{\partial(T,V)}{\partial(P,V)} = (\frac{\partial S}{\partial V})_{T} (\frac{\partial T}{\partial P})_{V} = 1$ Appendix • Дониожии 🗷 $\frac{\mathcal{D}(T,P)}{\mathcal{D}(T,P)} \left| \frac{\mathcal{D}(T,S)}{\mathcal{D}(P,V)} \right| = 1$ $\frac{\mathcal{D}(T,S)}{\mathcal{D}(T,P)} \frac{\mathcal{D}(T,P)}{\mathcal{D}(P,V)} = -\left(\frac{\mathcal{D}S}{\mathcal{D}P}\right)_T \left(\frac{\mathcal{D}T}{\mathcal{D}V}\right)_P = 1$ $\frac{\mathcal{D}(T,S)}{\mathcal{D}(T,P)} \frac{\mathcal{D}(T,P)}{\mathcal{D}(P,V)} = -\left(\frac{\mathcal{D}S}{\mathcal{D}P}\right)_T \left(\frac{\mathcal{D}T}{\mathcal{D}V}\right)_P = 1$ · 2(7,5) 2(V,S) = -(27) (25) = 1 8 yacobue · D(T,S) D(P,S) -(DT) (DS) = 1 9 yeurobue ugrenen 9 egraba - i chique a 3 2030 p. lamore sugremen 2000 p. - onpege uj mens borham-ca. Toxancen, ruo Если если екобиски: 2(T,S) = 2(T,S) 2(P,V) 2(P) Ses memponen st, P, V

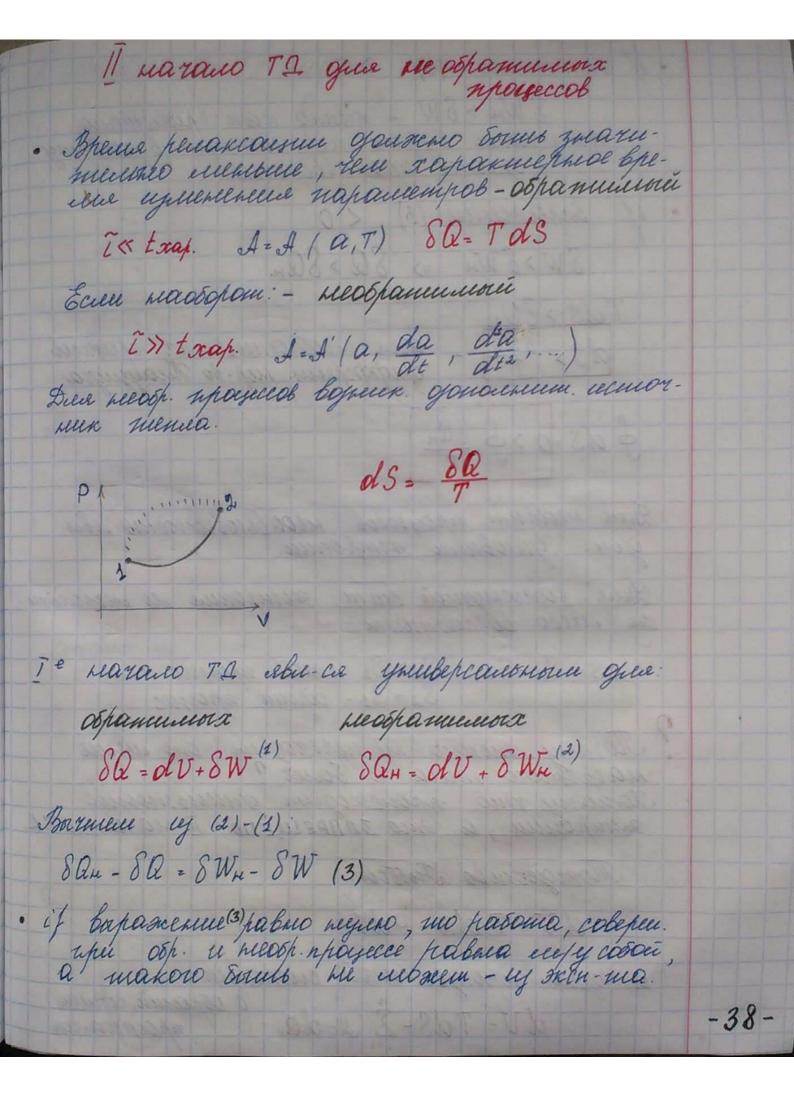

Воспользуемия методым евхобиата: $\left(\frac{\partial V}{\partial T}\right)_{P} = \frac{\partial (V,P)}{\partial (T,P)} = \left\|\begin{array}{c} no \ ycheohero \ \partial (P,V) = \partial (V,P) \\ connection \partial (T,S) = \partial (S,T) = 1 \end{array}\right\|$ $=\frac{\partial(V,P)}{\partial(S,T)}\frac{\partial(S,T)}{\partial(T,P)}=-\frac{\partial(T,S)}{\partial(T,P)}=-\frac{\partial S}{\partial P}_{T}\xrightarrow{P\to 0}0$ 3. Перии когор. давиения $\frac{1}{P}\left|\frac{\partial P}{\partial T}\right|_{V} = B_{V}$ $\left(\frac{\partial P}{\partial T}\right)_{V} = \frac{\partial (P,V)}{\partial (T,V)} = \frac{\partial (P,V)}{\partial (T,S)} \frac{\partial (T,S)}{\partial (T,V)} = \left(\frac{\partial S}{\partial V}\right)_{T} \xrightarrow{T \to 0} 0$ 4. Недастименность абсаг-го педия Предсисавши, чисо есть теми маниема, та " инте Карию, щ « адмабат; марева-исть имеет мент-ру Тг отмитьерно от мерея и Тъ-хоноднивника = 0. DS= S dS = 0, a c gpyroù cuig DS=\$ dS=0-m. к. изики зашки Лонучини прошиворечие, и к. Тхолод-ка =0. Отскоора и пануч. утвержуение, что абс. щой медосинежение. dv = TdS - PdV dV = 8Q - 8W SQ = TdS - gerer Ospan-x npayereob

Мрогнанизируем у мас праспечения Guac 5 neper x: T, S, P, V, V Нам пераемо 3 ур-а. Одно есть - 1° мачамот. А. 2°- меринет-е ур-е; 3°- оромнена быть орут купа сость пором зохором зохором сверь меру всемен параментрамен. - кампорическое. 1) *dv = 8Q - 8W мезавис. переш. => V, T 2) f(T, P, V) = 0 P = P(V, T)3) V= V(V,T) Среди ингож ва ф. состаетий сущ-пом такие ор., дин кот диорореренизичане Écun V = V (S,V) T=(DV) *Ocmobreol TO moscopeenebo=> cuegombue 100 il 200 marana P = - (20)3 Зная 1 фурмкимию => получает помное опис. Genobue noumones (2º nponsboopnesse) (0T) 3 = - (DP) => 220 = 220 $\left|\frac{\partial^2 \mathcal{V}}{\partial S^2}\right|_{\mathcal{V}} = \left(\frac{\partial \mathcal{T}}{\partial S}\right)_{\mathcal{V}} = \frac{\mathcal{T}}{\mathcal{C}_{\mathcal{V}}}$ -30-

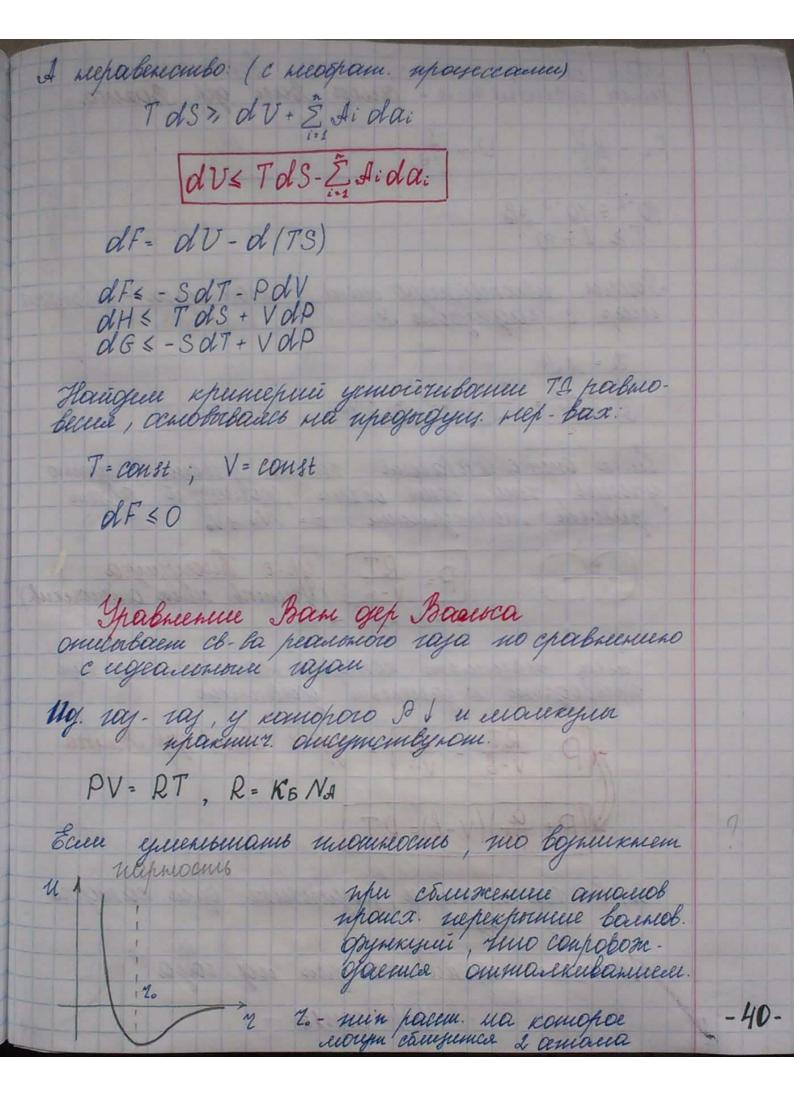
 $\left(\frac{\partial^2 V}{\partial V^2}\right)_{S} = -\left(\frac{\partial P}{\partial V}\right)_{S}$ Изотеринеческий пошемунам: dF=-SdT-PdV - есни это зышем » получ. пои-мое описажие F= F(T, V) S=-(DA) P= - (DF) - mepieur - e esp-e comasilies $\left(\frac{\partial S}{\partial V}\right)_T = \left(\frac{\partial P}{\partial T}\right)_V \Rightarrow \frac{\partial^2 F}{\partial T \partial V} = \frac{\partial^2 F}{\partial V \partial T} = \frac{\partial^2 F}{\partial V \partial T}$ $\left(\frac{\partial^2 F}{\partial T^2}\right)_{V} = -\left(\frac{\partial S}{\partial T}\right)_{V} = -\frac{C_{V}}{T}$ $\left(\frac{\partial^2 F}{\partial V^2}\right)_T = -\left(\frac{\partial P}{\partial V}\right)_T$ Напозем поннизмо этерино: F= V-TS - ma chejs - npeospajobanue Nemangja V= F + TS > свободити этерии - та часть этериш, котороия Ramopur-e ep-e: U=U(T,V) Cv = Cv(T,V) Cv=(OT)v pacereoupeun nooghobuse npeoplaj. Nemanogra F = U - TS

Generated by Camscanner from intsig.com

dv (a, y) = X da + 4 dy V1 = V2 (X, y) = U(x, y) - x X U2 = U2 (2, 4) = U(2,4) - 4 9 V3 = V3 (X, y) = V(x,y) - xX - yy Испану. преобразование Лежандра: U2 · U2 (X, y) = U(x, y) - x X · X ota + Y dy - x dx - X ota = - x dx + y dy $x = -\left(\frac{\partial V_1}{\partial x}\right)_{y}$; $y = \left(\frac{\partial V_1}{\partial y}\right)_{x}$ x . Ne mane open nogbonessem neperenna om oppmen negativens neperenna ne oppmen. (S,V), (T,V)(S,P), (T,P)H=H(S,P)- Эмтаньник (менновах орумекимия) H=H(S,P)=U(S,V)+PV dH = dV + d(P,V) = TdS - Pott + Pott + VolP = = TdS + VdP $T = \left(\frac{\partial H}{\partial S}\right)_{P}$; $V = \left(\frac{\partial H}{\partial P}\right)_{S}$ 2 рые произв. данош соопинош меру теринодинами. кождь. OP S = (OV) -32-

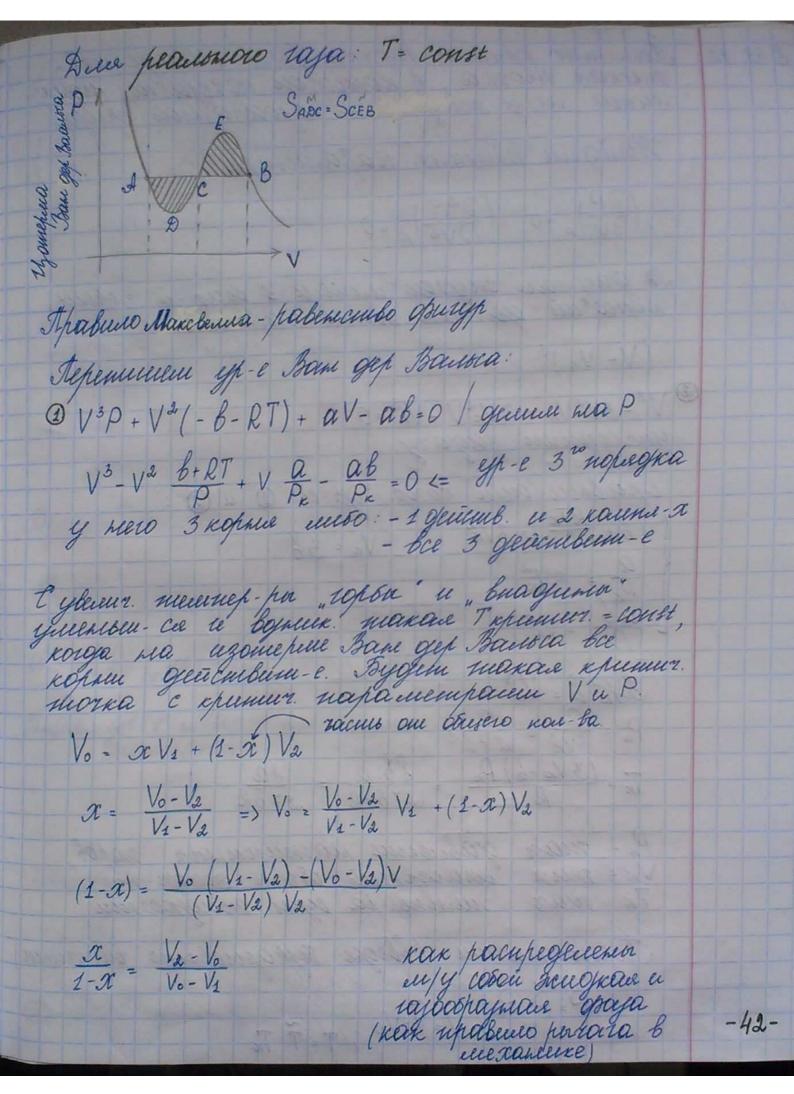


вы рабоной ме ися сил. - (dH)s,p = 8' Whe wex. observeme neplem-en sbee. T, V clos surpune 10-TS; dF(V,T)=-SdT-PdV Можени ввеснии мовони Т.Я. пошениямам -поменениям Гиббса - свободная этипамонные: Р,Т преобраз. Лежандра G = I = H-TS = U + PV - TS; H- munausmul dG=dH-d(TS)=IdS+VdP-IdS-SdT dG = - SdT + VdP yp-e comornine S=-(26) V= (26) - dEs=-dHs=8Ws Из-за шого, чио пасной праце. - замис. усл. Кони $-\left(\frac{\partial S}{\partial P}\right)_{T} - \left(\frac{\partial V}{\partial T}\right)_{P} \qquad \frac{\partial^{2} G}{\partial T \partial P} = \frac{\partial^{2} G}{\partial P \partial T}$ (26) = - (25) = - Cp (26) = - (2V) = - Cp (2P) = - (2V) = - (2 Лосионирии вогражения со *: Умериси конерал переходит в Мом. Гиббеа - ша часнь этисточни, которога при изотерших. процессе переходин в работу. - dG, = dE, = 8WT - 34-

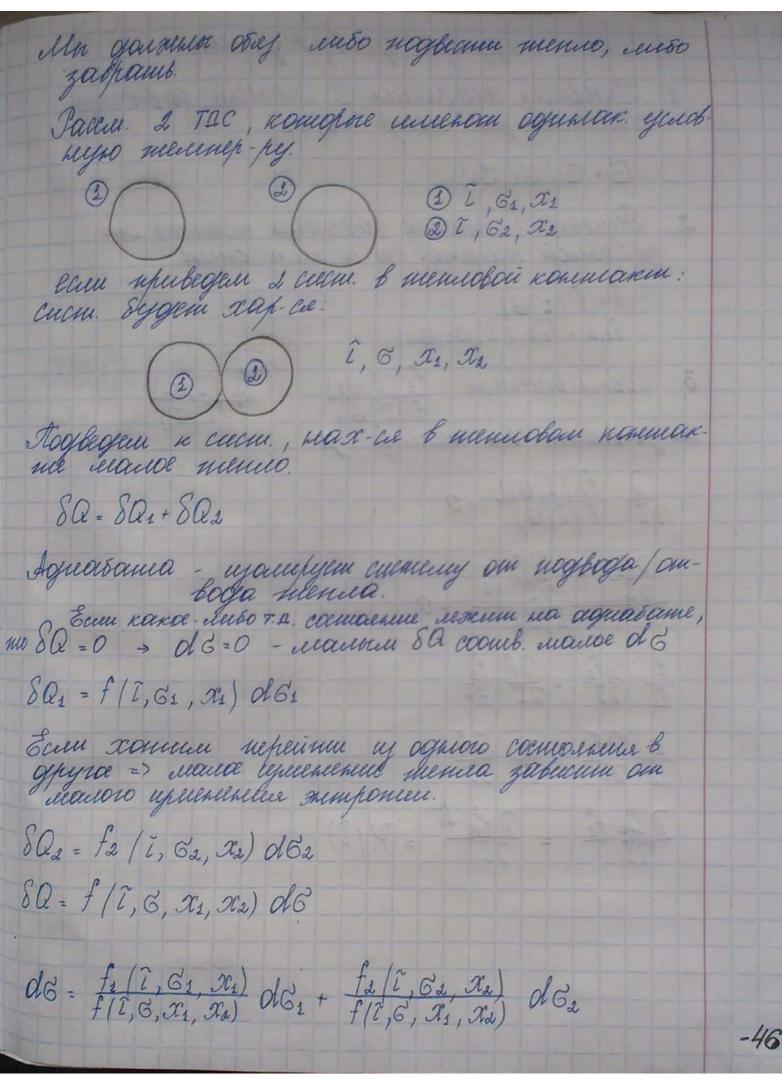

Есни учини дийсивий менех. сим. dG = - SolT + VolP - 8 Whe wex. при умери. изобар. празесее: - (dG)т, Р = б Wн.м. У Набор перешеннях пош. Гиббеа свы умекаными Есть вишчими кош. зависет/не зависет от ком-ва вещь ва. Для мот. Гиббеа змачения 14 по зам. Есторут одинаковые - мабор перет я не зависит от ком-ва вещ-ва.
Все вешчими яви. адринивитими. Сверь ТА пот Унгоса со свободной эпертией G=-F+PV H=G+TS-F+PV+TS F = G - PV = H-TS-PV madel. 1 Нешоническа правило: 1929г - Макс Боры (peak) 6 F от медавис коору к сопредас-се. H-p: dG=+VdP-SdT

rharbanne	Osoguatione feerabora.	genobucian.	-	comparement coaste rosp do	Gudadsepennencon
Buynh. maerine.	W, W E, e	8,7	7=(3m)-7 P=(3m)s	S(No) N(Se)	100 \ - (00) s s s s s s s s s s
Nemobas of.	H, h	d's	7=(0H) V=(0H)s	9 (<u>20</u>) - 8 GO) P	100 1 - (100) AH = TOLS + V dP
Mehnogunau. nomenes: Choboguas m. Fiburoubera	F, F	7,7	S=-(<u>2F</u>) P=-(2E) ₇	(38)- (0P)	108/- (0P) dFSolT-PdV
Mehwagumann. nom. Tubbea. Cl. sumanonne	90	4	S=-(000) V=(000)	(08) (00) (00) (00)	S=-(26) V=(26) V=(26) V=(26) V=(26) V=(26)
mass. 1					

Nax oupegeneus nomenes nance. Serre boro max-cer V u G. Nerro equepernes bayons. In. b respect - x (V,T),a U= V(V,T) F(V,T)-? Ombem ma mom bonpoc gaem esp-e Teineronousesa-Tus oca Bocnarszyence chejono: F= U-TS = U+T (DF) paygrenne ero ma Ta: $\frac{U}{T^2} = \frac{F}{T^2} - \frac{1}{T} \left(\frac{\partial F}{\partial T} \right)_V = -\frac{\partial}{\partial T} \left(\frac{F}{T} \right)_V$ F = - S Tra dT'+ W(V) F=-TJ U alT'+TCIV Ма шожен воспользованиться шем , что 1.11.12 S= -(OG) p H=G-T(2G)P HT2 = - OT (G)P



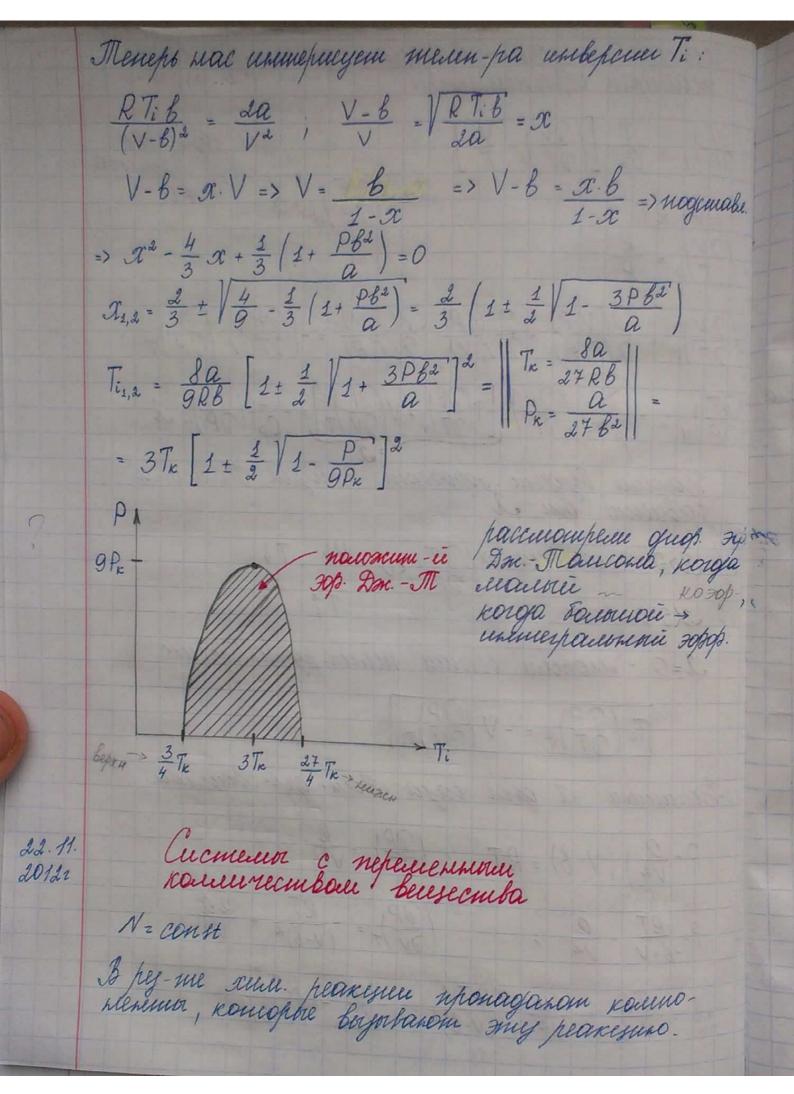
· if barascenuce (3) >0 8 Wm > 8 W - півнио кош. систеша получает будет переходинь в рабошу - опень прошиворечие. · if borhamenue (3) < 0 8W>8Wn => 8Q>8Qn ols > 8 QH - gues mecopomunions mpareceob ols > The guesopepenus. mep bo Theayzuga \$ ds=0 > \$ 8Qm Для местам. процессов меравмовестость явле. Дия зашкиний сист. эттрония не шелемет. $\Delta S = S_2 - S_1$; $S_2 > S_1 - \mu e o \delta h$. in possece $S_2 = S_1 - o \delta h o \mu e$. in possece ? Почения шению ме нереходит от шенее нагреного тема к более? Томогну что происходит ушеньшение эттроши, а это ЗА ПРЕШЕНО П начаном Т.А. Можусство Гиббсог dV= Tols-PdV a grees uponybourneoù encuever: dV= TdS- 2 di dai C Oppanneeonen upoeseccaneen


При ощения пошения возниканом сим приниканом зам дер Вожива F= - DV; V~ 1/76 10⁻¹ ÷ 10⁻³ 3B T 2 1:10 монекума - твердий Рассия просшения сист. 70 = d. P 4 123 = 32 ID3 = 8 Vo вина ошнанкивания, чисти учеснь, мужно учеснь чистем верем замени наменумании: в = NA 4 Vo P= RT yournob. cuilo ammancob.

V > b => P > 2 amore ne morem > 45 Симоп принимам. конгороге мах-си в ид. горе приводит к уменьше давиения P= RT a ya - yp-e Ban gep Bouroca (P+ a)(V-B)= RT а, в- парашенти, разиштини дли каждого Oburniame ajoucepina que ug. raja: PV= const

Томичине кринич. точки ввей Менденев-макал точка, в конедрай истерает раз миние му жиджай и газообразмой средой 8.11.12 Натурия кришит парашетры: $\left(\frac{\partial P}{\partial V}\right)_{\kappa} = 0$ $\left(\frac{\partial \mathcal{A}P}{\partial V\mathcal{A}}\right)_{\kappa} = 0$ В даннан спутан инивин з вень -й корень, конорый данжен вышь крания 3-м. (V-Vx)3 (2) V3-3V2Vx+3VxV-Vx3=0 упросиими задачу. Chabacubacu Rosop. yp-ii @ u D ((6+ R/K) = 3VK VK = 36 Px = 3Vx Lab = Vx 3th B. Vx Px = 4 = 2782 Th = (3 Vn - 6) Px = 88. a = 2782R Рк- неах давиение маспинениях паров Vк- шах испециона объем жидк ми Тк шах нешенер-ра сущь жидкосний Переобдисачими: /введье Едрариерыне виштина P= P. Pk; V= V·VK; T= T. TK

(P.PR + QVE) (VVR - B) = RTTE (P 2782 + 2982) (V3B-B) = RT 27 BR (P + 3) (3V-1) = 8 T (ab (P + 3) (3V-1) = T & 8a (P + 3) (3V-1) = T & 8a помучими ур- в Вам дер Васика в безразмеры. венентимах - заком соомв-х состольней-те состолы, которые именьот одинак. Безраз-мерыме парамещим Расси. Т.А. года Вам дер Васильса olv = Tols - Polv S=S(T,V) Будем стимать, что Cv = T (OS) dS = (DS) dT + (DS) dV = Cv dT + (DP) dV = Dabieenere abie univerinere op menenepanyen. OP V = R (a) Cv(T) dT + R dV -44S= 5 CV(T') dT'+RS oll -const To, Vo => S = S' CV(T') olT'+ R S' olV V-B + S. Ест С от Г снаво зависим - империруем S-So=Coln To + Rln V-B вышчина в конорой ми находин ви доижна Менерь можем майни внуть. этерино: dV = T / C. (T) dT + R dV) - PdV = = C(T) dT + (RT - P) dV = = Cv(T) dT + Q dV U = ∫ C (T) dT + a ∫ dV + V.
ecun oniens criemanis, rino C on T zabucum
ciaso → immerpriperi. U = CVT - Q + Vo Введен поминине температура и объёма использура примуна Каратеодори (основат на тоги, что адиабать не пересек се) un de monement representation commencia de compensión de monopole meneros commencia, le compensión de meneros exemples de la compensión de meneros exemples de la compensión de meneros exemples de la compensión de la compensión



Из этого аледуном утверждения: 1. Усновном этирония 6 может зависения только от уси. этир. 61, 62 G = G (G1, G2) 2. Румскея в может зависемы манко ош условной темеровной имментромии. $f = f(\tilde{l}, G)$ $f_{1,2} = f_{1,2}(\tilde{l}, G_{1}, G_{2})$ f2 (2,62) f (2,6) 3. Commounement: fr (2,61) ne zabuciem om menneh-kor. $\frac{\partial}{\partial \hat{z}} \frac{f_1(\hat{z}, G_1)}{f(\hat{z}, G)} = 0$ $\frac{\partial f_1}{\partial \hat{c}} \cdot f - \frac{\partial f}{\partial \hat{c}} f_1 = 0$ $\frac{1}{f_1} \frac{\partial f_2}{\partial \hat{\iota}} = \frac{\partial f}{\partial \hat{\iota}} \frac{f_2}{f_4}$ $\frac{1}{f_2} \frac{\partial f_1}{\partial \hat{i}} = \frac{1}{f} \frac{\partial f}{\partial \hat{i}}$ Olufi = Oluf = W(2)

In fi - me gousema zabewenes ou sumponen, 15 11 12 $\frac{\partial \ln f_i}{\partial \bar{\iota}} = \frac{\partial \ln f}{\partial \bar{\iota}} = \mathcal{N}(\bar{\iota})$ $\Psi(\bar{\iota}) = \exp \int \mathcal{N}(\bar{\iota}) d\bar{\iota}$ (абс. энтропия S= SF(6) d6 fi = Fi (Gi) \P(\tilde{\chi}) => Si = | Fi (61) d61 f - F/6) Y(2) 45 F(6) d6 = 457 F2/62/ d62 + 447) F2 (62) d62 $dS = dS_1 + dS_2$ 8Q = T dS => dS = 8Q 8Q2 = TolS2; SQ2 = TolS2 в какой тогтосивно мы это определения? Thegnonomenn: 8Q = Ti ol S1 = Ti ol S2 Tacyraen: To = alsi = a => Ti = a Ti a-const, romoplare onpeg zab-me en/y T1, T2 OlS2 = a OlS1 S2 = a S1+b S1 = 1 S2 + B Осповиваниев на 1 пестано Т.А. и принимин Хараниеодорие.

Методи охиатуении назов
Ест уменени. В, то и Т в
(ДТ) s >0 - инежено сохранившь постаеминьо экипропии.
Поэтому выше предмения товые методы:
• Jei - Inoccax:
Маное изменение Т при ожижении газа в вакузия
• Меньод Джодия- Пансона
Pa Pa Va Pa Va Pa Pa Pa Pa Pa Pa Pa Paccución de percuer de processe de proces
Uprelacene baryup. m. objecoberenco pasomoci:
$U_2 - U_1 = P_1 V_2 - P_2 V_2$ $U_2 + P_2 V_2 = V_2 + P_1 V_1$ $\Rightarrow \text{ Functiones}$
Thousece продавинвании: U30ЭНТАПЬПИЧЕСКИЙ H2 = H1 = const
dH = TdS + VdP
$\left(\frac{\partial S}{\partial P}\right)_{H} = -\frac{V}{T} < 0$, $dS = 0$

реаниями меобрани-и процесс зашением вообра-9 ри газа Вам-1 - дер- Вашинса 1 27 / н = 0 = 0 12T H = T [(2V) - V] PV= RT $\frac{2V}{2T}$ = $\frac{R}{P}$ (DT) = R $\left|\frac{2V}{2T}\right|_{P} = \frac{\partial(V,P)}{\partial(T,P)} - \frac{\partial(V,P)}{\partial(T,V)} - \frac{\partial(T,V)}{\partial(T,P)} = -\left(\frac{\partial P}{\partial T}\right)_{V} \cdot \left(\frac{\partial V}{\partial P}\right)_{T}$ (DT) H = -CP (DP) T [T(DP) + V(DP) T] = - 1 (DV) T] - CP (DP) T A Наким будет эорорект Джодия- Монесота зависит от Л if 270-nereomenn => (2T/40, P), T) if KO-omperes. => T1 1=0 - можем ввесим шемен-ру инверсило $T_i \left(\frac{\partial P}{\partial T} \right)_{V} = -V \left(\frac{\partial P}{\partial V} \right)_{T_i}$ Зашини Л дрей гогра Вогы- дер-Вассияса: (P+Q)(V-B)=RT; (2P) = R (DT) = V-B $P = \frac{RT}{-\beta + V} - \frac{\alpha}{V^{\alpha}}, \qquad \left(\frac{\partial P}{\partial V}\right)_{T} = -\frac{RT}{(V - \beta)^{\alpha}} + \frac{2\alpha}{V^{\alpha}}$ $21 = \frac{TR}{V-b} + \frac{2a}{V^2} - \frac{RTV}{(V-b)^2} = \frac{2a}{V^2} - \frac{RTb}{(V-b)^2}$

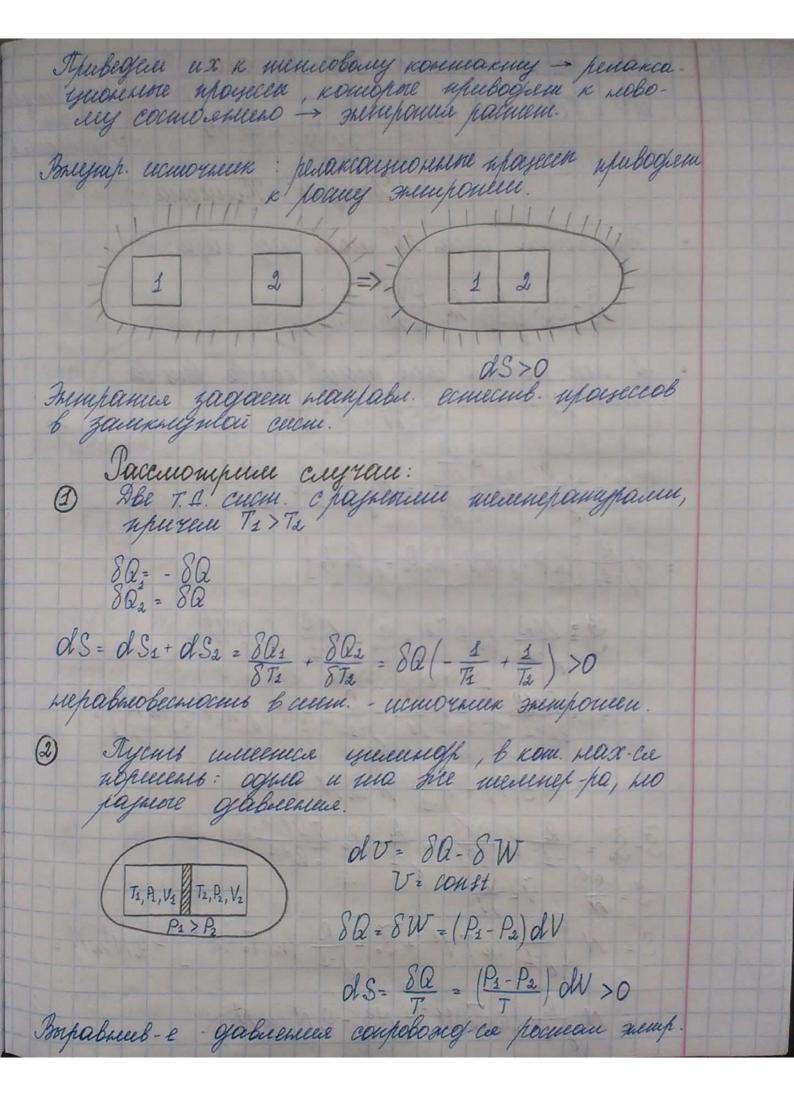
U(S, V, N) L'ann nomenisuai dV=Tols-PolV+JudN [M] = 3/12/ellars Bereureura, me zabuceriesce om rai-ba beus-baэксиенсивыне Bernsteinen, zabererensen 1 bregnip. meepreuse) Bernsteinen memericubu. P. T. - chou nepem. gun m. U = N. U (S, V) S= SN Vz V Все Т. Д. мошения сведамия ме/у собой и с высупир. эперичей - скудинивыме вымения H= V+ PV = H (S, P, N) = N · H (Ŝ, P)

* Chao suepreue

F= V-TS = F (T, V, N) = N· F (T, V) G=U-TS+PV=G(T,P,N)=NG(P,T) dH = TdS + VdP + judN of F= - Solt - PolV + fu ol N dG = - SdT + VdP + ju dN Ju = (DV) s, v = (DH) s, P = (DF) T, V = (DF) T, P M= (OG) NP,T = G(P,T) = M(P,T) Time nomenesseen - nomenesseem Indoca, nom (1 record b jab-min an moro, muo N)

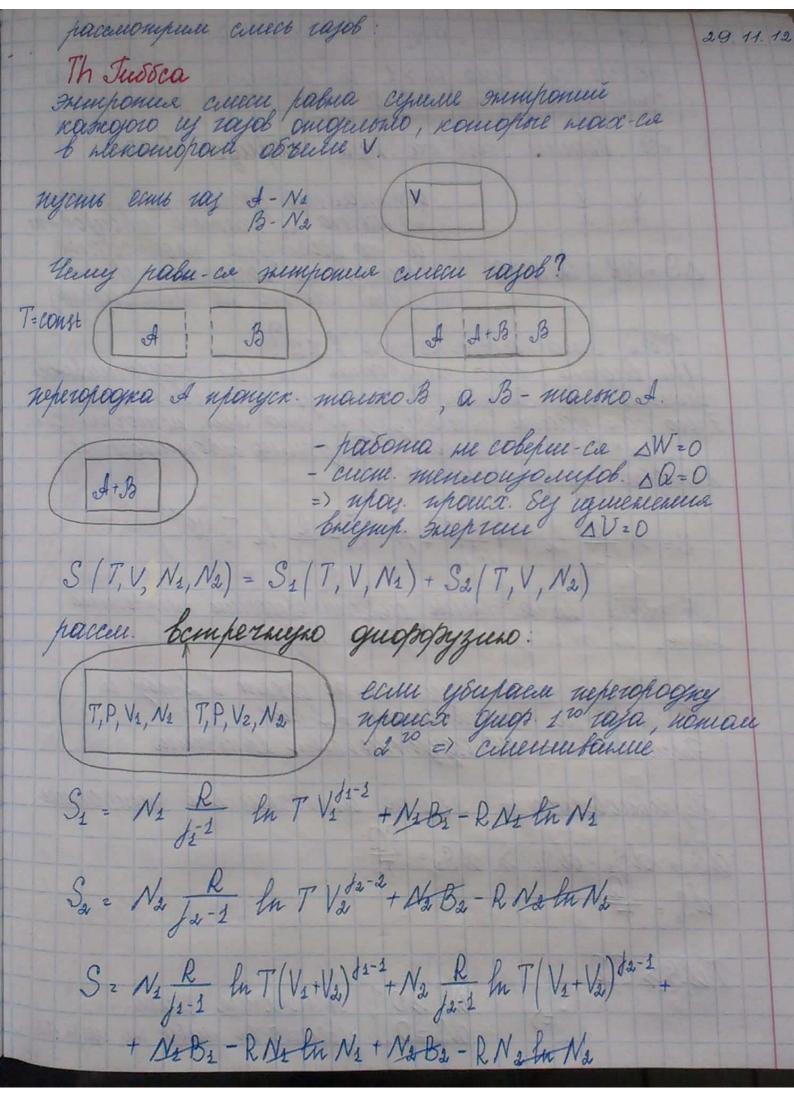
olgu= - SolT + V olp S= -(2/4) G = NM $\tilde{V} = \left(\frac{\partial u}{\partial P}\right)_{T}$ ly dv = TdS - PdV $\left(\frac{\partial T}{\partial V}\right)_{S,N}^{2} - \left(\frac{\partial P}{\partial S}\right)_{V,N} = \left(\frac{\partial T}{\partial S}\right)_{V,N} = 1$, No const Aug: dV= TdS-PdV+MdN => you. Your-Tuerana: $\frac{1}{2N} \left(\frac{\partial T}{\partial N} \right)_{S,V} = \left(\frac{\partial M}{\partial S} \right)_{N,V}$ $\frac{\partial(T,S)}{\partial(N,S)} = \frac{\partial(M,N)}{\partial(S,N)} = \frac{\partial(M,N)}{\partial(N,S)} \qquad V = court$ $\frac{\mathcal{O}(7,S)}{\mathcal{O}(\mu,N)} = -1$ 2. (OP S,V = - (ON)S,N $\frac{\partial(N,V)}{\partial(N,V)} = -\frac{\partial(M,N)}{\partial(N,V)} = \frac{\partial(N,N)}{\partial(N,V)}$ Sz const D(PV) = 1

А есть преобрау. Лежени ура, чист поменень ли и N иместом со своб. эмерині. \rightarrow свои перым. T, V


Вводин мовоні Т. Д. ношенециан Т.Д. ношенециан Гибба Souleevou * n = F-JUN = n (T, V, Ju) dr = dF-d(mN) = - Solt - PolV+gudN-guotN-Ndm dr = - SolT - Poll - Nolyu вами често кастым ты тостольные - тожет насити $N = -\left(\frac{\partial \mathcal{N}}{\partial \mathcal{M}}\right)_{T,V}$; $P = -\left(\frac{\partial \mathcal{N}}{\partial V}\right)_{T,M}$; $S = -\left(\frac{\partial \mathcal{N}}{\partial T}\right)_{V,M}$ mephunz. yp. e cocmosauma A memponeur, eccene: $T\left(\frac{\partial S}{\partial T}\right)_{V,M} = -T\left(\frac{\partial^2 x}{\partial T^2}\right)_{V,M} = C_{V,M}$ $\left(\frac{\partial N}{\partial T}\right)_{T,M} = \left(\frac{\partial S}{\partial M}\right)_{V,T} \left(\frac{\partial P}{\partial T}\right)_{V,M} = \left(\frac{\partial S}{\partial V}\right)_{T,M}$ Puj. conorce : Benauseuse: 1 = F-JUN= F-G= U-TS-(V-TS+PV) = -PV Больной Т.А пош. ма гд. объема - давиний с обранимочи змеском. Boë genann gene 1^{at} nannomennen. Derno obobiesmus gene **n**-kannomennen. dV=TdS-PdV+5 dV=TdS-PdV+ E midNi OlH = + Equi al Ni OFZ + I Mi OlNi dG = + E pri of Ni

dv = TdS - Z As day + Z Jui ol Ni My = (2G) N, 20, P, T N=-E di ai Уравичний Тибба - Диочена Этерир. этерии вешчина аданнивыми U(LS, LV, LN) = LU(S, V, N) - upbebeneuce ebe. un ogneopogneoù opymens. 100 nop-ka

The streepa:


Depognop. no L:(25), N. S+ (20) S, N. V + (20) S, V. N = U(S, V, N) TS - PV + JUN = V(S, V, N) dv = TdS + SdT - PolV - VolP + JudN + Noly = = // знешем , что это вограж. должно = // = = T'dS-PolV+ redN, a runoon boundementes: SOT-VOP+NOGEN=0 ур-е Гибба- Диочения Thoesecon borpabnecebanecea Ullerouse 2 cucu. Komptone max-cu & chown com T. S. pabacobecier

Generated by CamScanner from intsig.com

Mu pacece. upaseccu: 1. Jeü - Shoccara (2T) v

dv = TdS - PdV = 0 => (25) v = P > 0 2. Donogues - Mauconia · Françoneur geler 1 roman ug. raja 3-3- Lu PV • A un somme give whough now-ha been-ha. Banonery ence: $\tilde{S} = \frac{S}{N}$; $\tilde{V} = \frac{V}{N}$ S-S.= N R ln P No = N R [ln PVd] = = N -1 [ln P+ fln V - ln Po - fln Vo] S= NR lu PV8 + So - NR lu Po Vo = = N - 2 ln P + So - R ln Po Vo + f ln V - f ln N] z = NB(T) - fR N ln N S-So = R ln Prot = R ln Trit = 1 To Vot = 1 3= 5 , V= V Sz N [] - In TV + So - R In To Vot 2] - RNIn Nz = N R ln TV+1 + NB - RN ln N

DS = S-S1-S2 = RN1 ln (V1+V2) + N2 Rln (V1+V2) 71 nover-ce, ruo la > 1 ce boobuseur borrancemue novemmente => DS>0 Не вошим жар-ки пара - парадоке Гиббеа: ороренально уберен нерегородку V V a no gropulline upout xogum. DS=NR2 ln 2 >0 (этирония возрасна, готя в Han mo pappeneaence & T. I Ма видили, ямо этирония не яви адунишьтой венеченной. Этироний сист увениченной мосиев ybecurealuer memia. Tangunen upomusoperul, которое мезымо решинь. S= N R ln T (V) 8-2 + N (S. - R ln To Vo -1) Bonion bortamenne agginnenbucenne memponene Без этого чиста увения си обрене в Г-раз и увеничив-си этипропии в Г-раз Этиропии - НЕ адгупинивание ваничина Неравновестость яви-си источником этиропии. ds = olS1 + olS2 > olS2 = 80 as = ok TdS> 8Q dS = 0 1 memponeur cuem. as dS = 0 J ybeneur-cue meso me mem-ar

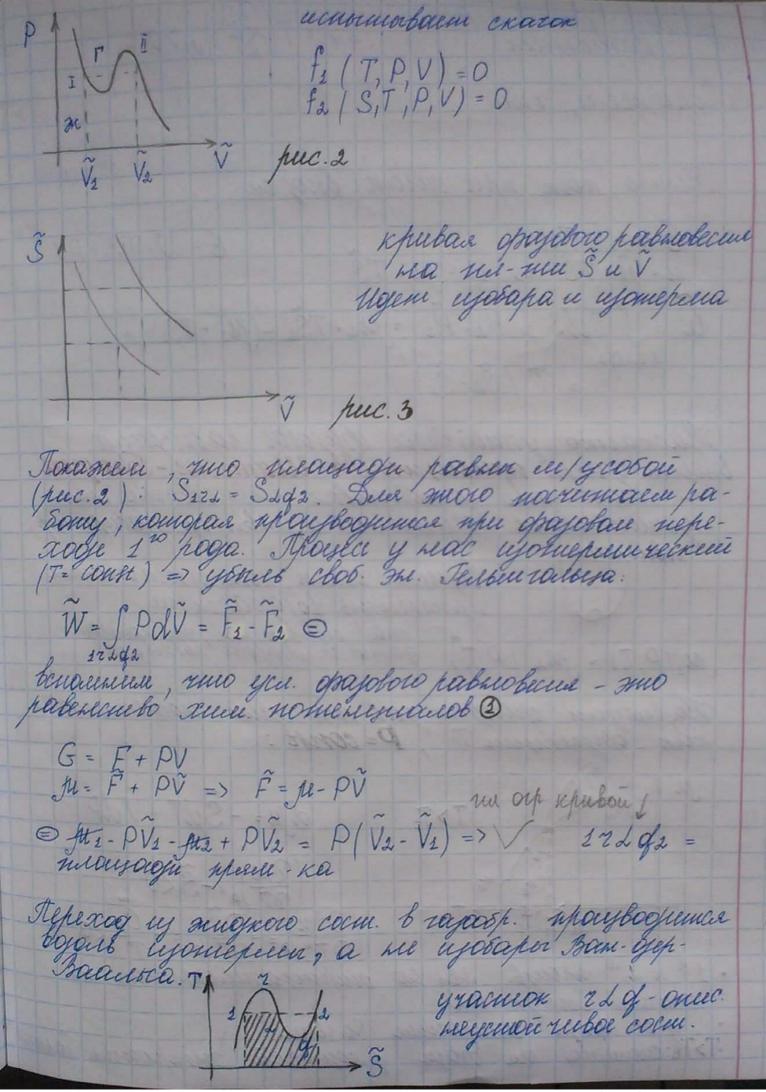
Второг макано Т.С. закрает манрави процесса-более соозержаниеленное, чем мервое. Экстренанные Св-во Т. Д. пошенизнана: dv = 8Q - 8W = 8Q - PdV dus Tols-Poll H= V+PV; F= U-TS; G= U-TS+PV dH=TdS+VdP; dF <- SdT-PdV; d6 <- SdT+VdP В сосие. Т. Д. равыевесия, каждый из эших диброзеремdV=0 S=const; V=const $dV \le 0$ dH=0 S=const; P=const $dH \le 0$ df=0Umin U/S,V) Hmin dG=0 com TA palus. V= const: T= coust off <0 Fmin J y010000 ucuorets. m. 18. Gmin Janu/2000 nel cebel. cobecub. nepercenencii T= Const dG < 0 P= const: Toubur m/g pabuobecus Ucenegyere your inspection, ocholorbance ma monet.

ch bax 7.4 nomeniqueller.

pacere. m/g crecu. T-const; P= const => 6 min => => ecueu bossence 8V, 8S -> 86>0 6 = U-7S+PV 86: (20) 8V + (25) 8S + 1 [(20) 8V) 42 2008 8V8S + (20) 8S) 2 - TOS+POW,

8G = - P8V+T8S+ = [-(2P) (8V) -2(2P) 8V8S+(27) (8S) 1 [-(2P)s(8V)2-2(2P),8V8S+T(8S)2>0-78S+P8V>0 / T/Cv - (DP/DS)v \ Thumpui Cenesbecmpa:
Mampuisa Sygem "+" ecul mash. muncher Sygym,+ 3 7 >0 @ (2P) s>0 - (2T) $\left| \left(-\frac{\partial T}{\partial S} \right)_{v} \left(\frac{\partial P}{\partial V} \right)_{S} - \left(\frac{\partial P}{\partial S} \right)_{v}^{2} \right| > 0$ ly D: grea neex m/g cucuene y xom. C>0 ca-My 2: (no you. House Tunana) - (OP) = - O(P,S) = - O(P,S) O(V,T) O(P,T) = - O(P,T) O(V,S) O(V,P) = = - Cp T (2P) T Cp>0 (2P) 7 10 - mo yarobue barga bunarmenue dV = dTS-PolV 6. 12. 12. (DT)s = - (DP)

2(T,P) = (2T) (2P) = (2P) (2T) = 0 2(T,P) = 2(T,V) 2(T,V) = (2P) (2T) = (2P) T CV <0 => => (2P) <0 Gendue pabnobecus opaz. Раза - физич однородная часни вене ва ми-Уры какия условиях масшунани ТВ равысовесия? pacem comormel, coomaceiser my 2 x gray, grus G=G(P,T, N2, N2) ______ xunuer. nonveniment dG=VolP-SdT+ pis ol N2 + pis ol N2 T. D. nom. Tussea obilag. sumplimanismen chemen pur your securbines ? P= const, T' const dGP,T &O Hh AsO => y bogh Leurs 3 grajn: reng-kan, mbergan, rayour-pagnious, Ns-kon-bo 1 in opagn, Ns-gpenoù glegnen opagonière, al GP,T = M2 al N2 + M2 al Na & O benj-bo pachpegeneseences ne/y mo her eccepcacecuces. $dN=0 = dN_1 + dN_2 = dN_1 = -dN_2$


(M2-Jus) of Ne 60 dN2 <0 => ug 2 u 8 1 10 · Ma>mi dN2>0 => ey 1 in to 2 in · M2 > M2 My mon opajon y nemopon xener nomensement some metersogen b may - y nomepon menseme y cuose opazoboro pasmosecus:

The (P,T) = Mr (P,T)

The chalmenouse go mex not, nova xueu nomeniquaen ne chabiernomae Р.Т - от удобные перешенные (адушивыме) В зав-им ом мого как ведем себя фазовый переход сунь. кнассидыкання: Ha nu-mu P,T ep-e D onpegensem

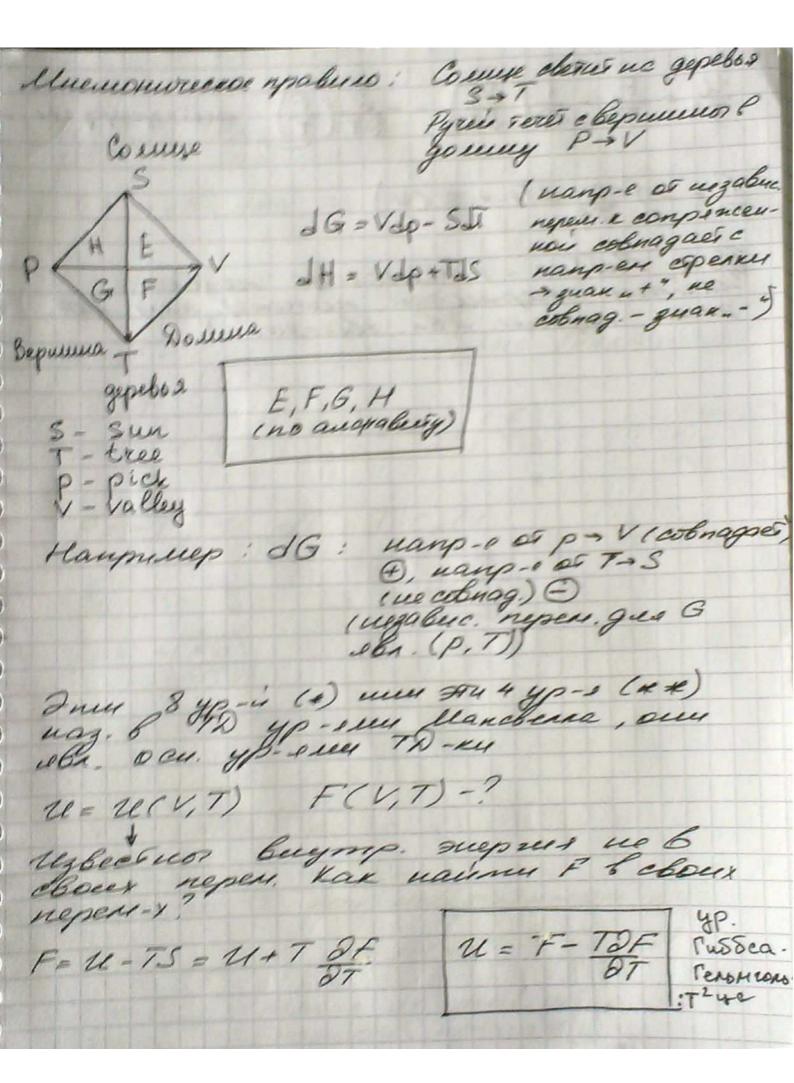
palmobecus dy = - SolT + VolP Ju- nom. Tris sca nhuxogs. $\left(\frac{\partial h}{\partial T}\right)_{P} = -\widetilde{S}; \left(\frac{\partial h}{\partial P}\right)_{T} = \widetilde{V}$ (2 /2) p = - (25) p = - Cp (2 pa) 7 2 (2 P) 7

273P = (2V) т по Эреморесту: оразовым переходам по порегорка тазывает 1° пор. - урие кот испышивает скаток 1° прощь. $\left(\frac{\partial M_1}{\partial T}\right)_{P} \neq \left(\frac{\partial M_2}{\partial T}\right)_{P}$, $\tilde{S}_1 \neq \tilde{S}_2$ $pangn \rightarrow nag$ сопровожедающих выдримения / потременения метеа-2° пор. - испышиваном скачок г производине $\left(\frac{\partial V_1}{\partial T}\right)_P \neq \left(\frac{\partial V_2}{\partial T}\right)_P \qquad \begin{array}{c} S_1 = S_2 \\ \tilde{V}_2 = \tilde{V}_2 \end{array}$ $\left(\frac{\partial \hat{V_2}}{\partial P}\right)_T \neq \left(\frac{\partial \hat{V_2}}{\partial P}\right)_T$ $Cp_1 \neq Cp_2$ I Kuaccugaikaines Écus quexpensine mensessere 200 nop. u brieve Но бываем шак, что какие-то произв. 2 тор испытив скачок, а дни каких то те сущ - крити ческое (состоятие) оразовое явление. Богвани изменение креничиси решеники (её симинетрия) белог олово » серог олово. Переход из нарамалишьного состоям. в

Generated by CamScanner from intsig.com

your your introvo Cv = T(25)v >0 Lancher toka neere, ruo Пешно, кога при этом выбр-си G= V-TS+PV G = H + TS $M = \tilde{H} - T\tilde{S} \Rightarrow \tilde{H} = M + T\tilde{S}$ Q = S T als = H2 - H2 = M2 + T S2 - (M2 + T S1) =
172 als = T (S2 - S1) Наскаето устойчевое фазовое равновеше. Ответ учет примичит Ле-Шателье-Брауна составление устанивого равновесий севы. yeuriteeboun Eounosamenen M₂(P, T_t) = M₂ (P, T_t) grunn-ce opafobre pabuobecuse. Нарисуем градник зав ни хим. поменцием. как оруменции Т , P= const: M Ma T>Tt olgu = - SolT + VolP $\frac{\left(\frac{\partial M}{\partial T}\right)_{P} = -\tilde{S} < 0}{\left(\frac{\partial^{2} m}{\partial T^{2}}\right)_{P} = \left(\frac{\partial \tilde{S}}{\partial T}\right)_{P} = -\frac{\tilde{C}p}{T} < 0}$ * 1 ° u 2 ° mough. Abd Cel * kpubase bornyrcear y 1 ° opajor memporene ompuesamento mouleu => Earbure T>TE: cuculinea ou grajor murponeur Saisul y romoron

(mr) переходнен к оразе у конорон этпроння меньи (р.). Т«Тімению подводнения » менен ра возрастает системи из мег » ме ; пристение этетропии нагожитиемые. => сам. оразового равновесия явиг. устойчивний. Pt $M_{\pm}(P_{t},T)=M_{\pm}(P_{t},T)$ dru = - SolT + V olP $\frac{\left(\frac{\partial M}{\partial P}\right)_{T} = \tilde{V} > 0}{\left(\frac{\partial^{2} M}{\partial P^{2}}\right)_{T} = \left(\frac{\partial \tilde{V}}{\partial P}\right)_{T} < 0}$ $\frac{\left(\frac{\partial^{2} M}{\partial P^{2}}\right)_{T} = \left(\frac{\partial \tilde{V}}{\partial P}\right)_{T} < 0}{\left(\frac{\partial^{2} M}{\partial P^{2}}\right)_{T} = \left(\frac{\partial \tilde{V}}{\partial P}\right)_{T} < 0}$ A STATE OF THE PROPERTY OF THE ejogenomia obblin y pre soubine pre. Pr>Pt: pre -> pre => gabinemie epinemica ca Pa<Pt: pl1 -> pl2 => manspu. Obsem mentene -> manspu.
obsem sonome => gabinenne parmen Therescon pourses up. Ne- Mamerio - Topougua Scrobne pabricobecur 3x opaz Возвишен з оргази: жида, шверд, газообр. Pronst, Tronst -> cue aanuer. u T.a. pabue becus Mr (P,T) = Mr (P,T) = Jus (P,T): nonapuer monce 6


grajoban pabneobecene Demenue: morka gue 3 x gray, Po = 0,006 anne. uper saunx zueareneuex bee To = 0,0078°C 3 grajor b pabriobelium. Pr - mugrae K K- Kfumur morra (Eben Mengeneeb) KAMERA JOHN MICHA GRAJ. 5 сост. егода в зав-им от давеннина, кроин экида, пароор, крист. (1 точка + 5 = 6 точек)

Generated by CamScanner from intsig.com

glazbanne	Oboznatlane	gerphic.	confugreti.e	charle rose do	Quapapepenisuai =
Виутр. эперия. Адиабатыческий потенении	u,u	S, V		(2P) = (2T)s	du=Tols-PolV
Menuobau op. Humanomus	H, h	S, P	$T = \left(\frac{2H}{2S}\right)_{P}$ $V = \left(\frac{2H}{2P}\right)_{S}$	(2V) = (2V) P	olH=TolS+VolP
Пермодинам. потемы. Свободная эм. Темигольна	F, f	T, V	$S = -\left(\frac{\partial F}{\partial T}\right)_{V}$ $P = -\left(\frac{\partial F}{\partial V}\right)_{T}$	$\left(\frac{\partial S}{\partial V}\right)_{T} = \left(\frac{\partial P}{\partial T}\right)_{V}$	dFSolT-PolV
Периодинам. пот Гиббса. Св. живиния	G, 9	T,P	$S = -\left(\frac{2G}{2T}\right)_{P}$ $V = \left(\frac{2G}{2P}\right)_{T}$	$\left(\frac{\partial S}{\partial P}\right)_{T} = -\left(\frac{\partial V}{\partial T}\right)_{I}$	olG=-SolT+VdP

gue Th upoust I се накамо ТД: 3-и сохр-я эпериш du=5Q-5W Кол-во тепиотог, получению сис-мой, идёт на измен-е се виутр. эмергия и собершения работо протегв вием. сеге Toe Haraso TD: Неводионан процесе, единеть, ред-том которого являесь бы передата тепиа от более жолодиого тена к более горягения Aus V Magupabusbecuois TD eue-mos I ognoguaricas op-8 TD coem-8 S=S(T,X,N) hag. gumponiceis, maray, rmo guop-ei $dS = \frac{\delta Q}{T}$ W-crat. Bec Шое нагано TD: S=klnW, И (винтр. ЭК-Я) - 2 эперий молек. взания. H (θνία do hul) - θα-8, κού goctynua gues npeoδρ-8 6 meneoly npu onpeg. Tup F (эп. Геньновца) - ТП пот-1, убаль когорого в квазистачих. изоберниет. проц-е = работе, совершенной сис-ной идд виемя. тейами G(zu. Pubbca) - nomas xumer. Thep zees cucterior.

Marine Control		SdT+Vdp		5=-(8	2G) V=(10G) 10S)7
1-0	(25)	$= \left(\frac{\partial V}{\partial T}\right)$) de		8 0 0 T (8 70)	the state of the s
1200		= (2V)			79 9 9	
		= dE, = 8		dG:	= - SdT+ Vdf	0-5WHH
		TP = SWHA				THE PROPERTY OF
обозн.	negal.	conp.	chez	6 TD	guescap-n	названия
и, и. Е, е		$T = \begin{pmatrix} \frac{\partial u}{\partial s} \end{pmatrix}_{v}$ $P = -\begin{pmatrix} \frac{\partial u}{\partial v} \end{pmatrix}_{s}$			The second secon	Buymp susprus (aguasas nes eucusas
H,h		T= (OH) V=(OP)s			dH=TdS+Vefp	Tenusbas ap.3 (susaunus)
F, f	T,V	$S = -\left(\frac{\partial F}{\partial T}\right)_{V}$ $P = -\left(\frac{\partial F}{\partial V}\right)_{T}$	1334	WATER I	dF=-SJT-pJV	ТД петециол свободная Энергия Религом ца
G.9	T,p		(<u>85</u>)=	(BY) p	JG=-SJT+V4	Thesenyus. These co (chosognan suralimus)
	163	*		*	4114-146	

