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Abstract:
Classicaldiffusion of single particles on latticeswith frozen-in disorderis surveyed.The methodsof continuous-timerandomwalk theoryare

pedagogicallydevelopedandapplicationsto solid-statephysicsarediscussed.The first partof thereview treatsmodelswith regulartransitionrates;
thesemodelspossessinternalstructureorcorrelationsovertwo jumpsandcompletesolutionsaregivenfor eachcase.Thesecondpart of thereview
coversmodelswith disorderin thetransition ratesandirregular lattices.For theseproblemstoo, explicit calculationsandmethodsareexplainedand
discussed.

1. Introduction Die Wissenchaft,sic ist und bleibt,
Waseinerab vom andernschreibt.
Doch trotzdemist, ganzunbestritten,
sie immerweiterfortgeschritten.

EugenRoth,Roth’s Tierleben

This reviewsurveysrandomwalks of single particlesin orderedanddisorderedlattices.Thesewalks
may serve as models of classicalparticle transportin orderedand disorderedsolids. Random-walk
theoryon orderedlattices hasbeen extendedfar beyonduncorrelatedwalks with constanttransition
rates.Furthermore,methodsof statisticalaveraginghavebeendevelopedto deal with randomwalkson
lattices with static disorder. It is the intent of the authors to presenta systematic,yet pedagogical,
discussionof thesemethodsand to give details of the derivationsof the results.

The random-walkmodelsaretreatedhereunderthe perspectiveof their applicability to solid-state
physics, but the methodspresentedhaveapplicationsin many fields. The authorshope that a broad
readershipwill find the presentationuseful. Therearemanyresultswhich arenot found in anyreview
(someresultsarenew) andthe resultsof severalresearcherson the sameproblemare presentedin a
unified notation.Thoughthe models aremotivatedby solid-stateapplications,therehavebeenmany
parallel pure mathematicaland interdisciplinary (biology, chemistryand physics) developments.The
authorsfound it necessaryto imposea constrainton thecitations. The maincriterion for selectionwas
the paper’scontributionto the coherenceof the presentation.Despitethis constraint,over 300 articles
arecited and even this list cannotbe consideredto be complete.

In the review the diffusion of a particle is describedby stochasticmethods.That is, probability
conceptsareusedand theinformationaboutthe particle’sdynamicsis containedin a statisticalquantity
called a probability distribution on the lattice. The dynamics is formulated either in terms of
enumeratingthe individual transitionsof the particle from one site to another(randomwalk descrip-
tion) or in termsof rate equationsfor the probability distribution,the so-calledmasterequation.The
first formulation requiresthat the transitionsbe summedandweightedaccordingto their frequencyof
occurrence;this powerful method is derivedin chapters2 and 3; first simple modelsare considered,
then more complicatedsituationsare introduced. Of course,the equivalenceof this methodto the
master-equationapproachis shown. Most of the reviewis devotedto continuous-timerandomwalks;
however,discrete-timerandomwalks havealso beenincluded.

The justification of the stochasticmethodsmustbe soughtin the complicatedHamiltoniandynamics
of the particle. The particleis coupledto the manydegreesof freedomof the lattice andit undergoes
rapid and irregular momentumchangesby its interactionwith the atomsin its environment.As this
statementimplies, theremust be a wide separationof time scalesbetweenthe particle’smotion andthe
lattice vibrations; the hostatomthenactsas a randomheatbath coupledto the particleandthe local
minimaof the potentialform a latticeon which the particlemoves.This separationof timescaleswould
allow a descriptionof particle diffusion in termsof Fokker—Planckequations.In a solid the particle
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remainsneara local minimumof the potentialenergyfor a long time andin an eventof short duration
it passesthrough a local saddlepoint of the potentialto getinto the next local minimum.Thus thereis a
secondseparationof time scalesbetweenthe durationof the transitionsandthe meanresidencetimeof
the particlenearthe local minima. It is this secondseparationthat allows the passageto a descriptionof
particlediffusion in solids as a randomwalk betweenlatticepoints. Often this secondseparationis not
well justified; however, in the framework of the phenomenologicalformulation the deviations are
included in internal states,more complicatedtime dependenciesof the individual processes,etc. It
remainsthen to derive the parametersof the random-walkmodelsfrom first principles.Theoriesthat
deducethe transition rates betweenlocal minima from a combinationof Hamiltonian mechanicsand
statisticalmechanicshavebeendeveloped[1, 21. The successof thesetheoriesrelies on a knowledgeof
the atomicinteractionsbetweenthe hostcrystal atomsandbetweenthe diffusing particleand the host
crystal atoms[31.

Stochasticmodelling is quite powerful and the methodshavebeen usedwith greatsuccessin laser
theory [4], biological systems[5] and chemical dynamics [6]. In solid-statephysics, they provide a
framework for analyzingexperimentalresultson particlediffusion in orderedand disorderedmaterials
andtesting modelsfor the underlyingdynamics.Stochasticmodelsareof practicalimportancebecause
they are not difficult to formulate and in many circumstancesexact results can be derived. The
clarification of the particularcircumstancesin which theseresultscan be derivedis apartial goalof this
review.

The subjectmattertreatedin the reviewcan be divided into two parts.The first part,chapters2—5,
covers diffusion in ordered structures. Complications arise from non-Bravais lattices (chapter 2),
correlationbetweensuccessivejumps (chapter4) andinternalstructureof the lattice sites(chapter5).
All these complexities can be managedby suitable extensionsof random-walk theory. Complete
solutionsof the probability densityaregiven for all theseproblemsand this subjectcan beconsidered
to be conceptuallywell understood,as far as diffusion in orderedsolidsis concerned.The conceptual
difficulties appearwhenthesemodels are used to describediffusion in disorderedsolids.

Considerableprogresshasbeenachievedin the last yearsin the direct treatmentof randomwalks in
disorderedlattices, ci. chapters6—10. This progress is partially due to the identification of two
prototypemodels of particle diffusion in disorderedsolids. The random-barriermodel is studied in
chapter6 andthe random-trapmodel in chapter7; eachmodelhas its own simplicitiesand difficulties.
Methods have been developedto give approximatesolutions for the prototype models. Long-time
asymptotic solutions are derived for specific physical quantities. Complete analytic solutions are
availableonly for specialcasesin onedimension.Despitetheir obvioussimplicity, both modelsexhibit
a signature of disorder; namely, moments of the particle’s displacementhave non-analytic time
dependence.For instance,the non-analytictime dependenceis manifest as a long-time tail of the
velocity autocorrelationfunction. These signaturesare disorder specific and do not appearwhen a
periodic distribution of transition rates is assumed,instead of a random distribution of the same
transition rates.Both modelshavedisorderonly in the transition ratesandthe particle diffuseson a
regularlattice. Theregularlatticestructureis a difficult restrictionto relaxandonly very specialmodels
are discussedin chapter8 and section6.5. The authorsknow of no methodsavailablefor analytically
treating topologically disorderedsolids. The above models, as well as the more general models of
disorderedsystemswith local andglobal drift (chapter10) alsoexhibit signaturesof disorder. In chapter
9 trappingof particlesby randomwalksin thepresenceof randompermanenttrapsis discussed.This is
clearly a non-equilibriumphenomenon,but also herethe signaturesof disorderbecomevisible.

At the time this reviewwas beingorganizedin 1982, diffusion in disorderedmediawas a subjectof



J.W. Hausand K.W. Kehr, Diffusion in regular and disorderedlattices 267

active research.Though four yearshaveintervenedbefore the work was completed,researchon this
subject hasnot waned.On the contrary,severalimportantachievementshavebeenpublished;andthe
activity showsno signs of diminishing.This shall be mostapparentto the readerby the largenumberof
articlescited from the years 1983—1985.

Thereareseveralothergood reviewsandbookson thesubjectof randomwalks. WeissandRubin [7]
discussapplicationswith an emphasison polymersand on solid-statephysics.Montroll and Westand
thebook editedby ShlesingerandWest [8] treatspecialmathematicaltopicsin detail, theyalsocontain
historicalnoteswhich are interestingreadingas well. Excellentmathematicalworks areStratonovich’s
and Feller’s two volumes [9, 10] and Spitzer’s book [11]. Barberand Ninham’sbook [12] is another
usefulsourceof informationon random-walkmodels.Goel andRichter-Dyn[13]coverapplicationsof
stochasticprocessesto biological systemsand van Kampen [14] has many applicationsof stochastic
processes.

2. Poissonianrandom walk on regular lattices

2.1. Discrete random walk

This chapter treats the random walk of a particle on a translation-invariantlattice where the
transitionsbetweenthe sitesoccuraccordingto a Poissonprocess.This is a standardtextbookproblem
andit is describedheremainly for introductoryandreferencepurposes.Severalextensionsaremadein
this chapter; for instance, the inclusion of the caseof non-equivalentsites in the unit cells of
non-Bravaislattices is handled.

First the discreterandomwalk (RW) of aparticleon a d-dimensionalBravaislatticeis considered.It
is convenientlyformulated in terms of recursionrelations. The sites of the Bravais lattice will be
denotedby integervectors n. A linear, square,cubic, or hypercubiclattice with lattice spacinga is
takenfor specific examples.In eachstepof the discreteRW theparticlemakesa transitionfrom a given
site, saym, to a set of sites n with probabilitiesPn,m~The assumptionof lattice-translationinvariance
requires that Pn.m dependson the difference n — m only. The simplest example is provided by
nearest-neighbortransitionson cubic lattices in d dimensions,

= f 1 /2d if n is a nearestneighborof m, 2 1
Pn,m ~ otherwise. ( . )

Of course,Pnm must be normalized,

Pn,m = 1 . (2.2)

The quantity of interestis the conditionalprobability P~(n1) of finding the particleat latticesite n
after v stepswhenit startedat site 1. The following recursionrelationis obvious

P~(n1) = ~ pnmP~i(m1). (2.3)

The probability P~(n1) can be expressedby iteration as a u-fold product over the transition
probabilities.In the translation-invariantcasethe recursionrelationis simplified by Fouriertransforma-
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tion. A large but finite lattice composedof L~= N unit cells is consideredand periodic boundary
conditionsare imposed.The Fourier transformationis definedby

P~(k)=>~.exp[—ik.(R~ —R,)]P~(n~l). (2.4)

The Fourier transform of the spatial transition probabilities Pn,m is called the ‘structure function’;
another name is the ‘characteristic function’. It is given for nearest-neighbortransitions on the
simple-cubiclattices by

p(k) = ~ cos(ak1), (2.5)

where a is the lattice constant. It should be noted that p(k) generally reflects the structureof the
reciprocallattice, e.g., it is periodic with period 2~rGwhereG is a vectorof the reciprocallattice.

In Fourierspacethe iteration of eq. (2.3) leadsto

Pjk) = p~(k), (2.6)

where p0(m 1) = 6mi was used. From this formula the elementaryexpressionfor the probability
distribution of the 1-dimensionalRW after n stepsis easilyobtained.For symmetricnearest-neighbor
jumpsp(k) = cos(ka). InverseFourier transformationof eq. (2.6) yields [15,16]

Pp(n~m)=(~!/{(Tn)!(P~~)!}. (2.7)

The generatingfunction P(n; ~)of the discreteRW is very useful for generalconsiderations.It is
definedby

P(n; ~)= ~‘ Pjn). (2.8)

Evidently

P(n)-~- d~P(n;~) (2.9)
~.! d~ ~=()

An equationfor the generatingfunction is obtainedby multiplying the recursionrelationeq. (2.3) by ~
and summingfrom v = 1 to

P(n; ~)— Pnm P(m; ~)= P0(n). (2.10)

Again this equationis simplified by Fourier transformation.Its solution is

P(k; ~)= [1—~ p(k)]’ . (2.11)

v-fold differentiation of this result accordingto eq. (2.9) yields the previousresulteq. (2.6).
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2.2. Markofflan masterequation

In this section the RW of a particle on a translation-invariantlattice is consideredwhere the
transitionsof theparticleareassumedto representa Poissonprocessin time. The transitionratefrom a
site to a nearest-neighborsite will be calledF; further-neighborjumpswill be ignoreduntil section2.4
for simplicity. As the discrete RW, so too the time-continuousRW is a Markoff process,i.e., the
presentstateis determinedby the paststateat a particulartime, but not by amoredetailedsequenceof
states.The objectof interestis now the conditionalprobabilityP(n, t 1, 0) of finding theparticleat site
n at time t when it startedat site 1 at time 0. It is also assumedthat the processis time-homogeneous,
i.e., no time point is distinguished.The Markoff property requiresthat the conditional probability
obeysthe Chapman—Kolmogoroffequation[17]

P(n, t~1,0)=~P(n, t~m,t’) P(m, t’~1,0), (2.12)

where t> t’ >0. If t = t’ + r is chosenwith a small T then

FT n, m nearestneighbors,
P(n,t’+T~m,t’)= 1—zFr nm, (2.13)

0 otherwise.

z is the numberof nearest-neighborsites, alsocalled the coordinationnumber.The first andthird line
areconsequencesof the assumptionof a Poissonprocesswith transitionrateF, the secondline follows
from particle conservation.In the limit of infinitesimally small T, the masterequationis found,

P(n, t~l,0)F ~ [P(m,t~1,0)—P(n,t~l,0)]. (2.14)
t ~m.n)

The notation (m, n~designatesm as the nearest-neighborsite of n.
It is useful to definea transitionratematrix Anm. This matrix containsasoff-diagonal elements,the

negative transition rates from site m to site n, the diagonal elementsgive the total transition rate
originating at the sites n. With this new notationthe masterequationis

dP(n, t~1,0)

dt = .~ ~1nmP(m,t~1,0). (2.14’)

The master equationis easily solved after Fourier and Laplace transformation. The Laplace
transformationis definedby

P(k, s)= f dt exp(—st)P(k, t), (2.15)

the equationthen hasthe form

{s — zF[p(k) — 1]} P(k, s)= P(k, t = 0) = 1, (2.16)

wherep(k) is the structurefunction introducedin eq. (2.5) for simple cubic lattices. Thus, it is clear
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from this equationthat the conditionalprobability is also the Greenfunction for the masterequation.
The solution of eq. (2.16) is immediate,and one has in the time domain

P(k, t) = exp[—A(k) t] , (2.17)

where

A(k) = zF[1 — p(k)] (2.18)

is the Fourier transformof the previouslydefinedtransition-ratematrix.
Momentsof theprobability distributionare alsoimportantphysicalquantities.Fromthedefinitionof

the Fourier transform, the secondmomentor mean-squaredisplacementof the particle is:

(F2~(s)= -V~P(k, 5)~k=o’ (2.19)

in the Laplace-transformedrepresentationand

~r2~(t)= —V~P(k, t)~ko, (2.20)

usingthe representationof the conditionalprobabilitywith the time variable.Fromeqs. (2.16) andeq.
(2.17) the explicit results for the mean-squaredisplacementin theserepresentationsand for simple-
cubic lattices are:

(~2)() = 2dFa2/s2, (2.21)

and

‘(r2)(t) 2dFa2t. (2.22)

From this expressionthe diffusion coefficient is deduced

2 2D=Fa =a/2dT,

andT = (2dF)’ is the meanresidencetime of the particleat asite. The fourth momentof the particle’s
position also finds applicationin later chapters.A definition of the fourth moment is:

(F4)(s) = ~ ~(k, 5)Ik=o, (2.24)
i~1

in the Laplace-variablerepresentation.For concretenessthe expressionof this moment for the

hypercubiclattices is:

(F4)(s) = 24dF2a4/s3+ 2dFa4/s2. (2.25)



J.W. Hausand K.W. Kehr, Diffusion in regular and disorderedlattices 271

In the time representationthis result is:

(r4)(t) = 12dF2a4t2+ 2dFa4t. (2.26)

The probability distribution can be analytically calculatedfor many lattices in spaceand time
representation.From eq. (2.17) and the inverseFourier transformation,the result for the hypercubic
lattice is:

IT/a

P(n, t) = a d exp(—2dFt) J ddk [I [exp{ik~n~a— 2Ft cos(k~a)}]. (2.27)
(2w) i=1

-IT/a

The symmetryof the integrandsallows the replacementexp(ik
1n1) with cos(k1n1)and each integral is

independent.The integralsare the definitions of the modified Bessel functions, Im(2Ft), the final
expressionis:

P(n, t) = exp(—2dFt)[I I~(2Ft). (2.28)

As t—~0, all the modified Besselfunctionsapproachzero exceptfor 10(2Ft), which approachesunity.
For long times, the asymptoticpropertiesof the Besselfunction give:

P(O, t) = (4~rFt)’~
2. (2.29)

In particular, for n = 0 the particle disappearsfrom the initial site with an inversepower law which
dependson the dimensionof the lattice.

For completenessthe representationof the conditional probability is given for the spaceand
Laplace-variablerepresentationin 1 dimension.The inverse Fourier transformof eq. (2.16) for the
linear chain is:

IT/a

a I exp(inka)
P(n,s)=~—J dk [s+2F(1—coska)}~ (2.30)

—IT/a

The integral can be most simply evaluatedby contour integration.Define the variable Z= exp(ika),
then

z”
P(n,s)=— I dZ (231)

2irii (s+2F)Z—F—FZ2’

where the initial site is chosento be the origin. The contour C is closed on the unit circle. The
denominatorcontainstwo simple poles:

s+2F \/s(s+4F)
Z= +± 2F 2F
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Furthermore,for n > 0, thereis annth orderpoleat infinity andfor n <0 thereis an nth orderpoleat
the origin. The contour integrationis carriedout so that thesepoles are excluded.For short times
s—p —~, and the pole Z~is inside the unit circle, whereasZ_ is outsidethe unit circle. The result is:

fZ~IF(Z~—Zj, n�0,
(n, s)— ~Z1IF(z÷ — Z), ~~o. (2.33)

The definitionsof the momentsandthe probability distributions calculatedaboveareoften referredto
in the following chaptersof this review.

An importantapplicationof this result is the derivationof the crosssectionof incoherentquasielastic
scatteringon single particles diffusing in crystals. Van Hove [18] showedthat this crosssection is
proportionalto the spatial andtemporalFourier transformof a self-correlationfunction P~(r,t), In the
classical approximationthe self-correlationfunction is identical to the conditional probability intro-
ducedabove. The incoherentquasielasticdynamicalstructurefunction is relatedto P(r, s) by

S~5~(k,w) = ~ Re{~(k,s= iw)}. (2.34)

The quantity P(k, s) hasbeenderivedabovefor the modelof diffusion of aparticleon a Bravaislattice.
Hence~ w) for diffusion of a particle on a regularBravais lattice is given by

1 A(k)
S1~~(k,~)= — 2 + A

2(k) (2.35)

The Lorentzian appearingin eq. (2.35) is called ‘quasieleasticline’ and its width is given by A(k).
This width function reflects the structureof the reciprocal lattice, A(k) is periodic modulo 2ITG and
vanishesat the Bragg points. For small k

A(k)—~Dk2 (2.36)

whereD is the diffusion coefficient introducedin eq. (2.23).
Chudley andElliott [19] were the first to apply the masterequation(2.14) of jump diffusion to the

determination of the crosssection for quasielasticincoherentneutron scattering.They intendedto
provide a quasicrystallinemodel of a liquid; their result found wide application for diffusion of
interstitials in solids, in particularof hydrogenin metals. In this field the structureof the lattice of
interstitial sites was a key question;an identification of the lattice of octahedralsites for hydrogen
diffusing in the FCClatticeof palladiumby the determinationof A(k) was achievedby Roweet al. [20].
The application of quasielasticincoherent neutron scattering to diffusion in solids, especially of
hydrogenin metals,hasbeenreviewedby Springer[21], Richter [22] and Springer andRichter [23].

2.3. Poissonianrandom walk with recursion relations

Insteadof introducingaMarkoffian masterequation,continuous-timerandomwalks(CTRW) can be
treatedin completeanalogy to discrete RW by using recursionrelations. This approachhas been
introducedby Montroll andWeiss[24]with generalwaiting-time distributionsbetweensuccessivejumps
of the particle. In this sectionthe conditional probability for continuous-timerandom walk with an
underlyingPoissonprocesswill be derivedby this alternativemethod.
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The conditionalprobability of finding the particleat latticesite n at time t whenit startedatsite 1 at

t = 0 is decomposedinto the contributionsof different numbersv of transitions,

P(n,t~1,0) EP~(n,t~l,0). (2.37)

P~(n,t~1,0) is the conditionalprobability of finding the particle at site n at time t when it performed
exactlyv steps.The following separationcan be madefor aMarkoff processwherethespatialtransition
probabilitiesand the time dependenceare separable,

P~(n, t~1, 0) = Pjn~1) V~(t), (2.38)

with P~(n 1) the conditional probability of the discreteRW consideredin section2.1 and V~(t)the
probability that exactly v stepshavebeenperformeduntil time t. A recursionrelationfor V~(t) is easily
obtained.For a Poissontransition processthe probability that the particle hasnot yet performeda
transitionuntil time t whenit arrivedat a site at t = 0 is exp(—t/r) whereT is the meanresidencetime
on this site. Hence

= exp(—tlr), (2.39)

and

V~(t)=Jdt’exp[_(t_t’)IT] V~1(t’). (2.40)

lIT is the transitionrate at an (arbitrary) time point t’, the first factor in the integral is the probability
that no further transitionoccursbetweent’ and t. The recursionrelation is solved to yield

VJt) = -~ (L) exp(-tIr). (2.41)

Equation (2.37) can now be written in Fourier spacein the form

P(k, t) = p~(k)~ (~)P exp(—tlr), (2.42)

whereeq. (2.6) hasbeenused.Summationof the exponentialseriesgives

P(k, t) = exp{—[1 —p(k)]tIT} . (2.43)

This result is identical to eq. (2.17). Of course,the recursionrelationsand the masterequationmust
yield identicalresultssincethe underlyingassumptionsof a Markoffprocessarethe same,aswell as the
basictransitionprobabilities.

An approximatecorrespondencebetweendiscreteRW and CTRW at long times can be deduced
from the structureof V~(t)accordingto eq. (2.41). The resultsof discreteRW can often be translated
into theresultsof CTRW, at long times,andvice-versa,by identifying the numberof stepswith tIT. For
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large numbersv of steps V~(t)can be representedas

Vjt) = exp[&(t)] , (2.44)

wherethe leadingterms of ~jt) are

— v ln v + p ln(t/T). (2.45)

Thus ~jt) hasasymptoticallyamaximum at v = tli-. Its width is determinedby the secondderivativeof

4~(t)with respectto v,

~2~~(t)/9v2= —1/v. (2.46)

The maximum becomessharpfor large vor tIT. Hence in sumsover v, such as eq. (2.42), the main
contributionscomefrom stepnumbersv of the orderof fIT. However, this argumentmust be applied
with caution;it requiresthat the remainingfunctionsof v behavesufficiently smoothly. Otherwisethe
productof V~(t)and thesefunctionsmust be examined.

2.4. Extensions

i) Transitions to further-neighborsites. Transitionsto next-nearestor further-neighborsites can be
included in the derivation of the conditional probability in both formulations. Here the recursion-
relationmethodwill beusedwhichwas appliedto this problemby GisslerandRother[251.The spatial
transitionprobabilitiesp~mnow include transitionsto further-neighborsites, the sum of Pn-m over n
must be normalizedaccordingto eq. (2.2). As before,T is the meanresidencetime of a particle on a
site. The formal resultof the recursion-relationmethodis eq. (2.43);p(k) is modified by the inclusion
of further-neighbortransitions.

In the master-equationformulation the transition ratesdependon the distancen — m,

P(n, t~1,0) = ~ [1~ P(m, t~1,0) — Fmn P(n, t~l,0)]. (2.47)
t {m}

Whenthe transition ratesbetweenneighboringsitesof order (i) are denotedby I~and the numberof
neighbor sitesof this order by z

1, then

Pn-m = ~ (2.48)

and

~ZjI~T1. (2.49)

Equation (2.48) allows to make the connectionto the result eq. (2.43). In applications,further-
neighbor jumps were introducedto describeresultsof quasielasticneutronscatteringon hydrogenin
palladium andniobium at elevatedtemperatures[26,27,28].
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ii) Non-Bravais lattices. The random walk of a particle in non-Bravais lattices is of practical
importancesinceone of the mostcommonly encounteredlatticesof interstitial sitesis of this kind: the
latticeof tetrahedralsites in a BCC lattice (cf. fig. 2.1). This casewill be treatedherein detail, using
the master-equationformulation developedby Rowe et a!. [29]. An earlier derivation was given by
BlaesserandPeretti[30]. The derivationmayserveas an examplefor othernon-Bravaislattices.There
aresix tetrahedralsitespermetalatom,correspondingto a Bravaislattice(BCC) with basis.Eachpoint
of thelattice is characterizedby avectorR~and avectoraa (a = 1,. . . , 6),whoseverticesconnectthe
origin with the sitesin a unit cell.

The basic quantity to be calculatedis the conditionalprobability P(n, a, t 1, y,0) of finding the
particleat site n, a at time t whenit was at site 1, y at t = 0. It is convenientto usea differentorigin for
eachsublattice,characterizedby a, andto define the Fourier transformof P(n, a, t 1, y, 0) as follows

Pay(k,t) =~ exp[—ik~(Rna —R15)] P(n, a, t~1, y,O). (2.50)

The initial condition is

Pay(k,t=0)=~3ay. (2.51)

The masterequationfor transitionson the lattice of tetrahedralsites reads

(n, a, t~l, y,0)=F ~ P(m, ~, t~l, y,0)—4F P(n, a,t~1, y,O). (2.52)
t (mj3,na)

This set of equationscan be broughtinto a simpler form by Fourierand Laplacetransformation.The
equationshavethen the form

~ [s~ + A~~(k)]~ s)= ~ay(k, t = 0). (2.53)

I ~?-~IJ \ ,‘/ 3~

~‘I,“%~\ ~I /

Fig. 2.1. Lattice of thetetrahedralsites (0) in theBCC Lattice (I). The vector a connectstheorigin to oneof thesix sites belongingto theunit
cell of the Bravaislattice, thesesitesare numerated.
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The transitionrate matrix is given by

= 4F~0— F exp(ik. ~ (2.54)

where l,~is the vector that connectsthe site on sublatticea to its neighboringsites which are on
sublattices1~(~3maycoincide with a). The explicit form of the matrix A~(k) is

4 0 —A1 —A. —A~ —A6
0 4 —A~ —A~ —A~ —A~

_A* -A 4 0 —A -A
il~ = F —A~ —A1 0 4 —A~ —A~ (2.55)

—A6 —A6 —A~ —A4 4 0
—A~ —A~ —A~ —A4 0 4

where

A1=exp[—~(ki+k2)], A2=exp[_~(ki_k2)],

A3=exp[—~ (k2+k3)], A4=exp[_~ (k2_k3)], (2.56)

A5=exp[—~(k3+k1)], A6=exp[—~(k4—k1)]

and an asterisksuperscriptdenotescomplexconjugation.
The master equation can be solved after diagonalization of the matrix A~(k). Considerthe

eigenvalueproblem

~ ~ = A~(k) V . (2.57)

Since Aap (k) is Hermitian, the eigenvaluesare real, and the are orthogonaland complete;after
normalization

~ v~v~= 8~, ~ v~v~= . (2.58)

Hence

~ v~A~= A5(k) ~ . (2.59)

Using theserelationsthe solution of the masterequationis obtainedin the form

Pay(k~s) = + ~(k) ~ v~P~~(k,t = 0). (2.60)

The diagonalizationwas carried out explicitly by Blaesserand Peretti [30] for the main symmetry
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directions.For instance,theyfound the following simple expressionsfor the eigenva!uesof Aap(k) ~fl

the (100)-direction,cf. also fig. 2.2,

A12 =4F,

A44 = 3F ±F\/9 —8 sin
2 (kaI4), (2.61)

A
56 = SF ±F~1+8sin

2(ka/4).

For generalk the matrix mustbe diagonalizedby numericalmethods.
In the applicationto quasielasticscatteringon hydrogenin metalsthe total conditionalprobability is

requiredas a sum over the probabilities of finding the particle at a specific sublattice,

6

P(k,s) = ~ P~(k,s). (2.62)
a1

The quantity P~(k, s) is defined as the conditionalprobability of finding the particle on sublatticea,
when the particlestartedwith equalprobabilitiesat eachsublatticeor

16
Pa(k~s) = ~ ~ay(’~’ s) , (2.63)

2.0 [111]
15

15,6
1.0
1.5 12

-J

> ic
U.’

0.5 0.5

11
~ 2 3 2 3C

10

~0,5 I~IIII~::~K:IIII:III1.0 W
10.5

(b)~
0 1 2 3 0~

WAVEVECTOR WAVEVECTOR

Fig. 2.2. widths A and weights w, of the incoherentquasielasticstructurefunction for diffusion on the lattice of tetrahedralsites asafunction of
wavevectorQ in the (a) [100] and (b) [111]-directions.The weights w3, w4 continuemirror-symmetricwith respectto the Braggpoint in the
[100]-direction.Weightsnot shownarezero.
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wherethe initial condition eq. (2.51) was used for Pay(k~s). Using eq. (2.60) the total conditional
probability can be expressedin the form

~(k,s)=~ w3 (2.64)

with

1 6 * 1 6 2
W5 = V4V13,~= V6 . (2.65)

‘~ a./3

1 ‘~‘ a1

The incoherentdynamicalstructurefunction follows from eq. (2.64) by usingeq. (2.34),

6 w
4 A4(k)

Sinc(k,W)= ~ 2 2 (2.66)
6=1 ~ w +A8(k)

Thus it is aweightedsum of (normalized)Lorentzians;theweightsaredenotedby W8. Also theweights
can be found in the example consideredabove for the main symmetry directions by analytical
calculations. In the (100)-direction W1 = W2 = = = 0; explicit expressionsfor W3, W4 can be
found in ref. [301.The behaviorof the eigenvaluesandweights as afunction of the wavevectorin two
main symmetrydirectionsis shownin fig. 2.2.

In the non-Bravaiscasethereis no direct periodicity of the weightswith 2ITG whçreG is a vectorof
the reciprocal lattice. (However, there appearsa periodicity with higher multiples of 2irG.) If one
choosesa particular reciprocal lattice vector, e.g.

2IT/a(2,0, 0), an eigenvaluecan approachzero
without the correspondingweight approachingunity. The weightcan beconsideredto be a generalized
structure factor of the lattice under consideration. Important information about the lattice for
interstitial diffusion can be drawn from an experimentaldeterminationof theseweights.In this way
Lottner et al. [31] have establishedthe lattice of tetrahedral sites as the interstitial for hydrogen
diffusion in niobium.

iii) Two independentstochasticprocesses.A further possible extensionis the combinationof two
independentstochasticprocesses.The problemwill be exemplifiedby the Chud!ey—Elliott model in its
completeform which was designedto describeoscillatory diffusion in a quasicrystallineliquid [19]. The
basicassumptionis the independenceof the oscillatorymotion andthe diffusion; alternatingtransitions
betweenthe oscillatory and diffusive staterequire a more complicatedmodel, as discussedlater (cf.
section 5.4). Consider the dynamical incoherent structure function of a particle in the classical
approximation,in the time domain,

I(k, t) = (exp{ik. [r(t) — r(0)]}) . (2.67)

The motion of the particle is decomposedinto jumpsbetweenequilibrium siteswith coordinatesR(t),
and oscillations abouteachequilibrium site with coordinatesu(t), independentof the positionsR(t),

r(t) = R(t) + u(t). (2.68)

If both motionalprocessesare independent,the averagein eq. (2.67) can be factorized,

I(k, t) = (exp{ik. [R(t) — R(0)]}) (exp{ik. [u(t) — u(0)]}) . (2.69)
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The two terms can now be treatedseparately.The first averagecan be evaluatedby the methodsof
sections2.2—2.3,if the particle performs a RW on a translation-invariantBravaislattice. The resultwill
thenbe an exponentialdecay.The evaluationof the secondterm dependson the detaileddynamicsof
the particle.For instance,a hydrogenatom would performlocalizedvibrationswith frequency~ well
abovethe lattice frequenciesor the transition rates.Restrictingthe discussionto frequenciesof the
order of the transition rate, the second term can be replaced, for this particular problem, by a
‘Debye—Wallerfactor’ exp(—k2 ( u2)/6). The incoherentdynamicalstructurefunction will thenhavethe
form

I(k, t)=exp{—A(k) t} exp(—k2(u2)/6), (2.70)

and it will be a Lorentzian with reducedintensity in the frequencydomain. For a more detailed
discussionseeref. [21]. Also othertime dependenciesof u(t) might beconsidered.The mainpoint to be
madehereis the factorizationinto two independentexpressionswhenthe two motional processesare
assumedto be independent.

2.5. Energetically inequivalentsites

In this sectionthe diffusion of a particle on a linear chain with periodically distributedtemporary
trapsis investigated.This modeltypifies thecaseof several,energeticallyinequivalentsitesper unit cell
of a Bravais lattice. Hence the methodto be describedis representativefor this case.From a more
generalpoint of view, the problem is an exampleof RW of a particle with internal states,to be
discussedin the next chapter. It is useful, however, to treat this problem separatelyin view of its
importancein applications.The derivationfollows ref. [321;similar resultswereobtainedby Kutner and
Sosnowska[33]. Here the quantity of interest is the conditionalprobability of the diffusing particle.
Periodically distributed traps were also treatedby Wu and Montroll [8,34]. They elaboratedmainly
propertiesassociatedwith the first passageto the trappingsites.

A pictorial representationof a one-dimensionalmodelwith periodictrappingsitesis given in fig. 2.3.
As suggestedby the figure, the particle can be releasedfrom the trappingsites by thermalexcitation.
The period of the traps is L, and unit cells of length La are introduced.The equilibrium sites are

r
3 r4

Fig. 2.3. Periodictrappingmodel. The potentialindicatesthetransitionratesandtheequilibrium energiesof thesites. The energyof thesitesa � 4
is taken as referenceenergy.The model is periodically continued(L = 6).
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enumeratedby a= 1,. . . , 6. Abstractlythe periodicmodelsare characterizedby setsof transitionrates
betweennearest-neighborsiteswithin a unit cell, andbetweenadjacentcells. For thetrappingmodelof
fig. 2.3 the transitionratesI~dependonly on the index a of the initial site, not on the final site.

It is illustrative to considerthe conditionalprobability for the diffusion of a particlein the periodic
trappingmodel on a one-dimensionallattice. It was calculatedin [321by numerical solution of the
masterequation,for specificinitial conditions.An exampleis given in fig. 2.4awherethe particlestarts
on site 2 of fig. 2.3. Averagingover different initial conditionswith weightscorrespondingto the mean
thermaloccupationof the sites (seealso below) resultsin a much lessstructuredaveragedprobability

probob1ity (n)

p~obnb~L4y ‘, (b)

Fig. 2.4. (a) Conditionalprobability in theperiodic one-dimensionaltrappingmodel asa function of positionandtime, theparticleinitially startsat
site 2, two sites from the trapping site. (See fig. 2.3.) (b) Averagedprobability distributionfor thermal equilibrium initial conditions, thespace
coordinateis countedrelative to the initial sites. Figure adaptedfrom [321.
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distribution, cf. fig. 2.4b. Also the mean-squaredisplacementof a particlefor starting at specific sites,
andfor startingat differentsiteswith the appropriatethermalequilibriumweightswas studiedin [32]. It
was found that (x2 ) (t) divided by t increasesor decreaseswith t, dependingon the startin the trap or
outsideof the traps,while the averagedquantity (x2 ) (t)It is independentof time. This resultwill also
be derived,for the generalcaseof disorderedconfigurationsof traps, in section7.2.

The periodic models can be dealt with by the formalism of the previous section,when the initial
condition of starting at a specific site is used, or starting at eachsite with equal probabilities. The
appropriatemasterequationis formulatedin analogyto eq. (2.52) and afterFourier transformationthe
transition-rate matrix Aa

4(k) is identified. The matrix Aap(k) is non-Hermitian in the case of
energeticallyinequivalentsites, however, it is diagonalizable.

A complication arisesthrough the requirementthat the averageconditionalprobability of the
periodic trap modelbe derivedin a stationaryensemble.In this casethe equilibrium occupationof the
differentsitesinfluencesthe result. A largechainwith NL siteswill be considered.It is evident andcan
be deducedfrom the masterequationthat a stationarysolutionexists with

~ P(n, a, t~l,y’
0)~Pa = [~~i F~’]. (2.71)

The condition of detailedbalancecan be used to relate the ratesTa to a referencerate p

F~/F
0=exp(~EaIkBT), (2.72)

whereE~is the energydifferencebetweensite aand the referencesite. In the stationarysituationthe
probability of finding the particle on a site with index a is given by the expression

exp(EaIkBT)
Pa = ~=1 exp(EPIkBT)’ (2.73)

henceit should be used as a weighting factor in the initial conditions,when calculatingthe averaged
conditionalprobability. The transition-ratematrix is transformedinto a Hermitian form by

—1/2 1/2
= Pa ~~ap P~ . (2.74)

A similar transformationcan be performedin the generalcaseof inequivalentsitesin theunit cell. The
eigenvectorsof A’ will be denotedby v’,

~ A~V’~= AyV’ay~ (2.75)

The eigenvaluesare identical with thoseof Aa4(k). A little algebragives

Pay(k, s) = ~ p~ V’a6 v’~p~~/
2P
45(k, t = 0). (2.76)

If one sumsover the initial siteswith the weightingfactorsp~,and overthe final sites,one obtainsthe
averageconditionalprobability in a stationaryensemble,in the Laplacedomain
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P(k~S)=>~PayPy=>~W
4(s+A4)’ , (2.77)

wherethe weights W8(k) are given by

L 2

W4 = p~
2V~5~. (2.78)

Explicit resultsfor the eigenvaluesAa (k) andweightsWa(k) for severalperiodicmodelscan be found
in ref. [32]. They will not be reproducedhere. Since the trapsof the model of fig. 2.3 areperiodically
arranged,one of the eigenvaluesvanishesnot only at the Braggpointsof the original lattice(multiples
of 2ITIa), but also atthe Bragg pointsof the superlatticewith period La. This meansa vanishingof an
eigenvalueat severalpoints(multiples of 2ITI6a in the example)of the reciprocallattice.The associated
weightgenerallydoesnot vanishat thesepoints. Thesefeaturesarenot found for the eigenvaluesand
weights of modelswith random trap distributions. Hence the periodic trapping models cannotbe
appliedto the calculationof the incoherentdynamicalstructurefunction of diffusion in the presenceof
randomtraps. More appropriatemodelswill be describedin chapter7. Nevertheless,the derivations
presentedaboveare valuable in the caseof diffusion with inequivalentsites. For instance,Anderson

[351hasdescribeddiffusion of hydrogenin yttrium with alternating transitionsbetweeninequivalent

sites.

3. Continuous-timerandom walks on regular lattices

In this chapter the discussionof the previous chapter is generalizedto allow the possibility of
non-Poissonianwaiting-time distributions of the particle betweenthe transitions. The lattices con-
sideredgenerallyshall be translation-invariant,with one exceptionconsideredin the last section.This
chapterwill appearratherabstract;applicationsof the formalismto physically motivatedmodelswill
appearin the subsequenttwo chapters.In the last sectionthe formulationwill be extendedto include
the availability of differentstates that the particle can acquireat the sitesof the lattice.

3.1. Waiting-timedistributionsand time homogeneity

A particle performsa randomwalk on a Bravaislattice; in this sectiononly the stochasticprocessof
the transitionof the particle in time will be considered.The waiting-time distribution (WTD) qi(t) of
the particleis definedasfollows. Let the particlehaveperformedits last transitionat t = 0. Then t/i(t) is
the probability density that it performsits next transitionat time t after it waiteduntil t. The simplest
example is provided by the WTD of a Poissonprocess,~i(t) = exp(—tI’r)IT. The factor (lIT) is the
probability densityor ‘rate’ of a transitionto anothersite, the secondfactor is the probability that no
transitionhasoccurreduntil time t. Of course,the concept of WTD allows for more general time
dependencies.GeneralWTD wereintroducedinto the theoryof randomwalkson latticesby Montroll
andWeiss [24].

The waiting-time distribution t/i(t) must be positive semidefinite,and whenintegratedover all time,
its value must be normalized. If not positive, t/F(t) is not a probability densityand should t/i(t) not be
normalizedthenthe particlenumberis not conservedin the system.It is usefulto introducethe sojourn
probability 111(t) that the particle remainson the lattice site until t without a transition,
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111(t) =i_f dt’ ~(t’). (3.1)

In the Laplacedomain the sojournprobability is:

111(s) = [1— tfr(s)JIs . (3.1’)

In the caseof a Poissonprocessthe sojourn probability is 111(t) = exp(—t/T). It is assumedherethat the
first moment of the WTD exists,

1=1 dt’ t’ ~(t’) <~. (3.2)

The renewaltheorem[36]statesthat for largetimes the transitionsof the particleoccur,on the average,
at a constantrate 1’. For shortertimes, however, the time homogeneityof the processis destroyed
when thetransitionsbeginat t = 0 andareall describedby theWTD ~i(t). If a systemis consideredin a
stationarystate,thenaconstantrate of transitionsshouldoccur,on the average,at all times.Thepoint
is that the time origin can be chosenarbitrarily in the stationarysituation;the last transitionof the
particle mayhaveoccurredsometime before t = 0. To incorporatethis possibility into the theory,the
first transitionof the particle needsa special treatment;it will be characterizedby the waiting-time
distribution h(t). It is plausiblethat the correctWTD of the first transitionin a stationaryensembleis
obtainedby averagingthe WTD t/i(t) over all time differencest’ betweenthe time origin andthe last
transition,

heq(t) = f dt’ ~(t + t’)/f dtf dt’ ~(t + t’). (3.3)

The denominatoris requiredfor normalization.An equivalentexpressionis

heq(t) = 11’(t)Ii. (3.4)

It is easily seenthat for a Poissonprocessheq(t) = tIJ(t), but in generalboth quantitiesare different.
Figure 3.1 illustratesthis differencefor a particularexample.

Feller [361derivedeq. (3.3) from the requirementthat the stochasticprocessdescribedby h(t), ~1i(t)

be stationary.A different derivationof eq. (3.3) was given by Lax and Scher [37] using conditional
probabilities. It shouldbe stressedthat the correctchoiceof h(t) dependson the initial conditions,in
particular whether a stationarysituation is given or not. Equation (3.3) is the correct form for a
stationaryor equilibrium ensemble.If the systemis preparedat t = 0 in a statefrom which it develops
accordingto çti(t) (for instance,by implantation of a particle at t = 0) then ~(i(t) = h(t) is the correct
assignment.

Tunaleyrecognizedthat the aboveconsiderationson time homogeneityarerelevantfor the CTRW
theory [38] which will be describedin the following section.
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*1t

OTh~

Fig. 3.1. The waiting-time distribution /i(t) and thefirst-jump waiting-time distributionh(t) determinedfrom eq. (3.3). The WTD ~‘(t) is derived
from a two-statemodel, cf. section5.1.

3.2. Continuous-timerandom walk by recursion relations

The theory of CTRW of a particle on a lattice with generalWTD was developedby Montroll and
Weiss[24].Tunaleyextendedtheir work by incorporatinga distinctWTD for the first jumph(t) into the
formal CTRW theory [391.The theory is most conveniently developedby introducing recursion
relations[40]. A slight generalization,which will be madehere,is the introductionof ‘non-separable’
CTRW [40]. The transitionsof a particle are then characterizedby the WTD t/jnm(t), the probability
densityof transitionto site n at time t when it arrived at site m at t = 0. TheseWTD are normalized
accordingto

~f dt’ ~m(t’) = 1. (3.5)

The CTRW will be called ‘separable’when

t/Jn(t) = Pnm ~i(t), (3.6)

wherePn,m and t/J(t) were introduced in previoussections.
The quantity of interestis the conditionalprobability P(n, t 1, 0) of finding the particle at site n at

time t when it was at site 1 at time t = 0. Let Qjn, t) be the probability densitythat the particle has
performedits vth transitionat time t and therebyreachedsite n. Evidently

Q~(n,t) = J dt’ ~m(~ — t’) Q~1(m,t’). (3.7)

The recursionrelation is only valid for v� 2 since the first transitionhas to be treateddifferently,

Q1(n, t) = ~ hnm(t) P(m, t = 0). (3.8)
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Here hnm(t) is the WTD for the first transitionfrom site m to site n, the normalizationis analogousto
eq. (3.5). These WTD will not be specified for the moment.The probability density that site n is
occupiedby a transitionat time t is given by

Q(n,t)=>. Q~(n,t). (3.9)

Resummationof the recursionrelationsyields

Q(n, t) = ~ f dt’ ~nm(t — t’) Q(m, t’) + Q1(n,t). (3.10)

The convolutionsappearingin eq. (3.10) becomesimple productsafter Fourier andLaplace transfor-
mation. The result is

Q(k s)=~5k~t0). (3.11)
1 — tfr(k, s)

The conditionalprobability P(n, t~1,0) is relatedto Q(n, t’) by the probabilitythat no furthertransition
occursbetweent’ and t, but thereis also the probability that no transitionoccurredat all. Hence

P(n, t~l,0) =Jdt’ ~(t — t’) Q(n, t’) + H(t) P(n, t= 0), (3.12)

where111(t) andH(t) are given by

~(t) = 1— ~ J dt’ ~n,m(t’), H(t) = 1— ~ J dt’ hnm(t’). (3.13)

Equation (3.12) is written in the Fourier—Laplacedomain and 111(t), H(t) are substitutedby the
analoguesof eq. (3.1’). The final result is

P(k,s) = s’[l - ~(k,s)]’[l - h(O, s) + h(k, s) - ~(k, s) + h(O, s) ~(k, s) - h(k, s) ~(O,s)].

(3.14)
The result simplifies for separableCTRW

P(k,s) = ~ [1 p(k) ~(s)]1 {1 - h(s) +p(k) [h(s) - ~(s)]}. (3.15)

This is the form of P(k,s) derivedby Tunaley [39].
When a stationary ensemble is considered, the WTD for the first transition is given by a

generalizationof eq. (3.3)

eq — f~dt’tIin,m(t+t’)hnm(t) — f~dt f~’dt’ ~1nm(t + t’) (3.16)
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The Fourier—Laplacetransformof eq. (3.16) is

h(k, s) = [ti(k, s) — t/i(k, 0)]I(i~)

where

~J dt’ t’ ~n.m(t’L (3.17)

The conditionalprobability for a stationaryensembleis then given by

P(k s)=f2+J~ [1—~i(O~s)I[~t(k~0)—1]} (3.18)
5 ts 1—~i(k,s)

It was assumedthat P(k,0) = 1, i.e., the particle is assumedto be at the origin at t = 0. The
specializationof eq. (3.18) to a separablewalk is obvious.

It is interestingto considerthe lowestmomentsof P(n, t) which can be foundby expansionof P(k,s)
for smallk andinverseLaplacetransformation.It will be assumedthat an expansionof t/i(k, s) about
k = 0 is possibleuniformly in s,

~i(k,s) = ~(O,s) + 0(k2). (3.19)

It is thenfound that the conditionalprobability for a stationaryensemblehasthe following behaviorfor
small k and arbitrarys

~(k, s)~ + constk2 (3.20)
k—4) 5 ts

It is recommendedto repeatthis derivation for the caseof separableCTRW, where the argumentis
moredirect.The zerothmomentof the conditionalprobability is us, correspondingto particlenumber
conservation.The secondmoment of P(k, t) is found to be independentof the preciseform of the
waiting-time distributions; it is proportionalto t andthe secondmomentof the structurefunctionp(k).
The secondmoment of P(n, t) representsthe mean-squaredisplacementand the coefficient of t is
proportionalto the diffusion coefficient.Thus CTRW, in the form presented,yields a time-independent
diffusion coefficient, correspondingto a frequency-independentmobility.

Though it is not seendirectly from eq. (3.18) the result on the strict linearity of the mean-square
displacementwith time is aconsequenceof the inclusionof the WTD for the first transitionaccordingto
eq. (3.3). If no distinct h(t) is introduced,or h(t) is chosenwhichdoesnot correspondto the stationary
ensemble,anon-linearmean-squaredisplacementandthusafrequency-dependentmobility is obtained.
The consequencesof the inclusion of h~m(t)on the diffusion coefficient, or equivalently, on the
mobility of a particleunderthe influenceof asmall force,were drawnby Tunaley[391.He considered
only separableCTRW, but the conclusionsare equallyvalid for the non-separablecase,as the above
derivationsshow.Theseresultsarouseda debatewhetherhnm(t) shouldbe includedin CTRW theory
when it is applied to model transportin disorderedsystems.A discussionof this controversywill be
deferredto section6.7, until transportin disorderedsystemshas beenreviewedtoo.
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CTRW theory with inclusion of a distinct WTD for the first transition in equilibrium seemsto be
intrinsically correct. This opinion is sharedin other reviews [7, 41]. Less formal, but perhapsmore
physical argumentscan be given by consideringthe velocity correlationsof the particle executing
CTRW. The secondderivativeof the mean-squaredisplacementwith respectto time is obtainedin a
thermalequilibrium ensemblefrom the velocity correlationfunction. This amountsto a multiplication
with s212 in the Laplacedomain. From eq. (3.20) a constantis found in the Laplace domain,
correspondingto a velocity correlationfunction proportionalto 5(t) in the time domain. The velocity
correlationfunction ought to be a deltafunction in the CTRW consideredhere.Thereis no reasonwhy
backward(or forward) correlationsin the transitionsof the particle should appear,no matter how
complicatedthe time dependenceof the stochastictransitionprocessis. Sincethe Fourier transformof
the velocity correlation function is the frequency-dependentdiffusion coefficient, it is frequency-
independentin the equilibrium CTRW model studiedhere.

3.3. Equivalencewith generalizedmasterequation

It was shownby Bedeauxet a!. [42]that the solutionof theseparableCTRWproblemandthat of the
correspondingmasterequationapproacheachotherat long timeswhenall momentsof the waiting-time
distribution exist. The spatial transition probabilities Pn,m are identical in both formulations, the
transitionrateis t~ wheretis the first momentof the waiting-time distribution(for simplicity separable
CTRW is considered)andthe timesmustbe largecomparedto the maximumof (T

5)~~”,whereT~is the
nth momentof the WTD. Kenkreet al. [431pointedout that at arbitrarytimesa correspondenceexists
between(separable)CTRWanda generalizedmasterequation.This equivalencewill bedescribedhere
for the caseof single-statenon-separableCTRW on ideal lattices.

The startingpoint is the form (3.12)of thesolutionof theCTRW problem,where(3.11) is inserted,

P(k, s)= {~(s)[1- ~(k, ~)]t h(k, s) + H(s)} P(k,0). (3.21)

It can be written in the form

[1— ~i(k,s)] 11’’(s) P(k,s) = {h(k, s) — [1— ~i(k,s)] ‘1’’(s) H(s)} P(k, 0); (3.22)

this can be compactlyexpressedas:

[s — 4(k, s)] P(k, s)= P(k,0) + J(k, s), (3.23)

where

~(k, s) = s [ifr(k,s) — tli(O, s)]I[1 — çli(O, s)] (3.24)

and

i(k, s)= h(k, s) — tfr(k, s)— [h(O,s) — ~‘(O,s)] + h(O,s) t/i(k, s) — h(k, s) ~i(O,s) P(k 0). (3.25)
1—~i(O,s)

In the time domain,eq. (3.23) yields the generalizedmasterequation(GME) with an inhomogeneous
term,
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P(k, t) = J dt’ ~(k, t — t’) P(k, t’) + I(k, t). (3.26)

4(k, t) and 1(k, t) are the inverse Laplace transformsof eqs. (3.24) and (3.25), respectively.The
transformationof the GME to direct spaceis obvious.

Onedisturbingfeatureof eq. (3.26) is the presenceof the inhomogeneousterm. It is a consequence
of the introduction of a different WTD for the first step, and thus of the requirementof time
homogeneity.’It will be discussedfurther in the contextof specific models,cf. section5.2, whereusing
specific modelsit is shown explicitly how to obtain h(t) and underwhat initial conditionsh(t) agrees
with or differs from t/i(t).

The kernel ~k, t) and the inhomogeneityI(k, t) are somewhatsimpler for separableCTRW,

ç~(k,s) = [p(k) -1] ç~(s), (3.27)

where

~(s) =s ~(s)I[1 - ~(s)], (3.28)

and

I(k, s) = [p(k) - 11h(~)-p(s) P(k,0). (3.29)
1 — cu(s)

The equivalenceof CTRW with the GME was originally given [43]throughtheserelations,exceptthe
inhomogeneity.In an equilibrium ensemble,where h(t) is given by eq. (3.3), the inhomogeneity
acquiresthe simple form

J(k, s) = [p(k) -1] ~ [~‘ - ~(s)1. (3.29’)

It is illustrative to consider two simple cases.i) Kernel without memory, ~(t) = y 5(t). Equation
(3.27) gives an exponentialWTD, cui(t) = y exp(—yt). This kernelcorrespondsto the ordinarymaster
equationwith total transitionrate y; hencethe ordinary masterequationcorrespondsto CTRW with
exponentialWTD, as discussedin the previouschapter.ii) Kernel with exponentialmemory, ~(t) =

a exp(—At). The resulting WTD is the sum of two exponentials,

= (2aIp)exp(—At12)sinh(ptI2) (3.30)

where p = V~—4a
2. The GME can be transcribedin this caseto a variant of the telegrapher’s

equation,cf. [431.

An inhomogeneoustermappearsalsoin theGME resulting from theLiouville—von Neumannequation.It may vanishif appropriateinitial
conditionsaregiven.Seethediscussionof Kenkre[44]for thecaseof exciton transport.The existenceof an inhomogeneoustermin theGME is not
generallyappreciatedand this point is taken up again in section6.7.
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3.4. Multistatecontinuous-timerandom walks

The derivationsof the last sectionswill now be generalizedto include the availability of different
statesof the particle at eachsite of the lattice. A physicalmotivation for sucha generalizationmaybe
the existenceof severalinternalstatesof the particleat each lattice site. For instance,a non-spherical
molecule diffusing on a surfaceof a crystal may take on different orientationsat eachsite. In this
section a rathergeneral formulation of multistate CTRW will be given; possible applicationswill be
mentioned in the context of more specializedmodels. However, one particular extensionwill be
mentionedhere. Namely, when the statesare identified with the sites themselves,the formulation
includes the caseof different WTD at eachsite of the system (which may not evenform a lattice).
Referencesto previouswork will be deferredto the end of this section.

The quantity of interestis P(n, /3, t 1, a, 0), the conditionalprobability of finding the particleat site
n in state/3 attime t when it wasat site 1, in statea, at time 0. The WTD for a transitionto siten and
state /3 at time t, whenthe particle arrived at site m andstatea at t = 0 is t/i~~ma (t). Normalizationis
required,

E f dt’ ~n
4,ma(t’) = 1. (3.31)

n,s

A vector/matrixnotationwith respectto the stateindiceswill_be adoptedhenceforth.For instance,the
Fourier—Laplacetransformof the WTD will be denotedby t/í(k, s).

The derivationsof the previoustwo sectionsare easilyextendedto the generalcase.The result for
the conditionalprobability is

P(k, s) = {‘I’(s) . [E — i]s(k, ~)]_1 . h(k, s) + H(s)} . P(k,0), (3.32)

in complete correspondenceto eq. (3.22). E is the unit matrix and the quantity h(k, s) is the
Fourier—Laplacetransformof the WTD for the first transition. ‘It(s) is the Laplacetransformof the
probability that no further transitionoccursafter the last one. It is a diagonalmatrixwith the elements
in the Fourier/Laplacedomain

11’aa(S) = ~ [u- ~ ~ya(O’s)]. (3.33)

H(s) is the Laplacetransformof the probability that the first transitionhasnot yet occurreduntil time t.
It is also a diagonal matrix of the samestructureas eq. (3.33) where tfr(0, s) is replacedby h(0, s).

Equation (3.32) constitutesthe general solution of the multistate CTRW problem. The further
simplification of this expression,in analogyto eq. (3.15), is not possibleunlesst~and ii arediagonal.
However, it is possibleto deducea coupledsetof GMEs. The algebrarunsas in theprecedingsection;
somecare is necessarywith the matrix manipulations.The result is

[sE— ~(k, s)] (k, s) = P(k,0) + i(k, s). (3.34)

The matrix elementsof the kernel are given by
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S[~a
4(k, s) — ~a4 ~ ~~4(O,s)]

~ap(
1~, s) = 1— ~ ~i~(O, s) (3.35)

The inhomogeneityis given by

I(k, s) = M(k, s) . P(k,0),

wherethe matrix elementsof M are given by

Ma
4(k,s) — [u— ~ ~i~(O,s)] { ha4(k,s) — ~0(k, s) — E [h~4(O,s) — ~ s)]

+~(k,s) ~ ~ s) — ha4(k,s) E ~ s)}. (3.36)

As a specialcasethe ‘separable’multistateCTRW will be considered,

~(k, s) = p(k) i~i(s), (3.37)

wherep(k) includestransitionprobabilitiesbetweensitesand statesandwheret~i(s)is adiagonalmatrix
with elementsc

t’a(s). p and ~, must be normalizedseparately,

~P
4a(k0)1, tp~(s=0)=1. (3.38)

It is further assumedthat

h(k, s) = p(k) h(s), (3.39)

with the sametransitionmatrix p and a diagonalmatrix h. The kernelof the GME is now givenby the
matrix elements

~ (k s)= ~ ç~(s) (3.40)a4 —

and the elementsof the matrix appearingin the inhomogeneity

M (k s)= ~ t/J~(s)] (3.41)af3 ‘ 1—cut4(s)

So far a rathergeneralformulationof continuous-timerandomwalk of a particle betweendifferent
states and sites has been given, and the equivalencewith the GME established.Note that the
inhomogeneousterm in the GME is always presentwhen a different WTD for the first transition is
introduced,i.e., when h(t) ~ tIJ(t). The multistateCTRW of a particle will generallyyield frequency-
dependentdiffusion coefficients,althoughthis is not yet evidentfrom the presentformulation.This will
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be demonstratedin the particular applicationof the general formulation in the next chapter. The
solution of the set of coupledGME requiresthe diagonalizationof matrices,henceit is practicalonly
when asmall numberof statesis takeninto account.Althoughthe expressionseq. (3.32)andeq. (3.33)
provide a solutionof the problemof CTRW on a lattice (or evenon a generalset of sites)with different
WTD at eachvertex, the solution is only formal when, say, i03 sites are involved.

The earliestpublicationson multistateCTRW were madeby Kenkreand severalcollaborators[45].
They consideredsiteswith a different WTD at eachsite andestablishedthe correspondencebetween
CTRW and the GME. Researchwith a similar themewas publishedby Shugardand Reiss [461.The
generalformulationof CTRW, including the equivalencewith theGME, was developedby Landmanet
al. [47] and the presentauthorsalso obtainedsimilar results [48]. Landmanand Shlesingermade
applicationsof the formalism,especiallyto surfacediffusion [49].A compactderivationof multistate
CTRWandits equivalencewith the GME was given by Gillespie[50], in this work statesareequivalent
to sites. MultistateCTRW was alsotreatedin ref. [51] with the aim to includeenergydependenceof the
RW process.More referenceswill be given in the next two chapterswhenspecialcasesof the general
formalism areconsidered.There arepresumablymoreapplicationsof CTRW with internalstatesthan
hitherto considered.For instance,the combinedspatial and spectral diffusion of an excitation in a
crystal could provide a casein point.

4. Random walks with correlated jumps

Correlated random walksare a classof randomwalkswherememoryis not lost aftereachstep,but
only after a finite numberof steps.This chaptertreatsmainlycorrelationsover two successivestepsand
it is shownthat correlatedwalksarea specialcaseof multistaterandomwalks.However,they deservea
separatetreatmentsince they representan importantclass of random walks with many significant
applications.They aremore easilytreateddirectly than by usingthe full formalismof the last chapter.
Also, their distinct featurestend to be hiddenby the generalformalism.

4.1. Historical survey; one-dimensional models

Correlatedwalks were inventedin the courseof the discussionof ‘persistenceof motion’ of particles
in fluids. The first calculation,using kinetic theory arguments,showingthata particlepersiststo move
in the samedirection after a collision is attributedto Jeans[52]. Smoluchowski[53]in his investigation
of the kinematicjustification of Brownianmotion, extendedthecalculationof Jeansby determiningthe
mean-squaredisplacement.This was evidently the impetus for Fuerth [54] to work out a detailed
one-dimensionalrandom-walktheory with persistence.As an application of his formula for the
mean-squaredisplacement,he studiedthe diffusion of infusoria in solution (actually,he measuredthe
averagetime it requiredan infusor to make a first passageacross a predeterminedsegment).The
mean-squaredisplacementshoweda definite non-lineartime evolution; in this case,the correlationor
memoryaccountsfor thefact that the particlespossessan inertia andthus, theypersistedto movein the
samedirection for a timewhich is not negligible comparedto observationtime. Independently,Taylor
[55] developedan equivalenttheory in an attempt to explain the correlationsof particlediffusion in a
turbulentmedium.

Since then, correlatedrandom walks were rediscoveredin various physical applications.The two
mostprominentapplicationsare i) conformationof polymers,and ii) tracerdiffusion in metals.One is
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interestedin the squaredend-to-enddistanceof a polymerchain of n segments(monomers),or in the
mean-squareddisplacementof a taggedparticle after n steps.The simple model of a freely rotating
chainfixes the polar anglea = cos0 betweentwo consecutivesegments,andallows arbitraryazimuthal
angles4 [56]. For tracerdiffusion a correlationbetweensuccessivestepsappearssince,after onestepof
the tracer,the vacancythatpromotedthis stepis with certainty behindthe tracer [57]. It then effects
more easily a backwardstep of the tracer than a forward or sidewardstep, resulting in a negative
averageangle Kcos0) betweentwo steps.In both problemsthe squareof the sum of all displacements
d1 is considered,

((Rn - R0)
2) = ((~d~)(~d

1)). (4.1)

In RW with correlationsbetween two successivesteps d. is related to d. indirectly through the
intermediatesteps,and l~d~. d1) is ~ a~’’

1in the first caseand x (cos~ in the secondone (some
restrictiveassumptionsare necessaryin the caseof diffusion in crystals[581).This fact is sufficient to
allow an evaluationof eq. (4.1) with the result

((R,, —R,)2)
(47)

where the denominatoris the mean-squaredisplacementfor uncorrelatedrandomwalks and f the
correlationfactor, in applicationi) [561

f(1+a)/(1—a), (4.3a)

wherea is the fixed value of the polar angle, or in applicationii) [58]

f= (1 + (cos 0))I(1 — (cos0)). (4.3b)

Thus there appearsa modification of the static diffusion coefficient, which constitutesthe most
conspicuouseffect of correlatedrandom walks. This chapter is concernedwith a more detailed
descriptionof correlatedwalks,for instancein thederivationof the completeconditionalprobabilityfor
correlatedwalks.

As a particularlysimple example,a correlatedwalk on the linear chainwith constanttransitionrates
is considered[59]. The ratefor a transitionin the samedirection as the previousoneis denotedby 1~

and the rate for a transition in the opposite direction is denotedby Ta. The conditionalprobability
P(n, t) of finding the particle at site n at time t whenit originatedat site 0 at t = 0 is split up into two
contributionsP~(n, t) and P_ (n, t), where+ and — indicatesthat the particlecamefrom site n + I or
n — 1, respectively.Thesequantitiesobey the coupledmasterequations:

P~(n,t) = F~[P÷(n+ 1, t) — P~(n,t)] + Ta[P~(n+ 1, t) — P~(n,t)],

(4.4)

P(n, t) = 1~[P(n — 1, t) — P(n, t)] + Ta[~+(~— 1, t) — P(n, t)].
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This setof masterequationsis transformedinto a set of coupledalgebraicequationsby Fourier and
Laplacetransformations,

[s + f~(1— e’~)+ Tal P~(k,s)— Tb elka P(k, s) = P~(k,0),

(4.5)
~ e aP~÷(k,s) + [s+ i~(1— e~)+ Ta] P(k, s) = P~(k,0).

The initial conditionsare P÷(k, 0) = P (k, 0) = ~. The summaryconditionalprobability is obtained
from the solution of eq. (4.5) as

s+y+(Ta—Ta)coskaP(k,s)= s2+2s[Ta+~(1—coska)]+21~y(1—coska)’ (4.6)

wherey = Ff + Ta is the total transition rate.
The small-k expansionof P(k, s) is

1 (s+ y) T~(ka)2
P(k s)—* — — +.... (4.7)s s2(s+2Ta)

The time-dependentmean-squaredisplacementor the frequency-dependentdiffusion coefficient shall
be discussedlater when this model is generalizedto arbitrary dimensions.Here only the asymptotic
mean-squaredisplacementis given, which follows from the small-sbehaviorof eq. (4.7),

2(x )(t)—* ~ ya t. (4.8)

The resulting static diffusion coefficient is the productof the diffusion coefficient of the uncorrelated
randomwalk, ya212, times the correlationfactor f= i/Ta.

The conditionalprobability can be easilytransformedback into real space,

P(n, s)= f ~ ~ P~(k,s). (4.9)

The lattice constant a was set to unity. This integral is evaluatedby the techniqueexplainedin section
2.2, of eqs. (2.30)—(2.33).The final result is

P(n, s) = (A2 — B2)”2 {(s+ y) [(A2— B2)~2— A]t~B1~’

+ ~(I~ — F~)[(A2 — B2)~2— A]~tl B~11

+ ~(Ta— F~)[(A2 — B2)”2 — A]~1~BH~}, (4.10)

where

A(s) = + 2sy+ 2I~y,

and

B(s) = —2I~(s+ y).
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When the result is transformedinto the conditionalprobability P(n, t) in lattice spaceandtime, it is
found [60,61] that side peaks developat intermediatetimes, cf. fig. 4.1. Theseside peaksare clearly
visible for F~3~’Ta; andthey correspondto the fraction of particles,in an ensemble,that havenot yet
sufferedbackwardtransitions.In thislimit the particlesmovein theforward directionwith an apparent
velocity a1 ay. However,theseapparentmanifestationsof a ‘persistenceof motion’ are transientas
long as F~/T6is finite. Eventually, each particle will be scatteredin the backwarddirection, and
asymptoticallydiffusive behavior is obtained.The conditionalprobability approachesasymptoticallya
Gaussiandistribution, cf. alsothe discussionin section4.4.

The conditionalprobability, eq. (4.6) can be decomposedinto partial fractions,and the dynamical
incoherentstructurefunctionobtainedby usingeq. (2.34). The zeroesof the denominatorin eq. (4.6)
are given by

s,2= —[Ta+I~(1—coska)1±SQ,
(4.11)

SQ = (F~—F~sin
2 ka)’ /2

Only when [~ > F~the two poles are always real. In the oppositecaseFf> Ta thereappearcomplex
polesfor largerk values. The consequencesof complexpolesin the conditionalprobability in real space
and time are the side peaksdiscussedabove. The structurefunction is only discussedfor backward
correlationsTa> Ff. In this caseit is the sum of two Lorentzians

~ w) = W, W
1IIT 2 + W2 W2IIT 2’ (4.12)

W~+W

~1O0 / \ / I

50 100 150
cI 50

0~ ~so

00 ~0 1~0 DISTANCE FROM ORIGIN

Fig. 4.1. Conditionalprobability for theforward-correlatedrandom-walkmodel with f~= 0.99y at threedifferent times plotted as a function of
distancefrom theorigin. A continuouscurvewasdrawnthroughsimulationresultsfor 450000particlesandthetime is given in Monte-Carlosteps
per particle.



J.W. Hausand K.W. Kehr, Diffusion in regular and disorderedlattices 295

where w,2 = ~,,2 are the widths of the Lorentzianand the weightsare given by

W,=(SQ+Tacoska)/(2SQ), W2=1—R,. (4.13)

In the limit k—* 0 there is only one Lorentzian and its width is proportional to the diffusion coefficient,

W,~1, W2~0, w,~~fy(ka)
2. (4.14)

The behavior for general k is given by the formulae above. For instance, at the zone boundary k = IT/a

the first weight vanishes,
W )0 W

k—~,r/a

and the secondpole gives the summarytransitionrate,

2 (4.14’)

The widths andweightsof this one-dimensionalcorrelated-walkmodel will be representedin fig. 5.2b,
to facilitate comparison with the results for the two-state model.

4.2. Model with reducedreversals/backwardjump model

This section describes a simple model of a RW of a particle with correlationsover two successive
steps that can be solved explicitly in arbitrary dimensions. There are two special cases of this model that
are discussed here, i) the particle has a less-than-average probability of returning to the site visited by
the preceding step (model with reduced reversals), and ii) the particle has a larger-than-average
probability of returningto the previoussite (backwardjump model).Of course,both modelsdiffer only
in the sign of the correlations,not in their physical content. The discreteRW with the correlations
describedabovewas treatedby Domb and Fisher [62] following earlier work of Gillis [63]. They
obtained the solution for the generating function, the derivations were quite complicated.The CTRW
of a particleincluding the correlationsdescribedabovewas consideredby the authors[59].

Here the direct approachof ref. [59] will be followed. It is a generalization of the treatment of RW
by recursionrelationsin section3.2. The probability densityQ~(n,t) of a transition of the particle to
site n at time t by stepnumberv is now relatedto this quantity takenwith oneandtwo stepsless(ii � 3)

Q~(n,t) = (1 — r) ~ f dt’ ~(t — t’) Pn,m Qp- ,(m, t’)

+ e~ f dt’ f dt” ~(t — t’) cui(t’ — t”) ~ Q~
2(m,t”). (4.15)

The parameters determines the strength of the memoryto the previousstep(i.’ — 2). For the special
case s = 0 the stngle-state CTRWis recovered. Separable CTRWis used, and Pn,m’ q,,,,,~arenormalized
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spatial transitionprobabilities.A simple choiceis nearest-neighbortransitionsfor Pn.m’ as described by
eq. (2.1), and

q,~,= ~n,m (4.16)

With this particular choiceand e> 0 the particle has a preference to return to a visited site by two
consecutive transitions, while for r <0 the particle tends to avoid this site (model with reduced
reversals).

The further derivations parallel those of sections 3.2 and 3.3. It is convenient to introduce Fourier
and Laplace transformations. The Fourier transform of q,,,,,~is denoted by q(k); it is unity for the case
eq. (4.16). The initial condition is P(k, t = 0). It is assumed that no memory is effective at the first step,
either by preparation or by using a stationary ensemble. Let h(t) be the appropriate WTDfor the first
step. Then

Q,(k,s)= p(k) h(s) P(k, 0),
(4.17)

Q2(k,s) = (1 — r) p(k) i/i(s) Q,(k,s) + r q(k) i/f(s) h(s) P(k, 0)

Resummation of the recursion relation yields

Q(k s) = p(k) + rq(k) i(s) h(s) P(k, 0). (4.18)
1- (1- e) p(k) ~(s) - r q(k) ~2(~)

The Green function P(k, s) in the Fourier and Laplace domain is obtained from eq. (4.18) by using a
relation analogousto eq. (3.12),

P(k,s) = {11~(s)[1- (1- r) p(k) q~(s)- r q(k) ~2(5)]~1

[p(k) + r q(k) ~(s)] h(s) + H(s)} P(k, 0). (4.19)

Substitutionof 11’(s) and H(s) leadsto the form

P(k s) = [1+ e p(k) ~(s)][1- h(s)] + [p(k) + r q(k) q~(s)][h(s) - ~(s)] P(k 0). (4.20)
s [1— (1 — r) p(k) i/I(s) — r q(k) 1/12(s)]

This is the generalizationof Tunaley’s resulteq. (3.15) to the modelwith reducedreversals,his result is
recoveredfor £ = 0. _

Simpler expressionsare obtainedfor the special caseof a Poissonprocess. In this case i/i(s) =

yI(s + ‘y) andthe WTD for the first jump h(s) i/i(s). Also P(k,0) = 1 will be used.The conditional
probability is then given by

P k ~‘ = S + y + E y p(k) (4.21)

(s+y)
2—(1—r)y(s+y)p(k)—ey2

Here the specialcaseeq. (4.16) was usedandp(k) is given by eq. (2.5) for the square,simple-cubic,



J.W. Hansand K.W. Kehr, Diffusion in regular and disorderedlattices 297

and hypercubiclattices. The result eq. (4.21) is equivalentto the result of Domb and Fisherwhen
(s+ y) is substitutedwith z’, the variableusedin their generatingfunctions,ande identified with —5.

It is easyto deducethe frequency-dependentdiffusion coefficient from eq. (4.21) by calculatingthe
mean-square displacement and multiplying with s2/2d. The result is, in Laplacespace

(4.22)

The frequency-dependentdiffusion coefficient is obtainedby substitutings = iw and taking the real
part. The high-frequencylimit is given by D(co)= a2y/2d, thus the correlations do not enter in this
limit. The diffusion coefficient in thestatic limit is relatedto thehigh-frequencylimit by a proportional-
ity constant f:

D = D(~)f; (4.23)

the constantf, called the correlationfactor, is given for this model by

f=(1—e)/(1+r). (4.24)

The behaviorof the frequency-dependentdiffusion coefficient,D(w), is shownin fig. 4.2for two values
of f. Positive s correspondsto the backwardjump model, r = 1 or f= 0 is the limiting casewhere
diffusion ceasesto exist. Negative e correspondsto the model with reducedreversals.There is a
smallest admissible value of r. A particle at site n that camefrom site m hasthe combinedprobability
(1 — r) ~ + r of return to site m. This quantity must be non-negative,henceit is required that
(1 — r)/2d + £ >0. Thus e can approach—1 in d = 1, but is restrictedto r — on the squarelattice in
d = 2. The case£ = — ~ in d = 2 is the one where no backward transitions occur at all, and the maximal
correlationfactor is f = 2. Analogousrestrictionshold in higher dimensions.

It may be of interestto give the explicit expressionfor the mean-squaredisplacementin the time
domainwhich resultsfrom eq. (4.21)

([R(t) — R(0)]2) = ya2 ~ t — _____ — 1]. (4.25)

Equation(4.25) is a generalizationof Fuerth’sresult [54] for the discreteRW in d = 1 to a CTRW in
arbitrary dimensions.The mean-squaredisplacementis given in fig. 4.3 for the model with reduced
reversals,for the uncorrelatedrandomwalk and for the backwardjump model.

The model of correlatedwalks under considerationcan be brought into correspondencewith a
second-orderintegro-differentialequation[59]. To establishthis correspondenceeq. (4.19) is written in
the form

fr(k, s) P(k,s) = p(k) + ry q(k)] i(s) + F(k, s) ~(s)} P(k,0), (4.26)

i/i(s)

where

F(k, s)= [1- (1- r) p(k) ~(s) - r q(k) ~2(~)]

i/i(s)[1— 1/i(s)]
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Fig. 4.2. The real part of thefrequency-de,pendentdiffusion coeffici- Fig. 4.3. Mean-squaredisplacementof particles that perform corre-
ent from eq. (4.22). Resultsarescaledto D(x) andfis definedin eq. lated random walks with f=3 and f= 1/3. The dashedcurve is the
(4.24). result for uncorrelatedrandomwalks.

and

-I

~ t95

is the inverseof the first momentof t/i(t). The quantity F(k, s) can be brought into the form

F(k, s) =s2 + [1 — (1 — e) p(k)J ys + s i(s) + J(k) h(s),

where

i(s) = y/~(s) - s, ~j(s)= ys ~(s)I[1 - ~(s)]

and

J(k)=1-(1-e)p(k)-rq(k). (4.27)

It is clear from the structure of F(k, s) in eq. (4.27) that a secondderivative appearsin the time
domain.Thereappearinitial-time termswhenthe transformationfrom the time to the Laplacedomain
is made. These initial-time terms are particularly simple when a stationaryensembleis considered
where
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(k, t) = —y[l — p(k)] P(k,0). (4.28)

In the caseof stationaryinitial conditionseq. (4,26) can be representedin the form

F(k, s) P~(k,s)= [y ~‘(s) + £ p(k) y] P(k,0) + I(k, s). (4.29)

The first terms on the right-handside are the initial termsmentionedaboveand

I(k, s) = y [i(s) (1- i(s))]’ {[1 -p(k) + £ i(s) (p(k) - q(k))] [~(s) - ~(s)]} P(k,0). (4.30)

Transformationof eq. (4.29) to the time domainleadsto the following equation

d2P dP
(k, t) + y [1 — (1 — e) p(k)] ~ (k, t)

dt’ x(t — t’) (k, t’) + J(k) dt’ ~(t — t’) P(k, t’) = 1(k, t). (4.31)

The kernelsX(t), ‘q(t) appearingin this equationare the inverseLaplace transformsof i(s) and h(s),
respectively,cf. eq. (4.27). The inhomogeneityI(k, t) is the inverseLaplacetransformof eq. (4.30).

The expressionssimplify considerablyfor a WTD correspondingto a Poissonprocess.The kernels
are then given by

x(t — t’) = y 8(t — t’), ij(t — t’) = y2 8(t — t’), (4.32)

and the inhomogeneityeq. (4.30) vanishessincein this case1/1(t) h(t). Thereremainsthe following
second-orderdifferential equation

d2PIdt2 + [2y— (1— r) p(k)]dPldt+ y2 J(k) P0. (4.33)

This second-orderdifferentialequationis solvedby the usualLaplace—Fouriertransformationmethods.
For Bravais lattices the equationsare completely diagonalized by these methods. However, as
demonstratedin chapter 2 for uncorrelatedwalks, the correlated-walkproblem is not completely
diagonalizedfor non-Bravaislattices; thereare as manycoupledequationsas inequivalentsublattices.
For instance, the tetrahedral lattice of interstitial sites in a body-centeredcubic lattice has six
inequivalentsites, therefore,the correspondingmasterequationis reducedto six coupledequations.

Equation(4.33) has the following continuumlimit

(r, t)+(1 + £) y (r, t)+(1 — £) y a2 V2 ~ (r, t)+ y2 a2 (1— r)V2P=O. (4.34)

In the formal limit y—*oi~,r—~—1, a—s’O, such that ya = V and (1 + r)y = F this equation is the
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well-known telegraphequation

d2P/dt2+ F dP/dt+ 2V2 V2P= 0, (4.35)

which has beenstudiedin connectionwith correlatedrandomwalks by Goldstein [64].
In this limit theparticlemovesmainly in theradial direction from its centerandthe particlemovesin

this direction with a velocity V. Every now andthen a changeof direction can occur, this eventhasa
rateF; were it not for a changeof directionsthe particlewould propagatein the mediumwithout a loss
of memoryof its initial state.

4.3. Other models with correlated walks

There are many more models with correlatedwalks than the one considered,especially in higher
dimensions,evenif only memory to one previous step is included. Perhapsthe simplestone is the
forwardjump modelwhere the particle has a larger thanaverageprobabilityto makea transitionin the
samedirection as the previoustransitionwhile the probability for a transition in any other direction is
reducedcomparedto the averagevalue.In d = 1 the forward jump model is identicalwith the modelof
reducedreversalswhile in higher dimensionsthey are different. This is illustrated in fig. 4.4 for both
modelson a squarelattice andparameterssuchthat the samediffusion coefficient obtains.

The modelswith memory over two consecutivesteps are analytically treatedby using the corre-
spondencewith multistate randomwalk discussedin chapter3. The conditionalprobability is indexed
by the previouslyoccupiedsite n’, as well as the presentlyoccupiedsite, n: P(n, n’, t). This index n’
specifies the prehistory of the particles. Since the transitionprobabilities extend to a finite set of
neighborsof n, the numberof states,specifiedby n’, is finite. The generalprocedureis exemplifiedby
the forward jump model on a Bravais lattice with constanttransitionrates (correspondingto Poisson
processes).f in forward andF’ in the other directions.The resultingmasterequationfor P(n, n’, t) is

~P(n,n’,t)=F
5[P(n’,2n’—n,t)—P(n,n’,t)]+F’ ~‘ [P(n’,n”,t)—P(n,n’,t)]. (4.36)

t

For this model it is somewhatmoreconvenientto introducethe directionsof the transitionsas thestate
index. Equation(4.36) can be transformedinto a set of z coupled algebraic equationsby Fourier and
Laplacetransformation.As can be verified on the explicit solutionfor the squarelattice, no reduction
to a set of two coupled equations appears possible for general directions in k-space. Hence one has to
work with eq. (4.36) for the forward model in d � 2, or analogous equations for other models. In__ 1H’6 ~Kb)

Fig. 4.4. Illustration of (a) model with reducedreversalsand (b) forward jump model. The dashedarrowsindicatetheprecedingstepsandthefull
arrowsindicatethe consecutivesteps.Probabilitiesfor the transitionswhich give a correlation factor f = 2 areindicated in the figure.
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contrast, the simple backwardjump model or model with reducedreversalsare reducible to two
coupledor one second-ordermasterequation.For this model the following masterequationcanbe set
up

P(n, n’, t) = Ta[P(n’, n, t) — P(n, n’, t)] + F’ Y [P(n’, n”, t) — P(n, n’, t)], (4.37)
t fl”�fl

whereI~, is the transition rate to the previous site n’ andF’ the transitionrateto arrive at a site which
was not occupied in the previous step. In order to reduce the master equation eq. (4.37) to the results
of the previoussection,a summationover all previoushistories is performed,

P(n, t) = ~ P(n, n’, t). (4.38)
(n’;n)

The quantity P(n, t) thenobeysthe second-orderdifferentialequationeq. (4.33)wherethefollowing
identificationsare made

y=F~+(z—1)F’, r—(1,—F’)/y. (4.39)

The spatial transitionprobabilitiesPn,m and q,,,~are given by eq. (2.1) and eq. (4.16), respectively.
The impossibility of reductionof the forward-jump model to the results of the previoussection,

related to the backward-jump model, is connected with the different symmetry of the correlated
transitionsin both models.In the backward-jumpmodel, two correlatedjumps lead to the initial site
with strengths, that is to a situationwith the samesymmetryas before. In the forward-jump model,
two correlatedjumps introduce a particular direction with a symmetry lower than the original
symmetry. In d = 1 the forward-jumpmodel and the model with reducedreversalsareidentical. The
solution is provided by eq. (4.21) with p(k) = cos ka. Of course,this solution is easily deducedfrom
either eq. (4.36) with F’ = Ta or eq. (4.37) with F’ = f~ [59].

The forward- and backward-jumpmodelswere investigatedby the authors [59b] for non-Bravais
lattices; in particular, they considered the tetrahedral interstitial sites in a BCClattice, which is relevant
for hydrogendiffusion. In this work a set of coupledmasterequationswith constanttransitionrateswas
formulated,extendingeqs. (4.36) and(4.37) to thenon-Bravaiscase.Also the caseof ‘planar jumps’ in
the lattice of tetrahedral sites was studied, cf. fig. 4.5. These types of jumps were suggested by
molecular-dynamicsstudiesof hydrogenmotion in metals[65].The coupledset of masterequationswas
solved numerically in the Fourier—Laplacedomain, it amounts to determining eigenvaluesand
eigenvectorsof appropriatematrices,similar to the derivationsin chapter2. The eigenvaluesdetermine
the widths of the correspondingLorentziansin the dynamicalstructurefunction, the eigenvectorstheir
weights. Details are given in ref. [59b]. Okamuraet a!. [66]studiedcorrelateddiscreteRW of a particle
on the SC lattice with different probabilities for forward, backward and sideward steps, and a
probability of sojournon a lattice site. Thus their model includesalsotemporarytrappingeffects and
the asymptoticdiffusion coefficient containsboth the featuresof correlatedwalk andof the trapping
model to be discussedin the next chapter. Extensionsto the BCC and FCC lattices were also
considered.Godoy[67] consideredthe influenceof an externalfield in correlatedRW in d = 1, usinga
continuous-timeformulation with WTD correspondingto a Poissonprocessin time. He observedthat
the introductionof an externalfield suppressesthe divergencein the mean-squaredisplacementof a
particlefor F5—~y if the limits are takenappropriately.
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Fig. 4.5. Illustrationof planarjump model on tetrahedralsitesof aBCC lattice. The precedingstepof theparticleis indicatedby thedashedarrow.
In this model r

1 ~ r~~ r, for preferredin-the-planetransitions.

The modelsreferredto in this section regardedcorrelatedRW either as a discreteprocessor as a
continuous-timeprocesswith exponentialWTD, representinga Poissonprocess.The extension of
correlatedwalk to CTRW with generalWTD was given by the authors[59] for the modelwith reduced
reversals.(The introductionof a distinct WTD for the first transitionwas omitted in this work.) The
model with reducedreversalsis characterizedby one WTD i/1(t) for the temporal development,the
correlationsenterthrough the parametere. However, in a generalmultistateCTRW each transition
(e.g. forward and backwardin d = 1) can be characterizedby a separateWTD, andonly the sum of all
transitionsneedbe normalizedaccordingto eq. (3.31). An exampleof correlatedwalk with WTD that
were not simple exponentialswas studied by Landmanand Shlesinger[471in the context of their
discussionof multistate CTRW. CorrelatedCTRW on the linear chain with generalWTD i/i~(t) for
forward and i/Ib(t) for backwardtransitionswas discussedby Zwerger and Kehr [681.They obtained
Q(k,s) the Fourier—Laplace transform of the probability of a transition of the particle to site n at time
as

~ (s)- ~(s)+cos(ak)
Q(k, s) = b 2 ~2 h(s) P(k, 0), (4.40)

1 — 2i/i~(s)cos(ak) + i/it(s) — 1/fh(s)

where h(s) is the WTDfor the first transition (see below).
Zwerger and Kehr also studied an explicit one-dimensional model with internal states that can be

mappedexactly on the backward-jumpmodel. This model is shownpictorially in fig. 4.6a.The particle
may arrive at say level 1 at site i from the left, the WTD for a transitionto level 3 at site i — 1 (l/Jh(t))

and a transition to level 1 at site i + 1 (~/.i~(t))are different. They are derived explicitly from the
first-passageproblemon a finite chain, depictedin fig. 4.6b. The levels1, 2, 3 correspondto levels, 1, 2,
3 at site i, 0 correspondsto (3, i — 1) and4 to (1, i + 1). 1/ib(t) is identical to the probability of the first
transitionat time t from 1 to 0, and i/i~(t) is identical to the probability of first transition to site 4 with 1
as the starting site. It is interesting to point out that the WTDfor the first transition h(t) in the
stationary ensemble can be determined in two ways.
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i—i I +1 (a)

—1,3 +1,1

LI I U (bI
0 1 2 3 4

Fig. 4.6. (a) Random-walkmodel with internal states.(b) Diagram exhibiting the first-passageproblem on a finite chain correspondingto the
internal-statemodel.

(i) Thetimeaverageof i/i~(t)+ i/1b(t) is taken, in analogy to eq. (3.3),

heq(t) = ~ f dt’ [~i~(t + t’) + 1/ib(t + t’)l; (4.41)

(ii) the thermalaverageof i/i~(t),1/Ib(t) and the first-passagetime distribution X02(t) of a transition
from the inner level 2 to an adjacentsite is taken

heq(t)= [P~eq + ~3eq][çbf(t) + 1/i5(t)] + ‘~2,eqx02(t) . (4.42)

Both determinationsof heq(t) give thesameresult. Further,the authorsworkedout thelinear-response
theory for this simple model and corroboratedin this way the resultsof the CTRW description.The
frequency-dependentdiffusion coefficientof the one-dimensionalbackward-jumpmodel is obtainedas

D(w) = ~-= f(w), (4.43)

wherethe frequency-dependentcorrelationfactor is given by

11+ (cos0)(s)~
f(w) = Re~1— (cos 0)(s)Js=i~’

where

(cos 0)(s)= i/it(s) — i/’h(5) . (4.44)

Hencethe frequencydependenceof D(w) is determinedby the Fourier transformsof the WTD, in the
combinationindicatedabove.The static result is obtainedby settings = 0.

A three-dimensionalcorrelated-jumpmodel with generalWTD was investigatedby Kehr et al. [69]
in the context of diffusion in latticegases,seethe following section.The authorsderive the conditional
probability P(k,s) in Fourier—Laplacespacefor correlateddiffusion of a taggedparticle in a FCC
lattice with 5 different WTD for forward, backward, and 3 types for sideward transitions. Explicit
expressionsfor P(k, s) wereobtainedin the mainsymmetrydirections. Again the frequency-dependent
diffusion coefficient is obtainedin the form eqs. (4.43,44)where
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(coso)(s)=En~cos~.(s), (4.45)

andn. are the numbersof equivalenttransitionsfor one type of transition. Distinct WTD for the first
transitionwere takeninto accountin thesederivations.

4.4. Somepropertiesof correlated continuous-timerandom walks

In this sectionsomepropertiesof correlatedCTRW will be discussedin moredetail.
i) Markoffian nature. This property of correlatedwalks was discussedby Montroll [70], who

admitted correlationsover an arbitrary but finite number of steps,and infinite correlationswith
sufficiently rapid decaywith distancein the stepnumbers.Montroll wasinterestedin the dependenceof
the squaredend-to-enddistanceof polymer chainson the numbern of monomersandthe probability
distribution of this distance.He consideredexplicitly a RW model of apolymerwherethe enumeration
of monomers corresponds to the step number of a discrete walk. In his RWmodel on a square lattice
only sidewardtransitions (90°) were allowed and first-order overlaps after four steps (corresponding to 4
monomersforming a square)were excluded.The essenceof his argument can be formulated more
abstractly by considering k consecutive steps afl_k, afl_k+,,. . . as a k x d dimensionalmatrix.
Evidently this matrix at n + 1 stepscan be entirelydeducedfrom the matrix at n stepsif a memoryto k
stepsis assumed.Consequentlya Markov processoccurs,describedin terms of thesematrices.All
conclusionspertaining to such processescan be drawn, in particular that the growth of the mean-
squaredend-to-enddistanceis proportionalto the stepnumber(numberof monomers).A singularcase
is the limit of strongcorrelations,i.e., whenthe nextstepis uniquelydeterminedby the previousone,
renderingthe completeevolution deterministic.This is realized,for instance,in the forward model
whenpf = 1 and the particle movesin a straight line.

ii) Frequencydependenceof diffusioncoefficient. As has beenshownby the examplesof the model
with reducedreversalsand the backward-jumpmodel with generalWTD, the diffusion coefficient of
thesemodelsis frequencydependent.Theseexamplesare sufficientto establishthe genericnature of
the frequencydependence.The frequencydependenceappearsevenwhen distinct WTD for the first
transitioncorrespondingto stationaryensemblesareintroduced.In more physicalterms, this classof
modelshas,by their design,takeninto accountthe possibility of forward or backwardcorrelationsin
the velocity of a particle; this is necessaryto give frequencydependenceto the diffusion coefficient.
Alternatively formulated, the models with correlatedjumps yield non-linear time-dependentmean-
squaredisplacementsof a particle.Only at long times doesthe asymptoticdiffusionalbehaviorappear,
which thencontainsthe effect of the correlations.Hence,whenthe needarisesof modelling a system
with frequency dependenceof the diffusion coefficient, the class of modelswith correlatedCTRW
offers a relatively simple possibility to include theseeffects.

iii) Correspondencewithsingle-stateCTRW.CorrelatedCTRW can be consideredas a specialcase
of multistateCTRW. Eventhe simple modelof reducedreversals,which involvesonly oneWTD anda
memorybetweentwo steps,is equivalentto the multistateCTRW. Onemayinquire whetherthe result
of a correlated-walk model can be mappedonto single-stateCTRW models with possibly more
complicatedwaiting-time distributions.To be specific, the discussionwill be basedon the modelwith
reducedreversalswith constanttransitionrates,whose Greenfunction is given by eq. (4.21). This
expressionwill be comparedwith the resultof single-stateCTRW eq. (3.15) including a distinct WTD
for the first transition. Onehasto identify
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(l—e)y(s+y)
i/i(s) = 2 2 (4.46)

(s+y) —ry

The WTD is normalizedand its first moment is t= (1 + r) /[(1 — r)y]. The WTD heq(5) corresponding
to a stationaryensembleis deducedfrom eq. (4.46) accordingto eq. (3.3) or eq. (3.4). It is easilyseen
that eq. (3.15) cannotbe broughtinto correspondence,if the WTD heq(5) is usedin this comparison.
However,a correspondencecan be establishedby identifying

h(s)= ~ (4.47)
(s+y) —sy

HencecorrelatedCTRWcan be mapped,in this example,onto a single-stateCTRW with aparticularly
chosenWTD for the first transition. This WTD does not representan equilibrium ensembleand its
physical meaning is not obvious.

iv) Higher-order partial correlations. Tchen [71] studied systematicallythe case of a RW with
multiple partial correlations,i.e. specifiedpartial correlationsbetweentwo stepswhich arean arbitrary
numberapart. Let c, describea partial correlationover i steps(c, = (coso) of the previouscase),then
a simple final resultcan be obtained,if somethird-order termsareneglected,

((Rn — R0)
2)/((R~— R

0)
2)~~~11(1 + c

1)/fl (1—c1), (4.48)

wherek is anarbitraryfinite number.Furtherstudiesof higher-orderpartial correlationsweremadeby
Kutner [72] in the contextof self-diffusion in latticegases,seebelow. Rubin [73]studiedthe influence
of correlationsbetweenstep i and step i + j of a RW wherethe stepseparationj can be large.He
consideredthe dependenceof the mean-squaredisplacementon j in different dimensions,in order to
understandthe influenceof repulsiveinteractionson the end-to-enddistanceof polymers.

4.5. Applicationsof correlated walks

Various applicationsof correlatedrandomwalks were made,someof the earlierapplicationswere
alreadymentioned.This section reviews other applicationsin a rathercursoryway, exceptthe tracer
diffusion in metals,which will be discussedmore thoroughly.

Oneimportant applicationis the descriptionof conformationsof polymers,initiated by Kuhn [56].
The details of this application are reviewed e.g. by Flory [74]. More recent work on polymer
conformationsusing correlated-walkmodelswas doneby Fujita et a!. [75], ThorpeandSchroll [76]and
Schrollet a!. [77].Schrollet al. wereparticularlyinterestedin the caseof stiff chains,correspondingto
strong forwardcorrelations.The mainpoint with respectto theseapplicationsis that a correlatedwalk
with a memoryover a finite number of stepsdoes not allow a proper treatmentof the effects of
self-avoidingwalks. The treatmentof theseeffects requiresquite different methods from the one
discussedhereandis outsidethescopeof this review.See[78]for an overview. The combinedeffects of
self-avoiding walks and strong forward correlations were considered by Halley et al. [79].

Stronglycorrelatedwalkswere alsousedby Argyrakis andKopelmanto describecoherenttransport
of excitonsat low temperatures[80]. Coherenttransportof excitonsshouldbe describedby generalized
master equations [44]. A rough physical picture is that an exciton propagates in one direction in a
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wave-like fashionuntil it suffersa scatteringevent, it then continuesto propagatein anotherdirection
until anotherscatteringeventoccurs.This processwas modelledby ArgyrakisandKopelman[80a1by a
correlatedwalk wherethe excitonmakestransitionsover L sitesin a straight line and L was takenfrom
a Gaussiandistribution with meanvalue L 2~I and standarddeviation u. After L steps the particle
chooses another direction at random. Hence the model differs somewhat from the forward jump model
of section 4.3, but the results of both models are rather similar if L and p~= I~./yare chosen
appropriately.’

Further applicationsof correlatedwalks comprise a descriptionof superionicconductance[81],
transportin a Lorentz gas [82], and the helix-coil transitionof polypeptides[83].

The applicationof correlatedwalks to the diffusion of tracer particles in metalsdeservesspecial
interest. Abstractly this is the problem of diffusion of a taggedparticle in a lattice gas where the
transition processis mediatedby a small concentrationof vacancies.In the limit of vanishinglysmall
vacancyconcentration,the correlationsin the transitionsof the taggedparticlethat arecausedby one
vacancycan only extendover two stepsof the taggedparticle [841.This observation is the basis of the
application of eq. (4.3b) to tracerdiffusion in metals. The averageangle (cos0) betweensuccessive
transitionsof the tracer is commonlyderivedfrom lattice Greenfunctionsfor diffusion of the vacancy
[85,86]. However,thereareproblemsassociatedwith the propernormalizationof the weightsusedfor
calculating(cos0). It is importantto calculatethe probabilitiesfor the first returnof thevacancyto the
startingsite only. A correcttheory was given by Benoistet al. [87]. Anotherproblemappearsthrough
the possibilityof escapeof the vacancyto infinity in three-andhigher-dimensionalcrystals.Kidson [881
and Koiwa [891showedin careful analyseshow theseprocessescan be takeninto account.A third
problemis the possibility of interferenceof the vacancyresponsiblefor the first transitionwith other
vacancies.Also this problemhasbeenresolvedby careful considerations[901.

All thesederivationsrelate to long-rangediffusion in the limit of large times or numbersof steps.
Not much work hasbeendone on the detailedtime dependenceof tracerdiffusion in metals. There
exists the phenomenological‘encountermodel’ which describesthe neteffect of correlatedexchangesof
one vacancywith the taggedparticle [91,92]. In d = I the WTD for an exchangeof a vacancywith the
taggedparticle are knownin the limit of vanishingvacancyconcentrationc~—~ 0 [93].The extensionof
theseresultsto higher dimensionsseemsstraightforward,althoughit hasnot yetbeenworkedout. It is
necessaryto employ the CTRW formulationof the model with correlatedjumpswheregeneralWTD
areused,andto expresstheseWTD in termsof the time or frequency-dependentGreenfunctionsfor
the diffusion of a single vacancy,in a manneranalogousto ref. [871. The time dependenceof correlated
diffusion of taggedparticleswas also treatedby BenderandSchroeder[94] usinga hierarchyof master
equations;they were interestedin the applicationto the Moessbauerlineshape.

While the description of taggedparticle diffusion in latticegasesas a RW with correlationsovertwo
successivesteps is exact in the limit of vanishingvacancy concentration,the correlatedRW is an
approximationat higher vacancy concentrations.Much work has been devotedto lattice gasesat
arbitrary concentrations,both numerically (see the reviews [95,96]) and theoretically (see [93,97—
102]). In the context of correlatedCTRW, the waiting-time distributions of a taggedparticle were
estimated by Monte-Carlo simulations for diffusion of a lattice gas on an FCC lattice and analyzedby
semiphenomenological considerations [69]. The WTDwere classified according to forward, 3 types of
sideward,andbackwardtransitions,cf. fig. 4.7. The resultsat4 differentconcentrationsarereproduced
in fig. 4.8. It is seenthat the WTD for backwardtransitionsbeginsfor small timeswith the unblocked

In theforward-jump model thedistribution of straight pathsp
1 of length L is approximatelyPoissonianfor p,—~1. p, (1 — p,)exp)—(l —

p,)L). The averagelength of a straight pathin the forward model is L = (1 — p)
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Fig. 4.7. Classification of consecutivetransitionson an FCC lattice.The precedingstepof the particlewas from site (b) to thecenterof thebottom
plane. The subsequenttransitionscan be designatedas b (for backward)and by numbersindicating theorder of the neighbor shell from site b.
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Fig. 4.8. The waiting-time distributions for four different concentrationsof particles on the FCC lattice. The full circles indicate backward
transitions,the plus signs, +, indicate transitionsto sites labeled 1 in fig. 4.7 and the crosses,x, indicate transitionsto thesite labeled4.
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Fig. 4.9. Correlationfactorf for taggedparticlediffusion on a honeycomblatticegas. Full circles: Monte-Carlosimulations; full line: theoryof ref.
[98];opencircles:f-factorswherecorrelationsovertwo jumpsareincluded; opentriangles:f-factorsfor four-stepcorrelations.Figureadaptedfrom
[72].

transitionrateF anddecaysto theforwardWTD. The forwardWTD beginswith the blockedtransition
rate(1 — c)F wherec is the concentrationof the latticegas.The forwardWTD behavesapproximately
exponentially. The WTDfor sideward transitions shows an initial increase at small times, for small
vacancy concentrations, due to the possibility that the initial vacancy enables a sideward transition. For
more details see ref. [69]. This work appears to be the first simulation of WTDin a nontrivial physical
context.

As a teston the validity of the assumptionof correlationsover two successivesteps,onecan derive
the static diffusion coefficient by using the formula eq. (4.43) w = 0. As eqs. (4.44,45) show this
requiresthe determinationof the areasof the WTD. One observesthat the model is indeeda good
approximationfor tracerdiffusion in an FCClatticegas[69]. Kutner [72] madeasimilar investigationof
taggedparticlediffusion in a latticegason a honeycomblattice.Due to the small coordinationnumber
(z= 3) correlationeffects are expectedto be more pronouncedthan in the FCC lattice. For instance,
the correlationfactorf = ~in this lattice in thelimit cv—~0 whereasf = 0.78145. . . for the FCClattice
in this limit. As fig. 4.9 demonstratesthe model of RW with correlationsover two stepsis clearly
insufficient at general vacancy concentrations, and the correlation factor determined in the above-
mentioned way differs markedly from the one directly determined from the reduction of the diffusion
coefficient [72]. Inclusion of higher-order correlations remedies the discrepancy, but even when
correlations over 4 steps are taken into account, the ensuing theoretical correlation factor differs still
from the simulatedvalue. Hence,CTRW with correlationover two successivestepsis only a rough
approximationfor lattice gasesat arbitraryconcentrationswhosequality dependson the type of lattice
considered.

5• Multi-trapping models

5.1. The two-statemodel

In this chapteranotherclass of random-walkmodelson ideal lattices is considered,namely the
‘multiple-trappingmodels’.They are characterizedas random-walkmodelswith internal states.In one
of thesestatesthe particle can perform ordinary random walk on the lattice, but there are one or
severaltrappingstatesassociatedwith eachsite, the particlebeing immobile in thesestates.Releaseof
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the particlefrom the trappingstate(s)to the mobile stateis possible;thusthe trappingis temporaryin
thesemodels.Although the multiple-trappingmodelsarea subclassof the multistatemodels,theyalso
deservea separatediscussionbecauseof their simplicity and of their importancein applications.One
advantageis that the multiple-trappingmodels with constanttransition rates are explicitly solvable
(analytically on Bravais lattices when only a few statesare included). Thesesolutions allow to pass
explicitly to a contracteddescriptionandto studythe correspondencewith single-stateCTRW.

The conceptof two-statebehavior in diffusive transportdevelopedgraduallyin the past.An early
referenceis the work of Lennard-Jones[103,104] who consideredsurfacediffusion andattributedtwo
statesto a diffusing particle: (1) the vibratingstatewhereit is immobile,and(2) the diffusive state.Let
r be the lifetime in the mobile state,Df the diffusion coefficient of theparticlein the mobile state,and
r~the lifetime of the immobile states.Lennard-Jonesdeducedthe effective diffusion coefficient D in
the form

D=DfT/(r*+T). (5.1)

This form is highly plausible:it describesthe reductionof thefree diffusioncoefficient by the meantime
spent in the immobile state.

Subsequently,multistatetrappingmodelswere introducedin variousfields of the natural sciences.
Only a selectedchoiceof referencescan be given. They wereproposedto describein a phenomenologi-
cal mannertransportprocessesin chemicalsystems[105—107],the transportof excitedchargecarriers
acrossamorphousmaterials[108—116],self-diffusionin liquids[117],the motion of interstitialsin metals
[118—122],and 1/f noise [123].Also the depolarizationof muon-spinrotationcausedby the interplay
betweendiffusion and trappingwas treatedin the framework of multistate trapping[124—125].

To demonstratethe easewith which multistatebehavioris discussedandto give an indication of its
potential for applications,the Greenfunction of the two-statemodelwith constanttransitionratesis
discussedin theremainderof this section.The model is depictedschematicallyin d = 1 in fig. 5.1. Three
parameterscharacterizethis model, y the summarytransition rate to neighbor sites in the free state
(y = 2F for nearest-neighbortransitions),y~the capturerate into the trappedstateand Yr the release
rate from the trappedstate.For simplicity nearest-neighbortransitionson a Bravaislatticeare assumed,
as in eq. (2.1). The conditionalprobability is decomposedaccordingto

P(n, t) = P~(n,t) + P~(n,t), (5.2)

wherethe index indicatesthe state that is occupiedby the particle.The masterequationsobeyedby a
particlediffusing accordingto this model are

1/2 1/2

I i~iri
Fig. 5.1. The two-statemodel in one dimensionwith transition rate to nearest-neighborsitesy

12, trappingrate ~ and releaserate y,.
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Pf(fl, t) = ~ A~~P~(n’,t) — y, Pf(n,t) + y~P1(n, t),

d (5.3)
~ P1(n, t) = Y1 P~(n,t) + Y1 Pf(n, t).

~ is the transition-rate matrix introduced in eq. (2.14’). To solve these equationsthey are
transformedinto the Fourier—Laplacedomain,

[s + A(k)+ ~ P,(k,s) — Yr P~(k,s)= Pf(k, 0),
— — (5.4)

[s+y~] P1(k,s)—y1P~(k,s)=P1(k,0)

whereA(k)= y[l — p(k)], cf. eq. (2.18).
Here the questionof the appropriateinitial conditionsarises.The particleis assumedto startat the

origin at t = 0. It maybe furtherassumedthat theprobabilitiesof originating in the free or trappedstate
are given by the stationarysolution of the masterequation, i.e., by the asymptoticprobabilities of
finding the particlein eitherof the two states.The assumptionreads explicitly

Pf(k,0)=Yr/(Yt+Yr), P~(k,0)=Y1/(y~+y1). (5.5)

With this assumptionthe solutionof eq. (5.4) is
P(k s) = 2 Yr + + [Yt’(Yr + Y1)1 A(k) (5.6)

5 +5[fl(k)+)I~+Y]+YA(k)

For the square,simple-cubiclattices in d dimensions

21 Yr y(ka)
P(k,s)—~-— —~—-—+.~.. (5.7)k-=() 5 Yt+Yr5 2d

The mean-squaredisplacementfollows from eq. (5.7) by usingeq. (2.19) in the time domain

~ ya
2t, t�0. (5.8)

The result containsthe diffusion coefficient

D = D~Y~/(Y
1+ j),), (5.9)

This expressionis in accordancewith the form given by Lennard-Jones,cf. (5.1); note that T*

correspondsto Yrt, and the diffusion coefficient in the mobile stateis D1 = Ya2/2d, cf. eq. (2.23).

The mean-squaredisplacementeq. (5.8) is strictly linear for all times, not only asymptotically.
Hence, in this model and with the initial conditionsassumed,the diffusion coefficient is frequency-
independent,
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D(w) = D. (5.10)

In particular, D(x) = D(0). The reductionfactor in eq. (5.9) is interpreteddifferently at high and low
frequencies.At high frequenciesit representsthe fraction of particles in the mobile state, at low
frequenciesthe reductionthrough the averagetime spent in the immobile state.

While diffusion is simple in the two-statemodel, the structureof the Greenfunction at generalk is
morecomplicated.The dynamicalincoherentstructurefunction ~ w) will be consideredwhich is
obtainedfrom P(k, s) by applicationof eq. (2.34). The structurefunction can be decomposedinto two
Lorentzians

Ww/ir Ww/rr
~ w) = 2 2 + 2 2 2 (5.11)

Cs) +W
1 Cs) +(02

wherethe widths are given by

Cs)12 ~[A(k)+Yi+Yr]+ ~SQ, (5.12)
SQ = [(A(k) + Y1 + Y~)

2— 4Yr A(k)]”2,

and the weights by

= ~ + ~[Y~+ Yr + A(k)(Y
1 — Yr)/(Yi + Yr)]1’~Q, W2 = 1 — W, . (5.13)

The widths andweights of a one-dimensionaltwo-statemodel are given in fig. 5.2a. For comparison,
the widths andweights of a one-dimensionalcorrelated-walkmodel are given in fig. 5.2b. In the limit

I I :.:
/ ~ // -

\ 7/ ‘~ /3

3
- - / “

0.5- 7, - 0.5 / N ________

/ / /

0~~I0i4 0~6 I 0~8 1.0 ~0 ~20.4 I 0.6 OM1.0

Wavenuniberlit Wavenumber/ir

Fig. 5.2. (a) The widths andweightsfor thetwo-statemodel in onedimension.The dash-dottedline representsthewidth of theLorentzianin the
free state.The trappingrateis ~ = 0.2, thereleaserateis ~, = 0.1 andthetransition rateis y = 1. (b) Widthsand weightsfor the correlatedrandom
walk in one dimension.The rate for forward transitions is Yi = 0.25 and for the backwardstransitions it is Yb = 0.75. The dash-dottedline
correspondsto theuncorrelatedrandomwalk.
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k—*0 only the diffusive componentremains,

A(k)—~Dk2,

(5.14)
W,=1—O(k4), W-,=O(k4).

Generally,however,therearetwo components.Their interpretationbecomesespeciallysimplenearthe
zoneboundaryunder the condition Y ~ Y~,Yr

~0,=Y, W
22y,

(5.15)

W,=Y1/(Y1+Y), W2=Yr/(Yt+Yr).

It is seenthat for thesek valuesone componentexhibitsthe effect of releasefrom the traps with the
appropriateweight of trap occupation.The othercomponentexhibitsessentiallythe free transitionsto
neighborsites, againwith the correctweight. The resultsof the two-statemodel for generalk, w were
appliedto an interpretationof the diffusionof hydrogenin metalswith trappingcentersby Richterand
Springer[121].They couldverify theabove-mentionedfeaturesin their experiments.For furtherdetails
see ref. [1211.

5.2. Multiple-trappingmodels

In this sectionthe multiple-trappingmodelsareconsideredin moredetail. A particlemayassumeN
differentstatesat eachlatticesite, stateN is the mobile state,the other N — 1 onesare immobile states.
Constant transition rates betweenthe statesare assumedin this section; this leads naturally to a
formulationin termsof masterequations.Startingfrom the masterequations,also the transformation
to a generalizedmasterequationwill be examined.Specialattention will be given to the role of the
initial conditions.Two variantsof multiple-trappingmodelswill be considered,

i) Thedirect-accesstrappingmodel.This model hasone mobile stateN with a total transitionratey
to neighbor sites. For simplicity only nearest-neighbortransitionsare assumed,characterizedby the
spatial transitionprobabilitiesPn.m’ eq. (2.1). The N — 1 trappingstatesare reacheddirectly from the
mobile state.The transitionrate into the trappingstatea is called Ya, the escaperatefrom this stateto
the mobile statera. The model is schematicallyshownin fig. 5.3 for d = 1. The behaviorof a particle
accordingto this model is describedby P~(n, t) the conditionalprobability of finding the particleat site
n in statea at time t. The initial conditionsare specifiedlater. The GreenfunctionsP,,(n,t) develop
accordingto the masterequations

Fig. 5.3. A multiple-trappingmodel with direct transitionsfrom the mobile state to each of thetrap states.
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~ ~ t) = _~Itn.m PN(m, t) — Y0 ~ t) + ~ c ~a(~’ t),
m ~=t aI (5.16)

Pjn, t) = ~ra Pa(n,t) + Ya ~N(~’ t), a = 1,. . . N—i.

After Fourier and Laplacetransformationthe masterequationsread

[~+ A(k)+ :~:~ PN(k, s)— ra ~(k, s) = PN(k, 0),

— (5.17)

(s + ra) Pa(k,s) — Y~PN(k, s)= Pa(k, 0), a = 1,. . . N — i.

Thus the random-walkproblemfor the trappingmodel is reducedto a set of N coupledalgebraic
equations.Explicit solutionsare easily obtainedfor smallerN, cf. the caseN = 2 in the last section.

ii) Ladder-trappingmodel. Also this model has one mobile state(N) and N — 1 trappingstates.
However, the trappingstatesform a ‘ladder’ such that statea is connectedto statesa + 1 and a — 1.
The transitionrateto statea + 1 is called~ andthe transitionrateto statea — 1 is “~a~The laddershall
be finite, hence i-’, = 0. The rate ~‘N is replacedby Y~the total transition rate to neighbor sites. A
pictorial representationof the ladder-trappingmodel in d = 1 is given in fig. 5.4. The ladder-trapping
model is describedby the masterequations

~ ~N(~’ t) = —~ Anm PN(m, t) — ~N PN(n,t) + ~N-t PN_t(n, t),

Pjn, t) = ~a+i ~a+i(” t) + ta-i ~a-i(” t) — (i~ + ~) Pa(n, t), a = 2,. . . N—i,

(5.18)

P~(n, t) = ~ P2(n, t) — ~ P~(n, t).

This set of masterequationsis transformedinto a set of N coupledalgebraicequationsby Fourier and
Laplacetransformation.Hencealso this model is solved in principle.

Often one is only interestedin the summaryquantity

P(n, t) = ~ ~a(~’ t). (5.19)

An experiment,for instanceneutron scattering,may only allow to determinethe time-dependent
positionof the particle, not its state.The questionariseswhetherthis summaryquantity can bederived

Fig. 5.4. A ladder-trappingmodel with a hierarchyof deepertraps.



314 J.W. Haus and K.W. Kehr, Diffusion in regular and disorderedlattices

for the trappingmodelsmoredirectly than by solving eq. (5.16) or eq. (5.18). Indeed,it will beshown
that the trappingmodels,in this ‘contracted’ level, arecompletelyequivalentto single-stateCTRW, or
to the generalizedmasterequation.

The derivation will be madefor the direct-accesstrapping model; it can be equally given for the
laddermodel. All equationsof (5.17) are addedwith the result

P(k, s) + A(k) PN(k,s) = P(k, 0). (5.20)

The quantity P~,is eliminated from this equation by using the secondgroup of equations(5.11)
(a = 1,. . . N — 1). The resultcan be written in the form

[s — q~(k,s)] P(k, s) = P(k, 0) + I(k, s),

where

~(k, s) = —A(k) (i + ~ Ya
~ S + r

(5.21)
N—i -I N-1

I(k,s)=A(k)[(i+~~)] ~is~rpP~~0)

This equationis preciselyof the form of a generalizedmasterequation,cf. (3.23). Here the caseof
‘separable’CTRW appears,hencethe kernel /1 andthe inhomogeneityI shouldbe comparedwith eqs.
(3.28) and (3.29), respectively.The comparisongives the WTD

~(s) = Y[Y + 5(1 + ~h)]’. (5.22)

A discussionof the initial stateof the systemhas beendeferredto this point. The inverseLaplace
transform of eq. (5.21) would have the form of a homogeneousgeneralizedmasterequationwere
Pa = 0 for a = 1, 2,. . . N — 1. This is the casewhenthe initial stateof the systemis so preparedthat the
particle finds itself always in the transport state. This situation is realized in photoconductivity
experimentswherethe electronsareinitially excitedon the surfaceof an amorphoussemiconductoror
polymer; also this is a good approximationwhen muons are implantedat randomin a metal with a
dilute concentrationof traps. In other situations the system is not specially prepared and the
equilibrium occupationof the various stateson a particular lattice site is appropriate;this is the case,
for instance,in neutronscatteringexperimentson hydrogenin metals.

The equilibrium occupationprobabilitiesare easilyobtainedfrom eq. (5.16)

/ N-I \1
Yl YO\~ —) , ai,...N—I,
re, I3—~ r4

(5.23)

PN_~PN(n,~)(~~) .
~ r4
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With theseinitial conditions,the comparisonof eq. (5.21) with eqs. (3.28,29) allows to identify

h(s) = Y[l + ~=1 Ya’(5+ r)] . (5.24)
(1 + ~ Ya~a){Y+ s[1 + ~ Y0/(s +

This is the Laplace transform of heq(t) determinedaccording to eq. (3.3) and eq. (3.4). Namely,
h(s) = [1— 1/i(s)]/is’, where i/i(s) is given by eq. (5.22) and

(5.25)
a1 ra

is the first moment of the WTD t/i(t), as follows from eq. (5.22).
Thus it is shown that the contracteddescriptionof the multiple-trappingmodel is equivalentto

single-stateCTRW with a distinct WTD for the first transition. The WTD for the first transition
dependson the initial conditions;for startin the mobile stateh(t) i/1(t), in the stationarysituationh(t)
is determinedfrom thetime averageof i/1(t). The conclusionsconcerningthe frequencyindependenceof
the diffusion coefficient in a stationarysituation,which weregiven in chapter3, hold in this model,and
are easily verified directly. Analogous derivations,with identical conclusions,can be madefor the
ladder-trappingmodel.

The equivalencebetweenmultistate trapping models and single-stateCTRW was establishedby
Schmidlin [1121andNoolandi [113]for the initial conditionsP(k,0) = PN(k,0) whereno distinct WTD
for the first transitionappears.The equivalencewas extendedto includethe caseof stationaryinitial
condition by the authors [126].

5.3. Direct derivation of waiting-time distributions for multistate trapping models

In the last section the WTD for the direct-accessmultistate trapping model was obtained by
comparisonof the CTRW theory with the resultsof the master-equationformulation. It should be
possibleto derive directly the WTD of the multistatetrappingmodels,onceit is acceptedthat these
modelsaredescribableby CTRW. It is pointedout in this sectionhowthis can be done. Althoughonly
constanttransition rates for the elementarytransitionswill be used,the derivations can be easily
generalizedto include moregeneralWTD. First the direct-accesstrappingmodel will be studied.

The key to the WTD of the multistatetrappingmodelsis the observationthat theyareidentical to
the first-passagetime distributionsto the set of neighborsites at time t when theparticle arrivedat the
starting site at time zero. Thus the problemof determiningthe WTD for the direct-accessmultistate
trappingmodel is equivalentto the first-passagetime problemdepictedin fig. 5.5a. The set of neighbor
sitesis replacedby afictitious levelN + 1, and i/1(t) is identicalto thefirst-passageprobabilitydensityto
levelN + 1 given that the particle arrivedat level N at t = 0. The following integralequationis obeyed
by i/i(t)

~(t) = Y exp[-(Y + ~ Ya)t]

+f dt’ f dt” ~ Y4 exp[—(Y + ~ Y~)t”] r4 exp[—r4(t’ — t”)] ~(t — t’). (5.26)
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Kb)

Fig. 5.5. The statesneededto calculatethe WTDs as first-passagetime distributions: (a) for the direct-accesstrapping model and (b) for the
ladder-trappingmodel. The absorbingsite is shown as an open box.

The first term representsthe WTD for a direct transitionto the level N + 1; it is not normalizedsince
the particle can also fall into the trapping levels. The secondterm representsthe sum of possible
transitionsto trappinglevels/3 with ratesY4 from theselevels the particlecan be releasedwith ratesr4
to makea first transition to the level N + 1 after a time lapse t — t’. The Laplace transformof the
integral equation(5.26) is

~(s) = (~+ Y + ~ [Y + ~ ~(s)]. (5.27)
at ~, s

It follows straightforwardlythat 1/i(s) is identicalto eq. (5.22).
The derivationof the WTD for the ladder-trappingmodel is madein an analogousway. In this case

the equivalentfirst-passagetime problemcan be given by introducinga finite chain with N + 1 states,
see fig. 5.5b, the state N + 1 correspondingto the set of neighbor sites. The first-passagetime
distribution is requiredfor the first transitionof theparticleto stateN + 1 at time t given that it arrived
at stateN at t = 0. This WTD fulfils the integral equation

= Y exp[—(y + P\,)t]

dt’ J dt” p~ exp[—(Y + v\)t”] XN.N~I(t — t”) ~(t — t’). (5.28)

The quantity X~.~i(t) is the WTD for the first transitionof the particleto stateN when it arrived at
state N — 1 at t = 0. Again the first term representsthe direct transition from level N to level N + I.
Iterationof this equationleadsto a seriesthat describesrepeatedtransitionsbetweenthe levelsN — 1

andN, with possibleexcursionsof the particleto lower levels includedin theWTD Xv.~,.The solution
of eq. (5.28) is obtainedin the Laplacedomain

- Y
S + ~ + Ir~ — ~.vXN.v- i(s)
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Similar considerationsas madeaboveleadto the relationbetweenthe WTD ~a+1,a and~aat for the
first transitionsform a to a + 1 and from a — 1 to a,

~a+t.a(5) = ~ + + ~a ~°~a ~a,a-t(5) N—i~ a �2. (5.30)

Repeatedsubstitutionof ‘~a+t,ain eq. (5.29) leadsto a continued-fractionrepresentationof the WTD
i/i(s) of the ladder-trappingmodel.This continuedfractionwill terminatefor finite ladders,sincefor the
lowest level

x21(s)- ~,/(s+ ~j). (5.31)

Hence also the WTD of the ladder-trappingmodel is obtainedratherdirectly.
It is interesting to calculate the mean time the particle spendsat given site according to the

ladder-trappingmodel. The mean time t can be essentially derived from the continued-fraction
representationof 1/i(s), for detailssee ref. [681.The result is

- -, ( ~N ~N~N-1 ~N ~2 ~
tY ~i+~—+ +~+~ ~. (5.32)

SN—t SN—1SN—2 SN—t St

When the transitionratesbetweenlevels a anda — 1 are not symmetric,then their quotientmaybe
interpretedas due to an energydifferencebetweenlevelsa anda — 1, accordingto

v0/~.1=exp[f3(r~— Ea_t)], (5.33)

where /3 = (kBT) - Using this expressionthe meantime t can be given in the simple form

t= Y
1[i + exp{/3(EN— sNt)} + exp{/3(EN — £N2)} + . . . + exp{/3(EN — r~)}I. (5.34)

As an illustration, the WTD for the laddertrappingmodelwith N= 10 and20 levelswill be shownin
fig. 5.6. The ratesare uniform, ~~‘a+ = Y~and ~a~~’a= exp(/3z~r),and /3 ~Xr= 0.5 was chosen.The
WTD show a shoulder,which is essentiallycausedby the escapeprocessesfrom the lowest levels. In
fact, the WTD of the laddermodel can be approximatedby the WTD of a two-statemodelwhen the
trappingrate is chosenas Y~= [1 + exp(—/3 ~Xs)]t Y andthe releaserateis Y~= t’(cf. the dashedlines
in the figure). However, quite different behavior of 1/1(t) can be obtainedby other choicesof the
transition rates ~ ~a on the ladder.

The WTD for the first transitionto a neighborsite, in themultiple-trappingmodel,can be derivedas
a thermalaverageby utilizing thesemethods.This will be exemplified for the direct-accesstrapping
models. The WTD for the transition to level N + 1 at time t when the particle is in trappinglevel a
(a = 1,... N—i) at t=0 will be called 1/Ja(t)~It is related to i/1(t) by

= f dt’ r exp(~rat’)1/i(t — t’). (5.35)

The thermalaverageof all 1/’~(s), including i/i(s) will be determinedas
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Fig. 5.6. The waiting-time distributions of the ladder-trappingmodel for N = 10 and 20 levels. The dashed lines show the WTD of the
correspondingtwo-statemodel with trappingand releaseratesasdescribedin the text.

(i(s)) = Pa ~a(~) + p~~(s). (5.36)

The weights Pa’ PN will be takenaccordingto the stationarysolution of the masterequation,cf. eq.
(5.23). The result is

(i(s)) = ~eq(5) = [1- i(s)], (5.37)

with ~asgiven in eq. (5.25) andheq(5) representsthe time averageof the WTD i/I(s). Hencethe WTD
for the first transitionin a stationarysituationcan beintroducedeither asthe time averageof 1/i(t), cf.
eqs. (3.3—4), or as the thermalaverage,cf. eq. (5.36).

The sameconclusionscan be drawn for the ladder-trappingmodel. Also in this model the WTD
i/ia (t) can be introducedand recursionrelationsobtainedfor them. It turns out [68] that also for this
model the thermalaverage(1/i(s)) accordingto eq. (5.36) with the appropriateweightsis identical to
heq(S), derivedfrom the time averageof 1/i(t).

5.4. Decompositioninto numberof statechanges

There is an especiallyappealingway of treating multiple-trappingmodels, namely the methodof
decompositioninto the numberof statechanges.Supposeaparticlecan bein either oneof two states1,
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2. The conditional probability P~(n, t) of finding the particle at site n in state 1 at time t can be
decomposedinto an expressionwhereno statechangehasoccurredat all in the time interval (0, t) plus
an expressionwherethe particlemadeonestatechangefrom 2 to 1 at an intermediatetime t’, plus the
termsrepresentingrepeatedstatechanges.The decompositionis graphicallyshownin fig. 5.7, asimilar
picturecan be drawn for the conditionalprobability P2(n, t).

Let Ra(fl~t) be the Greenfunctionsfor randomwalksin a single statewherethe particleremainsall
the time in statea (a = 1 or 2), and1/a(t) theWTDs for the transitionsto the otherstate.Ra(fl~t) is not
the conditionalprobability of finding the particle on site n in state a at time t, the latter quantity is
determinedbelow.The correspondingsojournprobabilitiesin the statea are ~a(t) No distinct WTD
for the first statechangesare introducedto keepthe formalismmoretransparent.Hencethe following
derivationsare strictly valid i) for exponentialWTD, as used for instancein the two-statemodel of
section5.1, ii) for arbitraryWTD if the first transitioncan be describedby the sameWTD as all further
transitions. It is assumedthat the /~a(t)are normalized and have finite first moments. Fourier
transformsof the conditionalprobabilitieswill be employedto avoid convolutionsin direct space.The
conditionalprobability of finding the particlein stateaat time t when it startedin state/3 will be called
P0~(k,t). Evidently, see fig. 5.7

P11(k, t) = R1(k, t) cJ~1(t)

+1 dt’ J dt” R1(k, t”) ~1(t”) R2(k, t’ — t”) ~2(t’ — t”)R1(k, t — t’) ~1(t — t’)

0 0 (5.38)

The convolutionsin eq. (5.38) becomesimpleproductsin theLaplacedomain.The Laplacetransforms
of the productsRa~o,and Rat/)~ appearand they will be designatedby brackets,e.g.,

[Ra~a]s =Jdtexp(—st)Ra(k, t) ~a(t). (5.39)

If the WTDs are exponential,thenthe Laplacetransformof Ra appearswith a shifted argument,e.g.,

P1 = W1

+ I ———I

+ I I ________
+...1

+w2 I

+ I I —I

—4— ————I I—————I I _____________

Fig. 5.7. Graphdescribingtheconditionalprobability of finding aparticlein state1 attime t. The Greenfunctionof theparticlebeingexclusivelyin
state 1 is representedby the solid line, thesamequantity for state2 is representedby the dashedline.
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&(~) ~[R&]=YR(5+Y). (5.40)

The geometricserieseq. (5.38) can be resummedwith the result

- [R~]
P11(k, s) = — [R1~]4[R2~2]~. (5.41)

Similarly, for the otherstates,

P12(k, s) = D - I [R,~2]1[R1~

P,1(k,s) = Dt [R1q~1]1[R2~7]1,
- (5.42)

P22(k, s) = D’ [R212]4

D = 1 — [R~cb1]1[R2cb2]1.

The summaryconditionalprobability is given by

P(k, s) = W1 [P11(k,s) + P21(k,s)] + W2 [P12(k,s) + P22(k, s)1, (5.43)

whereW1, W2 are the weightsof the initial statesi and2. In the stationarysituationtheseweightscan
be obtainedfrom the behaviorof eqs. (5.41—42)for smalls, correspondingto long times. It is seenthat
the summaryconditionalprobability is normalized,and

P11(0,s), P12(0,s)~ - -

s—rI) S t1 + t2

- (5.44)

I +t2

where

= ~a~sO

The coefficients of eq. (5.44) can now serve as the weights in eq. (5.43). The final results for
exponentialWTD 1/)a(t) can be broughtinto the form

P(k,s) = [D(i~+ iT~)]~{t1 [R1~ + 2[R~ti~]~{R2I~2]5+ i[R2’P2]5 } . (5.45)

- It is instructive to work out the caseof the simple two-state model with exponential WTD,
R1(k,s)~P(k, s) for simple random walk (cf. section 2.2) and R2(k,s) = 1/s correspondingto a
trappedparticle. Of course,the results of section5.1 are recovered.

The treatmentof the two-state model by decompositioninto the number of statechangesand
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resummationof the serieswas given by Singwi andSjolander [117].They applied this formalism to a
description of oscillatory diffusion in liquids. The mathematicaldescriptionof two-state renewal
processeswas reviewedby Cox [127].The two-staterandomwalk with generalWTD, including distinct
WTD for the first transition,was treatedby Weiss [128,129] who also includedbiasedrandomwalks.
Weisswas mainly interestedin the derivationof asymptoticproperties,suchas the Gaussianform of the
conditionalprobability andthe meantime spentin the two states.The advantageof the treatmentof
the two-statemodel by decompositioninto the numberof statechangesis that the Greenfunctionsof
the individual states Ra(k~t) are considered to be known, it is not necessaryto derive them
simultaneously.This may savemuch labor. Expresseddifferently, in a multistateCTRW all site and
statechangesaretreatedon the samefooting. In the approachpresentedin this sectionthe transitions
betweensites, within the samestate,are already summedup to the Greenfunctions Ra(k, t). It is
obvious that the formalism can be extendedto a largernumber of states,although the calculational
efforts are increased.It should be noted [129]that the ordinary randomwalk can be consideredas a
specialcaseof the two-staterandomwalk, with onestatecorrespondingto the instantaneoustransitions
to neighbor sites and the other one to the sojourn at a site. It is also worth mentioning that a
decompositioninto the numberof statechangesis usefulin other stochasticproblems,for examplein
chemical kinetics and its investigation by NMR (for a review see [130]), rotational diffusion of
molecules[131]and in the strongcollision model of the depolarisationof rotatingspins [125,1321.

6. Lattice models with random barriers

6.1. Introduction

Beginningwith this chaptera new aspectof diffusion in disorderedmediais treated.In all the
previouschapters,the modelswere solvableby Fourier transformmethodsalonebecausethe models
possessedtranslationalinvariance.With a degreeof disorderin the mediumaveragingmethodsmustbe
developedto restorethe translationalinvarianceto averagedquantities.Perhapsthe most intensively
studied lattice models possessingrandom transition rates are the random barrier models. One
compelling reasonfor studying this model is its simplicity and as a consequence,thereis a wealth of
exact resultsthat havebeenobtained[133—1401.Theseresultscan be usedas benchmarktestsof the
validity of approximateor moresimply expressedsolutions.The readershouldnot be discouragedfrom
investigatingsuchmodels,becausethe solution remainsincomplete;most resultshavebeenobtainedin
one dimensionandevenfor this case,a completesolution hasbeengiven only for the casewhenthe
barriersare infinitely high. In higher dimensionsthe solution of the infinite barrierproblemmustbe at
leastas difficult as solvingthe bond percolationproblemto be discussedbelow. Hence,thereis a clear
need to developuseful and accurateapproximationsfor application to higher dimensionalsystems.
Thesemodels,simple as theymaybe, find applicationin explainingfrequency-dependentconductivity
experimentsof disorderedquasi-one-dimensionalelectronicconductors,conductivepolymers,semicon-
ductor glassesandtransport throughcompositematerials.

The model is depictedin fig. 6.1. The sites areat the potentialminima andthe barriersover which
the particles jump have heights which are randomly and independentlyplacedon the lattice. The
transitionratefrom site n to site n + 1 is the sameas the transitionrate from site n + 1 to n; thisfeature
is presentbecauseall the minima lie at the sameenergy.As might be expectedfrom the pictorial
representation,the equilibriumsolution correspondsto all siteshavingthe sameoccupationprobability.
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~,Ir1

Fig. 6.1. Schematicrepresentationof the randombarrier (or mountain)model. All valleys are equally spacedand have thesameenergy.

6.2. Exact results in one dimension

The presentationis restrictedin this portion of the chapterto onedimension.The dynamicsof the
particleon a linear chain is describedby the masterequation:

dP(n, t)/dt= F~[P(n —1, t) — P(n, t)] + F~+1[P(n + 1, t) — P(n, t)] , (6.1)

wherethe nearest-neighbortransitionrates are labeledaccordingto the larger site index of the pair.
The treatmentoutlined below is due to Zwanzig [138]andthe resultswere extendedby Denteneerand
Ernst [139,140].

Consideralattice of N siteswith periodic boundaryconditions;the latticeconstant,a, is chosento be
unity. The methodof Zwanzig introducesthe Laplacetransformof the time variable andthe Fourier
transformof the spacevariable to expressthe conditionalprobability.

The solution of the masterequation,eq. (6.1), is formally written as:

P(k,s)=~(sE+f~U.f~)~P(k’,O), (6.2)

wherethe following matriceshavebeendefined:

fkk = ~kk.(e — 1), (6.3)

and

Ukk. = ~ emnT~. (6.4)

The matrix f hasbeendefinedso that it hasan inverse.E is the previouslydefinedunit matrix. The
matrix multiplying P(k’, 0) in eq. (6.2) is the Greenfunction for the dynamicalprocess;it is denotedby
Gkk(s).

From the Greenfunction a connectioncan be madebetweenthe densityof eigenvalues,which is
simplycalled the densityof states,and the averagedGreenfunction. The densityof statesis the sumof
deltafunctionshavingthe eigenvaluesin the argumentaveragedover the ensembleof configurationsof
the system.This is called a spectralproperty of the model. The normalizeddensityof statesis:

p(u)= ~ (~(u-A~)), (6.5)
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wherethe bracketsdenotean averageover all configurationsof transitionrates.We note herethat the
averageis takenover the distributionof disorderedtransitionratesin the medium.In previouschapters
averageshave beenimplicitly taken over realizationsof randomwalks and over thermally weighted
initial conditions.Heretheseaveragesarenot distinguishedwith differentnotationsandthe meaningof
the bracketswill be clear from the accompanyingtext. The eigenvaluesbelongto the spectrumof the
matrix of transition rates;from eq. (6.2) the relationbetweenthe eigenvaluesand the matrix can be
written as:

(6.6)

wherethe eigenfunctions-v arenot furthernecessaryfor the densityof states.The identity

u—~—ir =P1A+i~6(u—Ap), (6.7)

where P denotesthe principal part, is useful for making the connectionbetweenthe densityof states
andthe Greenfunction. Using eq. (6.7) in eq. (6.5) gives:

p(u)=~(~~ u—i~—A)’ (6.8)

where Im is the imaginary part of the quantity andN is the numberof sites introducedearlier. The
eigenvaluesarereplacedby the full matrix using eq. (6.6),

(~Im~ 1/ 1
pku,— ~ k~’(1)~~~

= ~ (Ô~(s))= (P(0,s)). (6.9)

The sumover i.’ hasbeenreplacedby the sum over wave numbersk. Invarianceof tracehasbeenused.
s = —(u — ir) andthe last equalityshowsthat the densityof statesis relatedto the probability that the
particle is found on the initial site. This expressionis generallyvalid. Using the matrix notation the
averageGreen function from eq. (6.2) is written as:

(a(s)) = (f*~.(sE+f*.f.U)_l.f*) . (6.10)

This function is usedas the basisfor the derivationof the short-timeandlong-time propertiesof the
model.

The short-timepropertiesof the Greenfunction arefound by expandingthis function in powersof
1/s. To do this separatethe matrix Ukk into diagonaland off-diagonal contributions:

Ukk = F8kk + ~tkk~ , (6.11)

with

(6.12)
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and

LIkk = ~ ~ ~ (6.13)

where~I, = F,, — “~ and~ is the averagejump rateexpectedfor the short-timeparticlediffusion. The
off-diagonal contributionzi is treatedas a perturbation;the unperturbedGreenfunction is

Gkk.(s)= 6kk[s + 2Fa(1— cosk)]~= ~kk.g~(S). (6.14)

The diagonal portion of Gkk(s) is dominant, since the sumswith k ~ k’ oscillate; the law of large
numbersfor independentlyand identically distributedrandomnumbersaveragesout the off-diagonal
terms and they are negligible in the limit N—~x~ The Green function is rewritten in the form
introducing an averageover all transition rate configurations.For this the following operatoridentity
for operatorsA and B is useful

(A + B)1 = A1 — A’BA’ + A~B(A+ B)’BA~, (6.15)

and the result is

(Okk(s))=g~- ~ + (g~f~~[~f*((Gyl+f.~.f*)i f1kkf~ki~). (6.16)

Using eq. (6.13) it is easilyseenthat the secondterm in eq. (6.16)vanishessinceLIkk = ~,, ~I~/N. This
equationis furtherexpandedwith respectto LI to obtainthe short-timecorrections.The mean-square
displacement is:

(x2)(s)= (Ôkk(S))~k=II

= —‘ K[~~•~ ~ (_f.~.f*G)1.f.~]) (6.17)

From / = 0, the first correctionto the leading term in eq. (6.17) is:

~ LI
0~.g~.(s)2(1 — cosk’) = 2(~F2) + O(s2). (6.18)

Thisshort-timecorrectionis proportionalto t
2. The correctionis negativeandreducesthe mean-square

displacementfound by using only the leading term. The mean-squaredisplacementfollowing from a
systematicexpansionhas the form

(x2)(s)= 2D(s)/s2, (6.19)

where

D(s) = I7~[1 + LI
1(Fjs) + LI2(Fjs)

2 + LI
3(Fjs)

3 + . .
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The coefficientsLI1,. . . LI3 can be derivedby this methodandtheyaregiven in tablei. The real part of
D(iw) is the frequency-dependentdiffusion coefficient, derived herein a high-frequencyexpansion.
The ensuingshort-timebehaviorof the mean-squaredisplacementis:

(x
2)(t) = 2Ft[i + ~LItFt + ~LI

2(Ft)

2 + ~LI

3(Ft)

3 ~ (6.20)

Thecomparisonof the exactresultsfor the coefficientsLI
1, . . . LI3 with numericalsimulationsof (x

2)(s)
is deferredto section6.4.2.Unfortunately, the short-timeexpansionbreaksdown for times of order
unity; for larger timesthe long-time asymptoticregimemustbe developed.

The formalism introducedabove can be used to discussthe long-time regime. The development
needsonly to be slightly modified. In this regimethe limit s —~0 is taken;thereforeit is necessarythat
the matrix U in eq. (6.4) hasan inverse.This inverseexists as long as T, ~ 0 for all n. The Green
function is written as:

= f*1(u8(f*f+ sUt)~)f* (6.21)

The matrix Ut is expressedin its diagonaland off-diagonal elements:

= ~kk”~0 + LIkkr, (6.22)

wheref~is the following averageinversetransitionrate:

Table I
Coefficients of thediffusion

D~(s) ~

Exact —8~-~-~-_6i
2_4i,+~..0

2

EMA

1)11(s) 0 02 0

Exact + ‘~2 - - 61K2K3 +__________ K 4 24 8 16 96 2304

EMA 2 ~

4 8 8 16 16 64

1~2(~) 42

Exact -~-+—~-

12 108 24 54 27

EMA
12 24

The coefficients Kr arecumulants; thoseshownhereare:

= - K3 = -K~)3)/K~)3~K4 = -
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1 1

F~ =~ ~- (6.23)

and

LIkk = ~ (~-— e~’~~”= ~ ~ . (6.24)

Neglectingfor the moment,the off-diagonal contributionin eq. (6.21), the Greenfunction for the
uniform lattice is:

~ kk[s+21~cosk)] (6.25)

The mean-squaredisplacementderivedfrom eq. (6.25) is a linear function of time as in the simple
random walk and I~expressesthe exact result for the averagetransition rate at long times. The
diffusion coefficientof the randombarrier model is thusgiven by D = f~a2 and the averagetransition
ratein the expressionis the inverseof the averageof theinversetransitionrates.This is a generalresult
in d = 1, valid for more complicatedmodels.The diffusion coefficient is relatedto the mobility by the
familiar Einsteinrelation andit is intuitively obviousthat the mobility is limited by the small transition
ratesor equivalentlythe largebarriers,asexpressedin fig. 6.2. The perturbationtheory generatingthe
exactcorrectionsto the Greenfunction, eq. (6.21),can be systematicallydeveloped.

The Green function, Gkk(s), for long times is derived in a mannersimilar to the short-time
expansion.This function is expressedin the following long-wavelengthlimit (k —~0):

(&k(S)) = {s + k2[D
0(s) - k

2 D
2(s) + . . .]}~ (6.26)

The most extensiveresults havebeenpublishedby Denteneerand Ernst [139,140]. They derive
correctionsfor the diffusion coefficient, D0(s), and the so-calledsuperBurnettcoefficient, D2(s); these
coefficientsappearin the expressionsfor the momentsof the displacement.Somemomentsof special
interestarethe mean-squaredisplacement:

(x2)(s)=21
5

0(s)/s2; (6.27)

the fourth moment of the displacement:

Fig. 6.2. The effect of high barrierson theaveragemobility as perceivedby J. Villain.



lW. Hans and K.W. Kehr, Diffusion in regular and disorderedlattices 327

(x4)(s)= 24(D
2(s)/s

2+ D~(s)/s3), (6.28)

and the velocity autocorrelationfunction:

c(s) = ~ (x2)(s). (6.29)

The resultswill not be derivedin detail, they are quotedto ~3/2 for D
0(s):

D0(s) = 17){1 + 0~(s/J7~)
t~2+ 82(s/F~)+ 9

3(5/f~)
3/2}, (6.30)

and to 1/2 ~ D,(s).

D
2(s) = + ~(/p)t/2} (6.31)

The coefficients are given in table 1. More details can be found in Denteneerand Ernst [139,140].
Sincethe real part of D0(iw) representsthelow-frequencydiffusion coefficient, the resulteq. (6.30)

implies a correctiontermproportionalto wt/2 at low frequencies.Furtherremarkson thesignificanceof
this resultwill be madein section6.7. The correspondingbehaviorof the mean-squaredisplacementin
the time domain is:

(x
2)(t) = 2~t[i + ~ o

1(t~ty
t12+ o

2(r~ty~+ ~ (~ty
312+...]. (6.32)

Hence for this modelcorrectionsto the asymptoticmean-squaredisplacementappear,which beginwith
a tU2 term. Seesection6.4.2 for comparisonwith numericalsimulations.

The previous analysis remains sensible for a transition rate distribution p(F) which vanishes
sufficiently rapidly as

~~m(1~m)JdFp(F)/Fm<~, (6.33)

wheremmay be arbitrarily large. The casewhereeq. (6.33) is assumedis sometimescalled the weak
disorder limit. This languageis not usedhere since it may causeconfusion later; instead,the weak
disorderlimit is usedto denotean expansionin powersof ~F.Otherdistributionswith divergentinverse
momentswere consideredby Alexanderet al. [133—1371.Their method of solution using integral
equationshas been formulated to determinethe exact asymptotic behavior of P(0, s) even under
conditionswhere eq. (6.33) is violated. If the particleis initially placedat site n = 0, the occupationof
this site, after taking the Laplacetransformof eq. (6.1), can be formally expressedas:

P(0, s) = [s + Ø~(s)+ ~±(~)Jt (6.34)

where

()F P(0,s)P(1,s) and ~(s)1~ ~(0,s)-~(1.s) (6.35)
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The functions /~(s) can in turn be consideredto be functionsof their neighboring conditional
probabilities by using the_masterequation and repetition of this proceduredevelops a continued
fraction for the functions P(0, s)

-+ 1 1 -I
_+ ) (6.36)

n+I S + ~n+I(~)

and

=(~+ ~ + ,~(~))‘ (6.37)

where

~(s) = T~+1[P(n+ 1, s) - P(n, s)] /P(n, s) (6.38)

and

~I,,(s) = F~[P(-n, s) - P(-n -1, s)]/P(-n, s), (6.39)

The further developmentfollows the methoddevelopedby Dyson andSchmidt for finding the density
of statesof disorderedone-dimensionalsystems[141].

The functions /~(s) are themselvesrandomvariablesand are distributedaccordingto the distribu-
tion functions:

L(x)=Jdx’ f(x1)JdFp(F) 6(x_ (~+ ~JI) (6.40)

where, again, the translationinvarianceof the model hasbeeninvoked so that the distributions for
1/ i(s) are assumedto be independentof n. Also, since 4 k(s) and 1/i (s) haveno commontransition
rates, they are independentlydistributed with the samedistribution function f,(x). P(0, s) hasbeen
previouslyexpressed,eq. (6.34), as a functionof q~i(s); therefore,the ensembleaverageof P(0, s) is:

(~(0,s)) = J dx’ f3(x’) J dx” f,(x”) ~+ x~+ x” (6.41)

This approachto the problemmakesno assumptionabout the distributionp(F). In fact, eventhe
first inversemomentmay diverge.This is a situationwhereno diffusion exists. Alexanderet al. [136]
consideredseveral classesof distributions and analyzedthesedistributions basedon the asymptotic
form of the function f,(x) (s—*0):

f1.(x) = h,(x). (6.42)e(s)
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For the casediscussedin eq. (6.33),Stieltjestransformsand inequalitiescan be usedto deducethe
scaledfunction h5(x); the details can be found in ref. [135].The result is:

h,(x)= 6(x/c(s)— 1), (6.43)

and the parameterc(s) is:

(6.44)

The expansionparameterwhich determinesthe long-time propertiesis proportionalto 51/2, From the

aboveequations,the expressionfor (P(0,s)) is:

(P(0,s)) = 1/[s + 2s(s)] . (6.45)

Recently Igarashi[142]consideredcorrectionsto this leadingbehaviorand expressedP(0,s) as:

1 [1 c(s)! /22
(P(0,s))=— L~-t

c(s) 2 8

2 2 / ~ /&3 1 9 /2~ ~ / ~-2 \21+~i~c(s) (~~——3—+——————-—i——--—(\—-5—)]. (6.46)16 256 128 ‘~_~ 256

Correctionsto order c(s) weredeterminedusingthe replicamethodby StephenandKariotis [i43]; this
methodis not further explainedhere.The interestedreaderis referredto their paperfor details.

The real advantageof the Dyson—Schmidtmethod is realizedwhen the inverse momentsdiverge.
Onesuch distributionused in refs. [135—136]is

F f(i—a)F~, 0~F~1,
~ — 10, otherwise (6.47)

with 0<a<1. Using Stieltjes transforms [135], the scaling variable can be determined to be
c(s) = ~(21~)~ Furthermore,h5(c) can be determinedby using Mellin transforms [135,144]. This
methodgives the asymptoticpropertiesof the densityof states,i.e. eq. (6.9). The diffusion coefficient
is calculatedby assuminga scalingrelation betweenP(n, s) and P(0,s):

(~(n, s)) = (~(0,s)) F(n/~(s)). (6.48)

Requiringnormalizationof the sumover all the probabilities, the correlationlength, f(s), is:

- (6.49)

Numerical simulations[135,145] haveprovided the function F(z):

F(z) = e~. (6.50)

This result is used to calculatethe diffusion coefficient as:
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D(s)= D~C~s’~2~, (6.51)

with

(a) . I
C)) = ~[ir(1 — a)/sln Ira] . (6.52)

This expressioncan also be calculatedby the effective mediumtheory (seesection6.4) E135,1441; the
result is:

C~(EMA)= ~[ir(1 — a)2”/sin ira]t(21r) . (6.53)

There is a speculationin ref. [144]that eq. (6.53) is exact. At any rate for a small, the effective
medium is in very good agreementwith the result derivedfrom the Dyson—Schmidtmethodand the
scalingrelation.

In the time domain the mean-squaredisplacementis:

t2ht - a)!)2-a)
(x2)(t) = 2D~C~ F((4 — 3a)/(2 — a))’ (6.54)

6.3. Thebroken-bondmodel

A specialcaseof interest is the distribution:

p(F’) = (1 — c) ~~(F’— F) + c ~(F’) . (6.55)

For this distribution all the inversemomentsof the jump rate diverge.Moreover, the lattice is broken
up into chainsof finite lengths.Oneachof thesechains thetransitionratesareconstantandequalto F.
This problemwas analyzedby Heinrichs [146]usingperiodic boundaryconditionson eachchain. This
deficiency was correctedandthe boundarysiteswere properly treatedby OdagakiandLax [147].In a
manner similar to eqs. (6.19) and (6.29) D(s) is related to the mean-squaredisplacementby
(~2)(~) = 2D(s)/s2for equilibrium ensembles.In the time domain D(t) is proportionalto the second
derivativeof (x2)(t). For this modelast—~~ D(t)—s’ 0. Thestaticdiffusion coefficient vanishes,but the
frequency dependenceof this quantity is of interest here. They consider the average frequency-
dependentdiffusion coefficient expressedas a weightedsum of the ‘diffusion’ coefficientsfor the finite
segmentsD\(s):

D(s) = ~ NCN ‘~N(~)’ (6.56)

where

DN(s) = ~ (n — n
0) ~N(~’ s fl((~0), (6.57)

2N n,n111

and CN is:

C~,= c
2(i — c)~. (6.58)
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The c2 factoris the probability of two zerotransitionratesat eachend, andthe factor (1 — c)N~is the
probability of finding N — 1 consecutivenon-vanishingtransition rates. The quantity NCN is then the
probabilitythat a particle,which is randomlyplacedon the linearchain, is found on a segmentof length
N.

s n
0) is expressedusing a simple tridiagonal finite-dimensionalmatrix:

PN(n,s n0) = [(sE+ AN)t]fl

where

F -F
-F 2F -F

-F 2F

AN = . . . (6.59)

2F -F
-F F

The smallesteigenvalueof the symmetrictridiagonalmatrix is:

~k~—0. (6.60)

This correspondsto the stationary-stateeigenvector:

V0=~(1,1,. .1). (6.61)

The otherN — 1 eigenvaluesare:

= 2F[1 — cos(ir~/N)], (6.62)

v = 1,2,. . . N — 1. The correspondingunnormalizedeigenvectorsare:

V~= (C4-, C3~,...C(2Nt)4-), (6.63)

with the amplitudesC4- = cos(rir/2N).The segmentconditionalprobability is expressedin this spectral
representationas:

N-i C C— — 1 2 (2n-i)~~(2m-i)~

PN(n,slm)_-_N+N_ ~ . (6.64)

The finite-segmentdiffusion coefficient, usingthis resultand eq. (6.57) is:
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n — N — 1 — s2 V—I [1 — (_ 1)4-] (i + C
24-)— 12F 2N

2F ~ (1 C
54-)

2 [2F(1 — C
21,) + s]

(1+41/s)’ 2 ~____I \

=1+ N ~z~+i — z~’+1)’ (6.65)

whereZ+ = (v~±Vs + 41) /2w. For the short-timeregimethe asymptoticresult for D(s) was given
by Odagaki andLax as (s—* cc):

D(s) = (1 — c)F~2c(1 — c)F
2/s+ 2c(1 + c)(i — c)F3/s2+‘.., (6.66)

and for the long-time regimethe asymptoticresultobtainedby them is (s—*0):

D(s) = (1-c) ~- (1- c~+ c)2 (6.67)

The last expressionreveals that the static diffusion coefficient vanishes,as required,for this model. It
shouldbe remarkedthat the derivationof Odagakiand Lax doesnot includethe possibility of effects
deriving from strongfluctuationsin the segmentlengths.Thesefluctuationsmay leadto a non-analytic
behaviorof the diffusivities at low frequencies.Analogousnonanalyticeffects appearin the survival
probability againsttrappingand they are discussedin chapter9.

The probability of finding the particle on the initial site at time t exhibits an interesting time
dependence.This is relatedto the previousdevelopmentby the series:

(P(0, t)) = E NC\~(P(0, t))\.. (6.68)

Using eq. (6.64) this quantity can be written in the form [148]:

(P(0, t)) = c[l + ‘(~)1. (6.69)

The time-independentcontribution in eq. (6.69) is derivedfrom the stationarysolution. The time-
dependentpart is simplified using the disorder-independentinitial occupation of site 0 and the
normalizationof the eigenvectorsas well as the inverseLaplacetransformof eq. (6.64):

c 1(t) = c .\=2 (1 — c)~ ~ exp[—2Ft(1 — cos~)]. (6.70)

1(t) is an integral over the densityof statesp(u):

c 1(t) = f du p(u) e~1’, (6.71)

with the densityof statesfrom eq. (6.64) and eq. (6.9) given by:
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(1—c) ~exp[Nln(1—c)]~6(u—2(1—cos~))

N=2 - c) ~I 2ir/ü 6(1- ~). (6.72)

The dominantcontributionsfrom the sumover I arethe first few termsandthe sum over N can be
transformedto a continuousPoissondistribution with ln(1 — c)L’ as the correlationnumber (c < 1).
The densityof states,expressingthe sum over / as a Heavysidefunction and using this to give the
integralover N a finite lower bound, is:

p(u) — 2~ [i + exp(—ira/~). (6.73)

This is used to evaluateeq. (6.71) usinga saddle-pointapproximation;the result is:

cI(t) = 1 t/2 [1 + T
2~3]exp(—3/2r’~3), (6.74)

(3 irFt)

where

r=\/Ftln2(1—c) . (6.75)

The probability of finding the particleon the initial site exhibits an unusualdecay:

(P(0, t)) — c~exp(—att13). (6.76)

This behavior has been found in a number of other models of diffusion on disorderedlattices;
therefore,further discussionof this behaviorwill be deferredto chapter9.

6.4. Effectivemediumapproximation

6.4.1. Discussionandgeneralformalism
The exact resultsof the previoussection havedemonstratedthe interestingfrequency-dependent

propertiescapableof beingderivedfrom simplemodelswith staticdisorder.The methodsemployedto
obtain those results are, with the exceptionof the replica method, only suited to deal with one
dimension;in order to makeprogresson the problemof transportin higher dimensions,othermethods
must be sought. One simple methodwhich can give reasonableresults in any dimensionfor large
disorder and high concentrationsof the defects is the effective-medium approximation (EMA)
[149—156].The EMA is exact in the limit of high andlow concentrationsof defectsand it providesa
smoothinterpolationbetweenthe two limits. The reliability of the EMA can be gaugedby comparison
with exactresultsandby checkingthe solutionsagainstMonteCarlo simulations.The effective-medium
theorieshavebeenformulatedin thespirit of multiple scatteringformalisms.Their merit lies in the ease
of calculatingexplicit resultswithin the formalism.However,extensionsbeyondthe simplestapproxi-
mationsare quite tediousand thereis no procedureto estimatethe expectederror in the procedure.
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In the EMA the effects of disorder are replacedby an averagemedium. To beginassumethat the
conditional probability G(n, t) in the averagemedium satisfiesa generalizedmasterequation:

G(n, t) dt’ F(t — t’) ~ [G(n’, t’) — G(n, t’)], (6.77)
t 0 Kn’.n)

where the sum is over all nearest-neighborsitesaroundthe site n. F(t) is an associatedtransitionrate
for the effective medium; it containsthe non-Poissonianpropertiesof the disorderedmedium.

The formulationof the EMA providesa connectionbetweenthe distributionof transitionratesp(F)
andthe associatedtransitionrate for theeffectivemediumF(t). This is doneby consideringa clusterof
bondswhose transitionratesare taken from the original configurationof ratesandembeddingit into
the effectivemedium(fig. 6.3). For siteswhicharenot connectedto bondsof the embeddedcluster, eq.
(6.77)holds. However,for siteswithin or contiguouswith theembeddedcluster,the transitionratesare
randomfunctions.

The system with the embeddedcluster is describedby the set of equations:

t) = ~ ~ — P(~,)]

+f dt’ F(t — t’) (1 — LI~~.)[P(n’,t’) — P(n, t’)]}, (6.78)

where

LI = ~ 1 if n andn’ arenearestneighbormembersof the clustersites, ~679
nfl’ 10 otherwise.

Theseequationsaresolvedby introducingthe Laplacetransformof the time variable. The Fourier
transformationof the site index doesnot completelydiagonalizethe equations,but only elementsfor
those sites connectedto the random bonds of the cluster appear as inhomogeneousterms in the
expressionfor P(k, s). The final set of linear equationscan be solved by algebraicmethods.The
function F(s) is determinedby a self-consistencyrequirement;namely,averagingover the remainderof
the transitionratesin the clustershouldgive the sameexpressionsfor G(0, s) as given by the solutionof
the generalizedmasterequation,eq. (6.77).

r(t)

Fig. 6.3. In the effective-mediumapproximationall but a small clusterof transition ratesis replacedby an effective value. Here a clusterof one
bond I” betweentwo sites is chosen.
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For a single randomtransition rate, F01, the self-consistencycondition is:

F(s) - F)( — — - - — ~=0; (6.80)
1 (2/z){[1 s G(O, s)]/F(s)}(F(s) F01)

G(O, s) is the initial site occupationprobability in the EMA:

ö(ø, s) = (2ir)d 15+ z ~(s)[1 - p(k)]~ (6.81)

The function p(k) dependson the lattice type. For the d-dimensionalhypercubiclattices (i.e. linear
chain, square,simplecubic, etc.) the transitionprobability is given by eq. (2.5). The function G(0, s)

with F(s) as a parameterhas beenextensivelystudiedfor otherlattices in the literature [156—157].

6.4.2. Transport in onedimension
In onedimensionthe EMA resultscan be comparedwith thosein section6.2. For thecasewherethe

momentsarefinite, the following asymptoticbehaviorfor large s is found [153,155]:

F(s) = F,,[1 + LI1(Fjs) + LI2(F,,/s)
2 + LI

3(F,,/s)
3 +...]; (6.82)

i.e., F(s) is of the sameform as D,,(s) in eq. (6.19), the coefficientsderivedin the EMA aregiven in
table 1.

F,, andLI
1 werederivedin section6.2 andtheyareexact.The coefficientLI2 can be foundin [136]and

it is also exact in the EMA.
In the limit s—*0, F(s) hasthe sameform as D0(s) in eq. (6.30),

F(s) = f~[1 + Ot(s/17))1/2+ 62(s/I~)+ ~(~/J~)
3/2+ ~] . (6.83)

The coefficientscan befound in table1 andtheyarecomparedto the exactresults.F~and 0~are exact,
see eq. (6.30). The results for the coefficients 0, and LI, have been comparedwith Monte-Carlo
simulationsof the master equationusing the distribution:

p(F’) = (1 — c) 8(F’ — F) + c 8(F’ — F<). (6.84)

The results are shown in figs. 6.4 and 6.5 for the mean-squaredisplacementand fourth moment,
respectively.Onefinds generallyvery good agreementbetweenthe simulationsandthe short-timeand
long-time expansions.It is seenthat it is necessary to includethe coefficients02 and 03 in order to get
agreementat long times. The EMA expressionshavebeen used in the figures, but the difference
betweenexactresultsandEMA is not visible in the simulation.As mentionedpreviouslythe EMA also
gives results when the inversemomentsdiverge; this casewill be discussedin section 6.5.

6.4.3. Transport in higher dimensions
It is an easytaskwithin the EMA to derive explicit resultsin higher dimensions.The d-dimensional

resultsfor the hypercubiclatticesareavailable.In the limit s—* cc, F(s) is of the sameform aseq. (6.82)
with slightly modified coefficients.
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10000 i I I I
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_ /
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01 1 10 100 1000 - 01 1 10 100
TIME TIME

Fig. 6.4. The mean-squaredisplacementversus time for the di- Fig. 6.5. The fourth momenlof thedisplacementversuslime for the
chotomicrandom-barriermodel in d = I with c = 0.5 and F’ 0.IF. random-barriermodel. See fig. 6.4 for details.
The solid curvesrepresentthe EMA for the short- and long-time
behavior.

The coefficients F,, and LI1 are identical to thosegiven in 1 dimension.The higher coefficientsare
given by:

LI2 =4~(F—Fj
3)-/F~ — (2d + 1)LI

1

and

LI3=—8((F—Fj
4~/F~+LI~—6LI

2+12(~—d)LI1. (6.85)

A comparisonof theseresultswith Monte-Carlosimulationsrevealsthat the short-timeexpansion
breaksdown at a later time in higher dimensionsthan in one dimension(seefigs. 6.6 and 6.7).

The expansionfor smalls requiresthat eachdimensionbe separatelytreated,since the asymptotic
behaviorof G(O, s) in eq. (6.80) determinesthe precisebehaviorof F(s). The averagetransition rate,
17), in d dimensionsfollows generallyin the limit s—~0 from:

( ~)F ~)=o. (6.86)

1 —(17— F’)/d17)

For p(F) given by eq. (6.84), this averagerate is:
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Fig. 6.6. The mean-squaredisplacement versus time for the di- Fig. 6.7. The mean-squaredisplacementversus time for the di-
chotomic random-barriermodel in two dimensions.The parameters chotomic random-barriermodel in threedimensions.The parameters
are as describedin fig. 6.4 and the curveshave analogousmeaning, are given in fig. 6.4 and thecurveshave analogousmeaning.

= 2(d— 1) + 2(d 1) \/q + 4(d — 1)FF<, (6.87)

defining q = (d — 1)[(1 — c)F + cF<] — cF — (1 — c)F<.
In two dimensionsF(s) is:

F(s) = 17~[1+ 025 ln(32I~/s)+...] ; (6.88)

and in threedimensionsthe correspondingexpressionis:

F(s) = 1[1 + 01(s/f~)+ 02(s/F0) + . . ~]. (6.89)

The structureof the coefficients 0~is independentof the dimensionality:

~-A,(d)K
fl-F’ F’

- - - [1- (F0 - F’) /dF0]
2 [1- (~ - F’) /dFo]2)’ (6.90)

The coefficientsA,(d) dependon the dimensionand they are

A
2(2) = l/

4ir
(6.91)

A
1(3)=G(0)=~ and A2(3)=—1/4ir.

As a consequenceof this expansion,the velocity autocorrelationfunctionshavenegative long-time
(d+2)/2tails proportionalto t . Figures 6.6 and6.7 illustrate the behaviorof the mean-squaredisplace-
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ments. The solid curvesshowthe EMA resultsfor long andshort times, andonerecognizesvery good
agreementbetweenthe simulationsand the EMA results.

The renormalizationgroup method[158] and the replica method [159]havebeenapplied to this
model in d = 2 and 3. The results arequalitatively the sameas that found by the EMA; however,in
both casesthe resultswould not provideaccuraterepresentationsof the Monte Carlo simulations.The
renormalizationgroup method is discussedin section 6.6.

6.5. Thepercolationproblem

Another aspectof the random lattice is the random removal of bondsfrom an otherwiseperfect
lattice in higher dimensionsthan one. This is the bondpercolationproblem,which hasbeenintensively
investigatedandfinds applicationin a variety of experimentalsituations[160—162].The lattice with the
removedbonds is like a boardwith a matrix of resistorssomeof which havebeenremoved.After the
randomremovalof eachresistora voltmetermeasuringthe resistanceacrossthe matrix is usedto test
whetherthereis still a closedcircuit. After a certainfraction of resistorshasbeenremoved,the board
no longer conductsfrom oneside to the other, i.e. thereis an opencircuit. If the boardis largeenough
(i.e. the numberof resistorsapproachesinfinity), the fraction at which the conductivity vanishesis a
constant.This fraction is called the percolationconcentration.Another way of understandingthis
phenomenonis thatabovethe percolationconcentration,in the limit of an infinite numberof resistors,
thereareno infinite clustersof connectedresistors;whereas,below this concentrationthereis certainly
an infinite cluster. Even thoughall sites are not containedin the infinite cluster, it doesconnectthe
oppositesides of the matrix as the numberof sitesgoes to infinity.

The infinite cluster can have a very complicated structurewith multiple paths and dead-end
branches.This is properly a critical phenomenonand the methodsof that field havebeenextensively
appliedto percolationproblems.However, giving more detailslies out of the scopeof this reviewand
the reader interestedin more details is referred to the following articles [161—164].The results
presentedbelowrefer to the physical quantitiesderivedfrom the EMA. This approximationis properly
called themean-fieldapproximationin the critical phenomenaliteratureandas such,it cannotbe relied
upon to yield accuratebehaviorof physicalquantitiesclose to the percolationconcentration.Neverthe-
less,thequantitiesdo havethe properqualitativebehaviorandbecausethe frequencybehavioris easily
derivedin the EMA, dynamicalphenomenaare worth investigatingto obtain new insights.

The distributionof transitionratesis representedin eq. (6.55); thecalculationof thediffusion in the
EMA usingthe self-consistencycondition, eq. (6.86) gives the result:

zF /z—2 ‘\ z—2
Do = 17~a2= ~ — c) , ~— � c (6.92)

0, otherwise.

The diffusion coefficient is a linear function of concentrationand vanishesat the percolation
concentrationcp = (z — 2) Iz. This value is exactfor one and two dimensionson the squarelattice,but
for three dimensionsthe value cp = ~ [165], ratherthan ~, is closer to the numericalvalue of the
percolationconcentration.Furthermore,the EMA doesnot give the exactresult for the percolation
concentrationon other two-dimensionallattices, such as the triangularlattice.

Frequency-dependentcorrectionsto the diffusion coefficient can also be derived from the self-
consistencycondition. Only the low-frequency behavioris quotedhere. In one dimensionthe static
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diffusion coefficient alwaysvanishesandthe correctionsare (F = 1) [151]:

(1—c)(1+c) . (1—c)(1+c) 2
2 (I) ,

4c 8c

Theseresults areonly in qualitativeagreementwith the exactresults, eq. (6.67).
In two and three dimensions, three regions must be consideredand each dimension treated

separately.For d=2 [1511:

icwlnw [irI2+iln64(c~c)]w
D0— +c , c<c4ir(c~— c) 4ir(c~— c) p

D(w) = (1 + i)(—w In w)’
2, c = cp (6.94)

32ca4w2
aiw+ 2 —t c>c

32(c— c~)a+ F’(l + (4a) ) p

wherea is the solution of the equation:

F(1+(4a)”)8(c—c~)a (6.95)

and F(z) is relatedto the Green function G(s) definedin eq. (6.81):

F(1 + ~ ) = z F(s) G(s). (6.96)
z F(s)

F’(z) is the derivativeof F(z) with respectto the argument.Although the percolationconcentrationis
exactfor this model, the frequencybehaviorof the diffusion coefficientneednot be accurate.It would
be interestingto observewherethe EMA resultbreaksdown.

In d = 3 the following behaviorhasbeen computedfor the diffusion coefficient [151]:

F(1)c . cC(1—i)w312
D

0 + 12(c~— c) ~ + 36\~(c~— c)
3~2‘ c<

D(w) = iw, c = c~ (6.97)

1—V3(c—c
0) [2+3(c—c~)—\/27(c—c~)]cw

2
lw+ c>c9(c — c~) 34 X 2(c — c~)3 ‘ p

whereF(1) = 8 G(0)13= 1.51638. . . [1661and C = 3V~/2ir. Theseresultshavenot yet beencritically
analyzedandthereis a needfor more precise theoreticaldeterminationof thesequantities.

Anotherquantity of interestis the averageoccupationprobability of the initial site for long times,
t~P(0,cc)~.Of course,if c = 1 the particle hasno possibility of moving to anothersite; also if all the
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clustershave a finite extent, then the particle will nevercompletelyvanish from its initial site; this is
preciselythe situationin the percolationregimec> c0. Thus the quantity KP(0, cc)) can be usedas a
definition of the localization, whenit vanishedthe particleis not localized,otherwiseit is localized.This
has beenreferredto as the strong localizationcondition [147].

Using the knowledgeof the equilibriumstate,i.e., the probability of occupyinga site in a clusterof
size N is 1/N, the value of (P(0, cc)) is an averageof the inverseof the clustersize:

(P(0,cc)) = (1/N). (6.98)

The self-consistencycondition solvedfor this quantity gives the result:

c~~c

(6.99)

0, otherwise.

This linear function of concentrationresemblesthe behaviorof the diffusion coefficient in the regime
c < cp. The two propertiesare complementaryto one another.

In one dimensionthe result in eq. (6.99) is exact[155].In higher dimensionsthereappearsignificant
deviationsclose to the percolationconcentration.

6.6. Renormalization-groupmethods

The renormalization-group(RG) methodhas beenalreadymentionedin the previoussectionsand
was developedto high precision to study systems near criticality. Dynamical systems have been
investigatedusingfield-theoreticmethods[167,168] andlattice methods[169].The methodsdiscussed
herewill be thosedevelopedto analyzediffusion in disorderedmedia[170—1721.The authorsfeel that
the potentialof this methodhasnot yet beenachieved;this sectionoutlinesthreeof the methodswhich
havebeen applied to the problemwith the hope that this will stir the imagination of the reader to
developthe methodfurther.

The RG developedin eachof the referencesdiffer greatly from one another.Visscher[158,171]
definesa space-timecoarseningtransformationwhich acts on a discreteset of equationsof motion.
Under repeatedRG transformations,the systemapproachesa fixed point which is describedby the
usual diffusion equation:

ap/at= DV
2p. (6.100)

Correctionsto this equationareobtainedin an expansionof the disorder.This method,althoughonly
applied to systemswith weak disorder, is the only RG method to give results in Euclidean d

dimensions.
Guyer developedanotherRG methodof studyingone-dimensionaldisorderlattices. His method is

basedon a decimationprocedureacting on the masterequation;in this procedureevery othersite on
the lattice is eliminated[172].The masterequationis written in the following form:

sP(n,s)6,IO—VflP(n,s)+1~P(n+1,s)+I~IP(n—1,s). (6.101)
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The quantity V~= + ~ before the renormalizationprocedureis implemented.After the RG
transformationis applied, this quantity is no longer a simple function of the renormalizedtransition
rates.The sites n = ±1,±3,±5,. . . are eliminatedandthe new equationsof motion are:

s P(2n,s) = — V~n(5)P(2n, s) + F~~(s)P(2n +2, s) + Fn2(5) P(2n —2, s), (6.102)

wherethe coefficientshave beenrenormalizedaccordingto the decimationprocedureto:

V~~(s)= V2~(s)— F~~(s)D2~~1(s)— F~~1(s)D2~1(s),

F~~(s)= 1~~(s)F2~+1(s)D20÷1(s),
(6.103)

F2~2(s)= 17n-i(5) ~-2(5) D2~1(s),

D~()= s + Vm(5).

At this point the masterequationno longerconservesprobability,but by simply renumberingthe lattice
sites2n —* n, P(2n, s)—~P ‘(n, s), the equationrecoversits original form andthe RGtransformationcan
be successivelyapplied. -

The central simplifying feature of this procedureappearswhen the successivetransformations
becomeso large in number that the effective coarseningof the lattice hasbecomelarger than the
diffusion length. In this regime the particle is bound to the central site and the jump rates to
nearest-neighborsites approachzero. In this limit the equationsreduceto:

p(,n)(0 s) . (6.104)
1 + V~(s)

The methodcould be numericallyimplementedand is especiallysuitedto determiningthe densityof
states[173].Guyer approximatedthe RG transformations,but theseapproximationsdid not reliably
reproducethe diffusion coefficientor the long-timeasymptoticcorrections.

The RG methodclosestto the CTRW formalismwas developedby Machta[170].He alsousesthe
decimationprocedurein one dimension.The fixed point in his case, as in the method of Visscher,
correspondsto diffusionof the particleon a regularlattice.The long-timepropertiesaredeterminedby
the fixed point, the approachto the fixed point determinesthe effect of the disorder on the diffusing
particle.

The waiting-time distributionsfor transitionsfrom the site n to n + 1 or n — 1 are:

i/i~(t) = ‘7~+~ exp[—(f~+

(6.105)
17~exp[—(f~+

The plus sign denotesa jump to the right from site n and the minussign denotesatransitionfrom n in
the oppositedirection.

The reductionof the latticesitesthrough the decimationprocedureis accomplishedby consideringa
lattice site 2n; the waiting-time distributionfor the particleto reachsite 2n + 2 without jumping to site
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2n — 2 is a seriesof convolutions involving productsof the waiting-time distributions. The result is
expressedas a geometricseries whose termsare physically interpretedas the elementarytransitions
betweensites2n — 1, 2n and 2n + 2:

~(s) = -+ c(s) ~÷~) -+ (6.106)
(1- ~2n(5) ~2n+I (s) - ~2~(~) ~2~-I(5))

and

~(s) = -+ ~~(s) ~ -+ . (6.107)
(1- 4~2n(5) ~2+t(5) - ~2n(5) 4~2-1(s))

The new functions t/i~(s)differ from the previouslydefinedfunctions, but whens = 0 their sum is
normalizedto unity. The new lattice hasa lengththat is twice aslong as the old one andrescalingthe
length requiresan additional factor A to rescalethe time; let 2n—* n and define:

~s) = ~~(s/A). (6.108)

The fixed point equationfor this transformationis:

= ~(s/A) , (6.109)
1 — 2 tIJ*(s/A)’~

The asymptoticbehaviorof this function in the casewhere diffusion is presentis:

~*(s)~ ~(1 - Ts). (6.110)

From eq. (6.109) A = 4 is the only solution. This result is easily interpretedusing the mean-square
displacement.This quantity remainsinvariant underthe RG transformation;

(x2)(t)= F12t= Fl’2t’. (6.111)

Since, 1’ = 21 andt’ = t/A, invariancerequiresthat A = 4. F is relatedto the inverseof the averagestay
time T, approachesa fixed point value and does not changeunder further RG transformations.The
fixed-point equationfor the waiting-time distributionhas the solution:

= ~sech(2V’~). (6.112)

This resultdoesnot correspondto a Poissonprocessandthe result is the samewhetheror not disorder
is presenton the lattice.

The effective transition rates associatedwith the waiting-time distributions become frequency
dependentunderthe actionof the RG transformation.It is easierto use the transitionratesin the RG
transformationsincethey expressthe disorder in the masterequation.To do this someknowledgeof
the perturbationtheory developedin section6.2 is usedand the parameter
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= 1/17 (6.113)
(1/F)

is chosen for the RG method. This parameteris related to the waiting-time distributions at s= 0
throughthe equations:

~(0) = i~(0)I[F~(0)+ ‘~-~(°)] (6.114)

and

= ~-l(0)1[1~(0) + 17~i(0)J. (6.115)

The quantity q5 can be defined:

~(°) -~(0) ~

F 111(0) 4”-i(°) ç1i~(0)

q~=~= 1, n0 (6.116)
~+~(0) ~+2(0) ... ~(°)

~+~(0) 9~n+2(0) ~(0)’

with the property that the sum is

~ n~+i q~= I~. (6.117)

The quantity of interestis definedas:

T~= , (6.118)
(1/2N) ~n-N+i q~

and it is relatedto the waiting-time distributionsthrough eqs. (6.114—115).The quantity has a simple
recursionrelation:

(6.119)

At the fixed point r~= 1. For further details the readeris referredto the original papers.The master
equationwith nearest-neighbortransition rates is expandedas previously done using the methodof
Zwanzig. The generalizeddiffusion coefficient is:

2 (N) N 1/2

DOD(4N) (F)(N){1 ~p)(N)2 [1+(4(~(N)) ]}. (6.120)

Note the factor 4A’ from rescalingthe time N times. As N—~~, the momentsin eq. (6.120)havethe
following behavior:
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1 1 ~ 1 1 (,~1I 1 )~1~ I —

= (1/F) = 2(1/F) ((~ ~-I~ ~ ~ (6.121)

and

- 2 (V- I) --2
2 (\‘) — _______ 2 (N) — 1 ~ ( T,, + ~1I I ~ \ — / I \ 1 2 IN--- I)

(SF,,,) - (1/F)2 (~T,,) - (1/1)2 \~ 2 ) / _\~/ ~

(6.122)

Underrepetitionsof the RG transformation,the fluctuationsare reducedby a factor of 2; the solution
for the diffusion equationis:

D(s)= D
0(1 + ((~)2) (sD0)12). (6.123)

Thus the result of Zwanzig’s method is recovered,cf. eq. (6.30) and table 1.

6.7. Non-Markoffiannature of results

Particle transport in the random-barriermodel exhibits non-Markoffian behaviorwhen it is consi-
dered in the ensembleaverage.This is evident in d = 1 from the frequency dependenciesof the
diffusion coefficient and the modified Burnett coefficient. see section 6.2, and in generaldimensions
from the frequencydependenceof the effective transitionrate F(s), seesection6.4. In this section the
non-Markoffian nature is discussedin more detail, and also the correspondencewith a single-state
CTRW descriptionis examined.

The main result can he summarizedas long-timetail behaviorwhich showsup in the correctionsto
the asymptoticmean-squaredisplacements,as well as in the algebraic decay of the velocity autocorrela-
tion function (VAF). The coefficients of thesecorrections,or of the asymptoticVAF, are disorder-
specific, i.e., they are presentwhen thereis disorder and vanish only in its absence.Note that the
coefficientsare present for quite regular distributions of transitionrates where all inversemoments
exist. Thus the long-timetail behaviorin the mean-square displacementcan be regardedas a signature
of disorder. It is interestingto note that this behaviorcan be obtainedin perturbationtheory,or by
effective-medium methods. For theseproblems, the situation is not as extreme as discussedby
Anderson[174]. -

In d = 1 the presenceof a correction term ~ w
12 in the VAF C(w) meansthat the frequency-

dependentdiffusivity D(w) of a particle rises as w’2 for small frequencies,abovethe static diffusion
coefficient D(0). It is plausible that a strong increaseof the diffusivity with frequency, for small
frequencies,appearsin the random-barriermodel as a consequenceof the disorder. Consider a
random-barriermodel with two barriers,F, F< and1< ~ F andthe high barriershavea concentration
c~ 1. Thereare thensegmentsof consecutivelow barriersof varying lengths.The diffusion coefficient
at finite frequenciesgives an estimatefor the mean-squaredisplacementof a particlein the time interval
2ir/w. If the frequency is increased,and thus the time interval reduced,the number of available
segmentswith squared lengths equal or larger than the new, reducedmean-sq~uaredisplacement
increases.Of course,the qualitative resultdoesnot yet give the quantitativeresultD(w) — D(0) ~ w1 2

It will now be discussed whether the averaged random walk of a particle according to the
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random-barriermodel can be brought into correspondencewith a continuous-timerandomwalk. The
first problem is the determinationof the averagewaiting-time distributions. There are two rather
different answersto this problem.

I) The literal WTD. The averageWTD of a particle can be determinedby applying literally the
definition of a WTD. Given a particlearrivedat a site at t = 0, the averageWTD will be definedasthe
probability density,in the ensembleaverage,that the particlemakesits next transitionto anothersiteat
time t. The elementaryWTD for transitionsto nearest-neighborsites accordingto the random-barrier
modelaregiven in eq. (6.105).For simplicity a dichotomicdistributionof transitionratesis chosen,eq.
(6.84). An ensembleof linear chainswith the distribution eq. (6.84) is introduced.It is assumedthat
the ensembleis in equilibrium andthe time origin is chosenarbitrarily. The averageWTD for thefirst
transitionafter t = 0 is obtainedas the ensembleaverageof the elementaryWTD with the distribution
eq. (6.84). The result is

h(t) = c22F< exp(—2F<t)+ (1— c)22F exp(—2Ft)+ 2c (1 — c) (F + F<) exp[—(F + F<)t].

(6.124)

The averageWTD çls(t) for all successivetransitionsis obtainedby inverting the relation eq. (3.3)
betweenh(t) and 111(t) which applies for a stationarysituation,

= —idh(t)/dt. (6.125)

The resulting averageWTD is

= I{c2 (2F<)2 exp(—2F<t)+ (1 — c)2 (2F)2 exp(—2Ft)

+2c (1 — c) (F + F<)2 exp[—(F + F<)t}}. (6.126)

The meanresidencetime t on a site is given by the inverseof the transition rate in equilibrium,

~‘ [2cF<+ 2(1 — c)F]~. (6.127)

It is alsopossibleto derive the WTD for forwardandbackwardtransitions,relativeto thepreceding
transition. If the particle is found betweentwo low (F) or two high (1<) barriers,it will makethe
transitionin forwardor backwarddirection with equalprobabilities.If the particle is foundbetweena
low anda high barrier, it arrived therewith probability F/(F + F<) by atransitionoverthe low barrier,
andwith probability F</(F + 1<) by a transitionoverthe high barrier. The probabilitiesof leavingthe
site via the low or high barrier aregiven by the samefactors, hence

111b(t) = ~t~(t)+ Ic(1 — c) (F— F<)2 exp[—(F + F<)t], (6.128)

= 11’(t) — 111h(t) . (6.129)

It is evident that a determinationof the WTD by numericalsimulationsgives the literal WTD. In
thesesimulations, the definition of the WTD given above is implemented;details are given in [176].
Figure 6.8 containsthe aboveresults on the WTD, togetherwith the results of the simulations.As
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Fig. 6.8. The literalwaiting-time distributionsof therandom-barriermodel in d = I calculatedfrom Monte-Carlosimulations(dots)andanalytically
(lines). The dash-dottedcurvesaretheasymptotic resultsfor the associatedwaiting-time distribution.

expected,the numericalsimulationsverify the correctnessof the simple derivationgiven above. It
should be emphasizedthat renewaltheory was instrumentalin this derivation.

Unfortunately,the literal averageWTDs give incorrectresultswhenusedin the CTRW formalism.
Only the short-time behavior is obtainedcorrectly. In single-stateCTRW the predicted diffusion
coefficient is incorrect and its frequencydependenceis missing. The correlatedCTRW according to
section 4.3, where t/Jh(t) and tfi~(t)are used, also gives an incorrect static diffusion coefficient. A
frequencydependenceof D(o.) is obtained,however,it is analyticanddoesnot show the expectedwi ‘2

behavior.Hence the major featuresof the random-barriermodelare not obtainedfrom single-stateor
correlatedCTRW with the literal WTD.

ii) The associatedWTD. An associatedWTD can beobtainedby comparingtheresultsof section6.4
on the associatedtransition rateof the effective-mediumapproximationwith the single-stateCTRW of
sections3.2—3.3. Theform of the kernelusedin the EMA section6.4 correspondsto separableCTRW.
Comparison with the exact results of section 6.2 shows that the first two leading terms of the
mean-squaredisplacementand of the fourth momentat long times are given correctly by the EMA.
Hence the correspondenceeq. (3.28) betweenthe kernel of the generalizedmasterequationand the
WTD can be used to determinethe associatedWTD 11’a(5) from the kernel F(s) of the EMA,

= F(s)/[s + F(s)]. (6.130)

Insertion of the large-sexpansionof F(s) accordingto eq. (6.82) up to O(s 1) and inverseLaplace
transformationshowsthat the short-timebehaviorof the associatedWTD is given by

~a(t) = 1~[1 -(1- LI1)~t+ ...]. (6.131)
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Substitutionof F(s) by its small-sexpansioneq. (6.83) up to O(5U2) and inverseLaplacetransforma-
tion yields the long-time behaviorof the associatedWTD,

~a(t) = ~ 01~(F0t)
512. (6.132)

The asymptoticbehaviorof the associatedWTD is indicatedin the figure. Since no inhomogeneous
termis presentin theEMA for the random-barriermodel it is only consistentto assumethat no distinct
associateWTD for the first transitionmust be introduced,which would correspondto an inhomoge-
neousterm in the generalizedmasterequation.This point will alsobe discussedbelow.

The initial transitionratefollowing from the associatedWTD is given by F,, = (2t) I, It corresponds
to the averagetransitionrate, whereasthe literal WTD gives a slightly increasedinitial transitionrate,
cf. fig. 6.8. The long-time behaviorof IJia(t) is such that no secondmoment exists; this can also be
deduceddirectly from eq. (6.130) by using the small-sexpansionof F(s). In contrast,all momentsof
the literal WTD exist, since it decaysexponentially.

The associatedWTD has been determinedin such a way that it reproduces,when used in a
single-stateCTRW, the correctlong-time andshort-timebehaviorof the randombarriermodel for the
leadingtermsof the mean-squaredisplacementandfourth moment. In order to obtainthis associated
WTD, a solutionof the random-barrierproblemby othermeans(perturbationtheory;EMA) was used.
Once such a solution is found, thereis no apparentneedto reconstructthe correspondingassociated
WTD. On the other hand, no direct derivationof the associatedWTD appearspossible,at least at
present,Hence its usefulnessis ratherquestionable.

A formal equivalencebetweenaveragedparticletransportin disorderedsystemsandthe generalized
masterequationor CTRW theory was establishedby Klafter and Silbey [1771.They assumedthat the
randomwalks of the particlein the individual disorderedsystemsare describedby Markoffian master
equations.Theyreferredexplicitly to a latticemodelwith inaccessiblesites,however,their derivations
are applicable to the random-barriermodel as well. They used the Zwanzig—Nakajima projection
operationformalism[178,179] andthe projectionoperatorD is definedas leadingfrom a non-averaged
quantity A to the disorder-averagedquantity,DA = (A). The result of Klafter and Silbey is that the
masterequation,when averagedover the disorder,is of the form of a generalizedmasterequation.
Since the GME can be brought into correspondencewith CTRW, also the correspondenceof the
averagedmasterequationwith CTRW is shown.

In the courseof their derivationsthey omitted an inhomogeneousterm proportional to (1 — D)
x P(n, 0) whereP(n, 0) representsthe initial condition(seeref. [179]).This omissionis justified for the
caseof the random-barriermodelwhereuniform initial conditionsareadequate.However,in the case
of the random-trappingmodel(cf. chapter7) or of the model with inaccessiblesites (as describedby
Klafter and Silbey) an inhomogeneousterm should be includedin the derivations.

The explicit realization of the correspondencebetweenaveragetransport in the random-barrier
model andtheensuingCTRW descriptionwas given above.The correspondenceleadsto the associated
WTD which cannotbe interpretedas the averageWTD of theparticlein the literal sense.Moreover, it
is not obviousfrom the generalformalism that the associatedWTD arealwayspositive semidefiniteas
is necessaryfor a probabilistic interpretation.Since no inhomogeneousterm appearsfor the random-
barrier model, no distinct WTD for the first transition is necessary.This means that the associated
WTD of the random-barriermodel cannotbe interpretedas describinga renewal process.Since the
presenceor absenceof an inhomogeneousterm dependson the model, the questionof the interpreta-
tion of theseassociatedWTD as describingrenewalprocessesis still open.
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7. Lattice models with random traps

7.1. Introduction to the model

The random-trapmodel is definedon a regularlattice, aswas the randombarriermodelof chapter6.
In this modeldetailedbalanceis also required,the transitionratesto neighboringsitesare symmetric:

= ‘n.n+d’ (7.1)

where n + d is any nearest-neighborsite to n. The randomvariables {F,,} are independentfrom one
another.A pictorial representationof the random-trapmodel in onedimensionis shownin fig. 7.1. As
this figure suggests,the averagestationaryoccupationof the deeptraps, i.e. deepminima, shouldbe
greaterthan that of the shallowertrapsbecausemore energyis requiredfor the particleto escapeover
the barrier. From this picture is deriveda colloquial name for this model, coined by Kitahara, ‘the
valley model’. In this samespirit, the model of the last chapteris called ‘the mountainmodel’. The
model discussedin this chapter is restricted to valleys of finite depth; this insures that a unique
equilibrium state is obtainedat long times. Anotheraspectof the randomtrap modelexpressedin the
figure is its symmetry; thereis no tendencyfor the particleto drift to the right or to the left from any
configurationof traps. Traps extendingover several sites, whereon the averagethe particle is pulled
deeperinto them is a topic reservedfor chapter10.

Another manifestationof the simplicity of this model is observedin the elementaryWTD of the
particle on site n. It hasthe form:

= r~exp[-t/r,j, (7.2)

where

= ~ ~ (7.3)

andr is the sojourn time of the particleon the site n. For this model the averagingof the WTD for a
single site, as proposedby Scher and Lax [40,1801:

~(t) =J dr~p(T~)~~(t), (7.4)

Fig. 7.1. A schematicrepresentationof therandom-trapor valley model. All valleysare equallyspaced.hut havedifferent depths.The mountain
peaksare all at the sameenerg~.
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wherep(r) is the distributionof sojourntimes, doesnot accountfor the differentequilibrium weights
given to each trap; the stationaryweights,as derivedbelow, dependon the configurationof transition
rateson the lattice [181].

In the following sectiona simple proofis given that the diffusion coefficient is frequencyindepen-
dent, when the initial conditions correspondto the stationary state. While this result, and other
momentsof the probability distribution have beenderived, the completesolution for the probability
distribution is unknown. In section7.4 approximationtechniquesare usedto calculatethe probability
distribution and the resultsare interpretedby analogywith the CTRW modelsof chapter5.

7.2. Exact result for the mean-squaredisplacement

The mean-squaredisplacementof a particlein the random-trapmodel is alinear function of time for
all times, provided that the initial probability distribution correspondsto a stationarydistribution. In
ref. [32] it has beenshown that the mean-squaredisplacementis the samelinear function of time at
short and long times and a proof suggested;the proof hasbeencompletedin ref. [182].The main
ingredientof the formal proofis the symmetryconditioneq. (7.1).Anotherrequirementof the proofis
the positivity of all transition ratesof eq. (7.1), as will be evident below. If theseconditionshold, the
proofcan be carriedout.

An equivalentform of the resultis the statementthat the velocity correlationfunction of the hopping
particlecontainsa 6-functionat the time origin only. This meansthat eachjump is only correlatedwith
itself; different jumpsareuncorrelatedon the average.In fact, whena particlehasmadea transitionto
a particular site, it will jump with equal probability in any possible direction, henceforward or
backwardcorrelationscannot appeardueto the symmetry.

However,if onestartswith a non-equilibriumsituation,the mean-squaredisplacementis not a linear
function of time. For example,with equaloccupationof all sites, a particle is morelikely to makea
transitioninto a trap than out of a trap, resultingin a net decreaseof the mean-squaredisplacement
with time. It is not justified to infer that the velocity autocorrelationfunction now has a more
complicatedtime behavior; in fact, this quantity remainsdelta-functioncorrelated.The connection
betweenthe velocity autocorrelationfunction and the secondderivative of the mean-squaredisplace-
ment makesexplicit use of the stationaryproperty.

The masterequationfor this model, using eq. (7.1), is:

~P(n,t~m,0)=~ F~+iP(n+l,dm,0)—zFP(n,dm,0). (7.5)
t

The initial conditionis explicitly retainedin thenotation of the conditionalprobability andthe sumover
I is over the nearestneighborsof n.

The mean-squaredisplacementof the particlefrom its initial site is:

~ (7.6)

The left-handsideindicateswith a subscriptthat the initial conditionshavenot yet beeninserted.The
stationarysolution for the masterequationneedsto be included in the averageand this quantity is:

pe~(~) = ~ (7.7)
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where i~is a normalizationconstant.For N latticesites andone particleper lattice, the normalization
constantis:

1 = E P~(m)= ~ F~1. (7.8)

Letting the numberof sites on the lattice approachinfinity, the normalizationconstantis identified as
the inverseof the averagesojourn time:

(7.9)

The equationof motion for the mean-squaredisplacementis:

(~n— m~2)m= ~ — m~2T~,P(n + 1, t~m,0)— z ~ — m~2f~P(n, t~m, 0). (7.10)

The first term can be rewritten usingthe identity:

— m~2= l~2—21~(n + 1— n) + n + 1— m~2. (7.11)

The last term in eq. (7.11)cancelswheninsertedinto (7.10); the secondtermin eq. (7.11)also cancels
becausethereis no tendencyto drift alonga particular axisfor any configurationof traps. Multiplying
by the stationary distribution eq. (7.7), and summingover all sites m the averagemean-square
displacement(for simplicity, cubicsymmetry and l~2= 1 is assumed):

~ (r2)(t)=z~=zK~) . (7.12)

Hence, the anticipated result has been proven, namely, the mean-squaredisplacementis strictly
proportionalto time for all times whenstationaryinitial conditionsaretaken.Fromthis expressionthe
diffusion coefficient is:

D
0=1/2dt, (7.13)

where

(7.14)

and the lattice constantis unity.
The resultsin eqs. (7.12—13) are exact for any dimensionalityand can be generalizedto non-cubic

and non-Bravaislattices. In d dimensionsthe expressionfor the long-time value of the diffusion
coefficient was derived by Schroeder[183] using scatteringtheory methods. In refs. [139,1401 the
following argument was given. From the stationary solution, eq. (7.7), the averagejump rates,
weightedaccordingto the occupationprobabilities, are:

(7.15)
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wherethe doublebracketindicatesthis average.Insertingeq. (7.7) showsthat eq. (7.15) is equivalent
to eq. (7.14). The result, eq. (7.15), can also be obtainedby noting that the long- and short-time
behaviorof the mean-squaredisplacementare identical for stationaryinitial conditions;hence,the
diffusion coefficient can be deducedfrom ashort-timeexpansionof the masterequation,i.e. eq. (7.15).

The Laplacetransform of eq. (7.12) hasa simple relation to the velocity autocorrelationfunction,
eq. (6.29), C(s). Since, (r2 ) (s) 52, thenC(s) = D

0. The velocity autocorrelationfunction is a delta
function, which provesthe earlier statementthat the velocitiesfor unequaltimes are uncorrelatedin
their secondmoments.This is plausiblein view of the symmetryin the transitionrates(fig. 7.1). This
doesnot meanthat the modelhas no disorderspecific transportproperties,but theymust befound in
the higher moments,such as the superBurnett coefficient.

7.3. Exact results: Higher moments

The diffusioncoefficient in thelast sectionhaspreciselythe sameform asthe diffusion coefficientfor
the random-barriermodel in one dimension.However,now the diffusion coefficient for the random-
trap model is known in all dimensions.This resultcan be usedto developa systematicperturbation
theory for the probability distribution in d dimensions.There is one essentialdifference from the
random-barriermodel that must be considered;namely,the equilibriumcondition needsto be included
in the derivation.

There are two quantitieswhich can be discussedin this model and they do not have a simple
relationshipto one another. One quantity,used in chapter6, is the averageGreenfunction or more
explicitly, the averagevalue of the conditionalprobability (averagedover the randomtransitionrates).
This quantity determinesthe spectralpropertiesof the model, such as the density of statesalready
discussedin chapter6. The other quantity is the averageprobability, wherethe initial conditionsare
included in the average,also called the responsefunction in refs. [139,140]:

(P(n, t)) = P(n + m, t~m,0)P0(m)), (7.16)

whereP°(m)is a predeterminedinitial condition. For the stationarystatethe expressionin eq. (7.7) is
used for P°(m).

The perturbationmethod discussedin chapter6 has been generalizedby Denteneerand Ernst
[139,140] to apply to the random-trapmodel in d dimensions.Their methodusesthe Fourier—Laplace
transformof the probability distribution:

(~(k,s))= ~ ~exp(ik.n) P(n,s~m,0)P°(m); (7.17)

using the masterequation,eq. (7.5), it is expressedas:

s(P(k,s)) = ~ exp(ik. m) P°(m)— z I~exp(ik.n) i~(n+ m, s m,0) P°(m) -

+(2±cosk) ~ (7.18)
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The last term in eq. (7.18) has beensimplified by a changeof variablesn’ = n + d andthe hypercubic
lattice has beenassumed.The expressioneq. (7.18) is written in a matrix form. The diagonalelements
of the matrix aresimplified to the compactform:

(~(k,s)) = ([sE + z(1— p(k))U]~P°)kk’ (7.19)

and

Ukk. = ~ f~exp[in . (k — k’)]. (7.20)

Now the previous notation can be followed, the inverse of U is written as a diagonal and an
off-diagonalcontribution:

Ut =F(E+~). (7.21)

1’ is the exact expressionfor the averagetransition rate and the off-diagonalcontribution is

= ~ (~- K~))exp[i(k - k~n]. (7.22)

In this notationthe initial conditionsare expressedin matrix form as:

P = (E + ~). (7.23)

When theseexpressionsare reinsertedinto eq. (7.19) the averageprobability is:

(~k(s))=((E+~)[(s+Tz(1-p(k)))E+sA]~(E+~))kk. (7.24)

The Greenfunction giving the long-timetransportpropertiesnow in d dimensionsis:

n(s) = [s + Fz(1 -p(k))]~, (7.25)

anda systematicexpansioncan be carriedout for eq. (7.24).
Denteneerand Ernst [139,140] find a constantdiffusion coefficient for all dimensionsas required.

The superBurnett coefficient, D
2(s), containsthe effect of the randomdisorder. In one dimensionthe

result is:

D7(s)= + ~ K2 (F)I’
2 + ~ ()I.~2 +..., (7.26)

where the constantsK

7, 02 and 03 havebeen definedin table 1 in chapter6. From eq. (7.26) the
asymptoticlong-time limit for the fourth moment is:

(r
4)(t) = 4! t2 + ~ K

2(Ft)
312 + (~+ o

7)h+ 20~(Ft/~
2+~‘.]. (7.27)
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The term proportionalto t3’2 is due solely to the fluctuations in the transition rates.This createsa
long-timetail in the higher-ordercorrelationfunction.

In higher dimensions,the correctionsto secondorder in the fluctuationsare derived.The second
derivative of the fourth momentexhibits the effect of disorder in the form:

(r~)(t)—~4!~2 (1 + K

2 P(O, t)), (7.28)

where P(O, t) is the probability that the particle is found on site 0 as derivedfrom the perfect lattice
Greenfunction (see eq. (2.31)). For the hypercubiclattices, this function is a simple product of
exponentialand modified Besselfunctions.The asymptoticdecayof the fluctuationcontributionin eq.
(7.28) is proportionalto t~

2.
The spectral and transport properties of the 1-dimensional model have been published by

Nieuwenhuizenand Ernst [184] for transition rate distributions with divergentinversemoments(but
still insisting that the diffusion coefficient exists). They used the Dyson—Schmidtfunctional equation
method to calculate the densityof states,localization lengthand Burnett coefficient.

7.4. Approximatetreatments

The exactresultsof sections7.2—3 do not givean explicit expressionfor the averagedprobability (or
responsefunction) of the particle in spaceand time. Hence approximationmethodsare requiredto
determinethis quantity. The effective-mediumapproximationfor the random-trapmodel has not yet
been worked out. One specific difficulty is the correct incorporation of the equilibrium initial
conditions. The standardmultiple-scatteringmethodsassumeuniform initial conditions. Thesearethe
correctinitial conditionswhenthe equilibrium stateis uniform, as it is for the random-barriermodel. In
the random-trapmodel the occupationof sitesaccordingto equilibrium is arandomquantity itself, and
it is correlatedwith the randomtransitionrates.

The random-trapmodel was treatedfor small trap concentrationsin the averageT-matrix approxi-
mation (ATA) in [185]and the correctequilibrium initial conditionswere takeninto account.In a first
step the non-uniforminitial conditionswere removedby transformingthe conditionalprobabilities.The
masterequation for the thermally weighted probability P(m, t~n, 0) was consideredwith the initial
condition

P(n,0~m,0)Npn8nm , (7.29)

wherep~is the equilibrium occupationof site n accordingto eqs. (7.7) and(7.9) and anexplicit factor
N is introducedsincep,, oc N’. In the Laplacedomain the masterequationfor P(n, s m) reads

~ (s6,~+ A~
1)P(l, s m) = NPn6nm . (7.30)

A,~1is the transition-ratematrix for the trappingmodel. In the translation-invariantcasethe Fourier
transformof A is A(k) in eq. (2.18). In the trapping model studiedthe elementsof A are either F
(transition rate from a normal site) or F< (transition rate from a trap site) and the traps occur with
concentrationc. Uniform initial conditionsare obtainedby multiplication of eq. (7.30) with (Np~)
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~ [(Np~°s8~1 + (Np~)~A~1JP(l,s m) = 6nm. (7.31)

It is easilyseenfrom the conditionof detailedbalancethat the matrix (Np~)’A~1is symmetric.Note
that the transformationusedhereis different from the oneemployedin section2.5, cf. eq. (2.74). After
the transformation,the masterequation(7.31) is analogousto a vibrationalproblemon a lattice with
massand force constantdefects.

The calculationof the averageprobability from the masterequation(7.31) can now be carriedout
explicitly in the averageT-matrix approximation.The defectsare randomlydistributedwith concentra-
tion c ‘~ 1 over the sites of a simple cubic (SC) lattice. The concentrationshould be so small that
overlapeffects of different traps can be neglected(note that after transformationto eq. (7.31) also
transition rates betweenneighboring sites and the defects are modified). The ATA in the low-
concentrationlimit, which is used here, takes a crystal with uniform transition rates F as the
undisturbedsystem. In the first step,a single-site T-matrix t for a single trap is calculated;this stepcan
be done completely. The actual calculationrelies on group-theoreticalsimplifications, thesetechnical
details can be found in [186].The T-matrix for asingle trap is equivalentto an effective defect,where
repeatedabsorption and emission processeson this particular trap have been included. Explicit
expressionsaregiven in refs. [185,187]. Only the polewhich appearsin t, for deeptraps (exp(f3E)~ 1

with E the energyreductionin the traps) will be given,

Sr = —{[exp(f3E) —1] P0(0,0~0)}~, (7.32)

whereP0(0, 0~0) is the Greenfunction to return to the origin of a particlein the undisturbedlattice,at
s = 0. The determinationof the poleeq. (7.32) also assumeda 3-dimensionallattice. The pole is the
analogueof a resonancepole of a heavy mass defect in a lattice. As is seenbelow, it describes
effectively the escapeprocessesout of the traps.

In the secondpart of the ATA at low concentrationsthe propagatorof the particle betweenthe
differenteffectivedefectsis treatedin an approximateway, wherebythe propagationin theundisturbed
regions is describedby the undisturbedGreenfunction. An explicit form for the self-energyof the
defect-averagedprobability is given in refs. [185,187]. It turned out that the expansionparameteris

= c[exp(f3 E) — 1], i.e., the trapscannotbe too deepin order that the derivationsbevalid. This means
that the fraction of time spent in the trapsmust be small.

In the limit of deeptraps (butsmall r), the resulting averagedprobability can be representedin the
form

(~(ks))= s+yr+yt+A(k)yty~
t (7.33)

where

= —(1 + c)s~+ e[6F — A(k)] (7.34)

and
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= cP~’(0,0~0). (7.35)

Expressioneq. (7.33) is nothing else than the resultof a two-statemodel describingdiffusion in the
presenceof traps, cf. eq. (5.6). (The last term of the numeratorof eq. (7.33) is different from the
correspondingterm of the two-statemodel; however,the differenceis of relative order r and is thus
negligible.)Equations(7.34—35) providemicroscopicexpressionsfor the parametersof this model.The
leadingterm of the releaserate‘y~is independentof the trap concentrationc, as it shouldbe andgiven
by the pole eq. (7.32). For deeptraps it is given by F< = F exp(—/3E), apartfrom a numericalfactor
which resultsfrom the latticeGreenfunction. The capturerate is proportionalto the concentration,as
it shouldbe; the simpleexpressionfoundabovecoincideswith theresultof the Rosenstockapproxima-
tion for diffusion-controlledcapture,seesection 9.3. The diffusion coefficient which follows from eq.
(7.33) is of the form requiredby the two-statemodel, cf. section5.1.

It is very satisfactorythat the ATA of the random-trapmodel at low concentrationsof the traps
(more preciselye<~ 1) justifies the phenomenologicaltwo-statemodel, andleadsto physically reason-
able valuesof its parametersin threedimensions.Moreover,the usualderivationof thecapturerateof
a particlein a trap assumesthat the trap is permanent,i.e., that the particleis neverreemitted.The
random-trapmodel, on the other hand, includescaptureand releaseprocesses,and leads, at least
within the approximationsdescribedabove,to the sameresult on the capture rate.

Fedders[188]hasgeneralizedtheATA treatmentof the random-trapmodelby consideringextended
trapswherethe transition rateinto the trap sitesis largerthan thetransitionratein the freelattice. He
is also restrictedto low concentrationsof theseextendedtraps which are not allowed to overlap.
Feddersapplieshis theory of motionsof a finite yet small concentrationof particleson the latticewith
randomtransition rates.He is able to overcomethe limitation of smallparameterr, i.e., his trapsare
alsoallowedto be very deep,andthe result for the diffusion coefficientappearsin the form requiredby
the two-statemodel.

A discussionof the differentbehaviorof random-barrierandrandom-trappingmodelswas madeby
Halpern[189].However,this authoronly useduniform initial conditionsat the time origin, correspond-
ing to equalprobabilities of start at any site. An extensionof the randomtrap model hasbeenmade,
for example,by Machta et al. [190]; they combine the two-statemodel of chapter5 with random
transition rates into and out of the traps. These models will not be discussedin detail here, the
interestedreader is referredto their work whereadditionalreferencesare given.

The random-trappingmodelhasalso beenstudiedfor the caseof WTDswhosefirst momentsdo not
exist. Alexander[191]gavea heuristicdiscussionof the behaviorof random-trappingmodelsin general
dimensions,and contrastedit with the behaviorof random-barriermodels under analogouscircum-
stances.He concludedthat random-trappingmodelswill exhibit anomalousdiffusion with (R2) (t) ~ t2~,
<~ at d � 2. Machta [192] investigated the random-trappingmodel in arbitrary dimensionby

renormalization-group(RG) methods. His methodsare similar to the ones applied by him to the
random-barriercase,seesection6.6. Althoughapproximationsareinvolved, his conclusionsseemto be
valid. He finds anomalousdiffusion in all dimensions.The dimensiond = 2 is a borderlinedimension.
For d >2 and classc disorder (see[192])the fixed-pointWTD is non-analytic;it is characterizedby an
exponenta and x-’ = a/2. For d <2 the fixed points are disorderedrandom walks themselves.The
exponentv = (2 + df — d)’ whered

1 is a fractal dimensionandd~= d/a. The fractal dimensiondf for
the class c randomtrappingmodelscan hencebe larger than the Euclideandimension.See [192]for
furtherdetails.
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8. Diffusion on some irregular and fractal structures

Up to now diffusion on regular (mainly Bravais) lattices was consideredand the disorder was
introduced in the form of randomtransition rates. In this chaptermore irregular structureswill be
admittedthat are, however,derivedfrom regular lattices,either by deformationor by blocking of a
subset of the sites. One special caseis the diffusion on percolation clustersnear the percolation
thresholdof siteblocking. This casewill be disregardedfor the reasonsgiven in chapter6. Diffusion on
topologicallydisorderedstructureswill not be includedin this chapter,becausethis topic is not yet well
developed.However, diffusion on fractal lattices that are constructedin a regular mannerwill be
includedhere.

8. 1. Diffusion on chains with irregular bond lengths

A modelof a linear chain will be consideredwherethe distancesbetweenthe sites d aredistributed
accordingto a given probability distribution 5u~(d),andwherethe hopping processof a particle on that
chain is characterizedby a PoissonianWTD t/J(t) = (1/r) exp(—t/T) at each site. This model was
introducedby vanBeijeren [193]andhasbeennamed‘waiting-time model’ by him. It is a specialcase
of a stochasticLorentzmodelandit givesa nice exampleof a solvablemodelwith fixed spatialdisorder.
Its solution is possiblesincethe temporaldevelopmentis simply solvable,andthe combinationwith the
spatial disorder is tractable.The consequencesof disorder can be followed explicitly, especially the
appearanceof long-time tails in the velocity autocorrelationfunction or mean-squaredisplacement.
Figure8.1 gives a pictorial representationof the waiting-time model. The randomwalk of oneparticle
on this linear chain where the sites are characterizedby the integer index m can be treatedby the
methodsof chapter2. For the PoissonianWTD the conditional probability P(m, t) of finding the
particle at site m at time t when it startedat m = 0 at t = 0 is given by eq. (2.28) for d =

P(m, t) = exp(—t/T) I~,(t/r), (8.1)

where101(x) is the modified Besselfunction with index m. The probability densityof finding the particle
at the coordinatex at time t, when it startedat the origin at t = 0, in an ensembleof linear chains,is
given by

tn—I —,, —m

~(x, t) = 8(x) P(0, t) + ~ (8(x - ~ d1)) P(m, t) + ~ K8(x + ~ d1)) P(m, t). (8.2)
rn1 j() pi=—I

The brackets(...) denotethe averageover the spatial disorder,i.e., over an ensemblecharacterized
by theprobability distributionJL(d) of the d1. Equation(8.2)could serveas the startingpoint of further

I li I III I I I I
—1 0 1 2

Fig. st. waiting-timemodel of van Beijeren. The vertical lines are thelattice sites at which theparticle resides.They are Poissondistributedand
the particle performsa randomwalk betweennearest-neighborsites.
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derivations. Van Beijeren proceedsto deducedirectly the velocity autocorrelationfunction C(t), cf.
[193]. It is given by

C(t)=~~ ~ P(m,t)+ ~ (x~+x~t)6(L). (8.3)

The first term describesthe correlationof ajump at t = 0 with anotherjumpat t. It containsthe product
of the averageinitial velocity (xt — x0)/2r with the average final velocity (Xm — x~1)/2r.Some
carefulconsiderationsarenecessaryto establishthe correctnessof thefirst term [193].The secondterm
representsthe correlation of the jump at t 0 with itself. This contribution can be derived by
consideringjumps that havea durationr andletting r go to zero. Let 1 be the meanvalueand ~2 the
varianceof ~(d). Since all d. are independentrandomvariables,(d~)= ~2 + 12 and (d~d1)= 12 for
i ~ j. The velocity autocorrelationfunction is explicitly given by

~2 /-t\ [ /t~ t~1 ~2+l2 /t~

C(t) = ~ expl\—) Lhi~)— ‘o~)] + 2 8l~). (8.4)

The long-time behavior of the velocity autocorrelationfunction is easily found from the asymptotic
behaviorof the modified Besselfunctions(cf. Abramowitzand Stegun[194])

C(t)~ — 2 t/2 (t)
3!2 (8.5)~ 4~(2ir) r

This ‘long-time tail’ in the velocity autocorrelationfunction is evidentlycausedby the disordersinceit is
absent in the case~i= 0. Its physical origin has been discussedin greatdetail in the review [193]to
which the readeris referred.

The mean-squaredisplacementis foundeither from eq. (8.4) by doubleintegration,or directly from
eq. (8.2) by calculationof the secondmoment. Oneobtains

2 2 ~ f-hi 1h (hi(x~)(t)=I -+~ -exp_)[I
0~-)+I1~-)]. (8.6)

The asymptoticbehavioris

2 2 ~ 2~2 /t\
112

(x )(t)~ I + (2~/2 ~) ~ (8.7)

The diffusion coefficient of the particle is D = 1212T. There appearsa long-time tail octt12 whose
coefficient is directly associatedwith the disorder.This derivationwas the first onethat demonstrated
the existenceof a disorder-specificlong-time tail in a stochastic random-walkmodel.

The derivationsof vanBeijerencan be extendedto a simple solvablemodel for bonddistortionsof a
lattice in d dimensions.Considera regularlatticedressedwith severalsitesat eachvertex, cf. fig. 8.2.
The physical origin of such a modelmight be a regular attachmentof an atom to eachvertex, but the
placementof this atom is random. An interstitially diffusing particle could be preferablyattachedto
theseshiftedatomsandat high temperaturestheirregularitiesin the transitionratesdueto the different
bond lengthscould be negligible.
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Fig. 8.2. A dressedlattice which hasasingle chosensiteat eachvertexon which theparticlecanreside.The thick solid lines showthedeformation
of the perfect lattice.

The particle starts at position R0 and movesalong each bond with the sametransition rate. This
model is thus isomorphicto the regular lattice, since eachpoint is displacedfrom the vertexn by an
amount~in.The {~n}are a set of independentrandomvariables.Let 8~< ~. The calculationof the
mean-squaredisplacementis simple. The conditionalprobabilitiesarethe sameas for a regularlattice.
P(m, t) is the probability that the particle is on site R~when it startedat R()

([R(t) — R0]
2) = ~ ([Rm — R

0]
2) P(m, t)

= ~ ([m + ~im— ~0]2) P(m, t). (8.8)

Using the result for the mean-squaredisplacementof randomwalk eq. (2.22) and

(~0~2)= (~m~2)= 82, (~m~0)= 62 6mo , (8.9)

it follows that

(R)2 = 2dD
0t+ 262 [1 — P(0, t)] (8.lOa)

whereD0 is the diffusion coefficient of the regular lattice and

(R
2) = 2dD

0 6(t) _262 d
2P(O,t) (8.lOb)

The ensuingasymptoticbehaviorof the VAF is

i) in d = 1, since P(0,t)ct112

C(t) = d2(x2)Idt2 t~2 (8.11)

ii) in d-dimensionallattices,whereP(0, t)

C(t) t~4~’2. (8.12)
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Again a disorder-specificlong-timetail appearsin the velocity autocorrelationfunction. In d = 1 the
decayis faster than in the waiting-time model of van Beijeren. This may be relatedto a different
behavior of the mean-squaredisplacementin both models. In the former model, the individual
distancesd1 addup to a value that deviatesfrom its meanvaluenI aftern stepsby ~n

t12on the average.
The mean-squaredisplacementof a particlein this modelhasa correctionterm ~ ~ cf. eq. (8.7). In
the presentmodel, in d = 1 the individual distancesadd up to 0 ±an, and the mean-squaredisplace-
ment of a particle showsonly a correctionterm ~ t112. Hencethe differing behaviorin both modelsis
quite plausible.

8.2. Randomwalk on a random walk

A secondexampleof the superpositionof randomwalk on a linear chainwith a spatiallydisordered
structure is provided by the ‘random walk on a random walk’ which was investigated in ref. [195].
Again the problem can be solved completely by using generating function techniques, or in CTRW.The
spatially disorderedstructureis given as a random walk itself, as indicated in fig. 8.3. These structures
need not be one dimensional; generalizations to random walks in arbitrary dimensions are possible.
However, the spatial structure thus constructed must be topologically equivalent to a linear chain. The
discussion will be restricted to the one-dimensional case. An ensemble of such spatial random walks is
characterizedby the probability p~,(x)of finding a distance x after i’ steps. It has been discussed in
section2.1 andp~(x)can be takenfrom it, cf. eq. (2.7). The probability of finding the particleat site v

i_~ ~ov I I I X

Fig. 8.3. A segmentof a chain resultingfrom a randomwalk with positionx, versusstep,r. The particleperformsa nearest-neighborrandomwalk
on this chain.
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of the spatial structureis given by

/1\t /i/~-n~ /~+n\ 1
p~(~)=~) ~!/ [~ 2 2 )!]~ (2.7)

for a discreterandomwalk of n steps,or by

p(~,t) = exp(— fir) Ir(tiT) , (8.13)

for a Poissoniancontinuous-timerandomwalk of durationt. The averageof the temporaldevelopment
over an ensembleof basic randomwalks, i.e., over the spatial disorder,is given by

P,,(x)=>~p~(t) pjx) (8.14)

or by

P(x, t) = ~ p(~,t) pjx). (8.15)

No simple closed-formexpressionfor P,,(x) is obtained,althoughthe generatingfunction for P11(k)can
be derivedin Fourier space.The momentsof P~are easilyfound, e.g.,

(x
2)~=2~ ~p~(p) (8.16)

and

(x~)~=2~(3v2—2~)p~(~). (8.17)
v>0

Their asymptoticbehavior is

(x2),~~ (2~I2 (8.18)

and

(x4)—*3n. (8.19)

The proportionalityof the mean-squaredisplacementwith n1 2 is intuitively obvious,since two random
walks are superimposedin this model. As is already evident from thesemoments, the probability
distribution is not Gaussianfor large n. A saddle-pointintegrationshowsthat it is roughly given by

23 4/3

P~(x)= i/3 exp(_ ~/3 1/3) (8.20)
(3ir) X Ii 2 ~

The continuous-timeversionof the randomwalk on arandomwalk leadsto a closed-formexpression
for the Fourierand Laplace transformof P(x, t),
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- 1 -1/2 2F—A(s)coskl
P(k,s)=i[s(s+4F)] —

2F+A(s)cosk.

where

A(s)= [s(s + 4F)]~2— s — 2F. (8.21)

From eq. (8.21) follows the incoherent dynamical structure factor S
1~~(k,w) of this model by

applicationof eq. (2.34). Also the frequency-dependentmean-squaredisplacementis easily derived
from eq. (8.21). The expressionfor the velocity autocorrelationfunction will be given in the Laplace
domain,

C(s)- 2Fs
2A(s) . (8.22)

[s(s+ 4F)]t12 {[s(s + 4F)]”2 — }2

It is easilyseenthat lim~.~
0C(s)= 0, i.e., no diffusion coefficient exists. C(s) is proportionalto ~t/2 for

smalls, correspondingto a long-time tail behavior

C(t)~ - 1(F)
t!2 t312. (8.23)

The asymptoticmean-squaredisplacementin the time domain is

(x2)(t)~2(~). (8.24)

The t”2-law is expectedas the continuous-timeanalogof eq. (8.18).Since no staticdiffusion coefficient
exists, in linear responseno static mobility underan appliedfield exists [196].

Both the waiting-time model and the randomwalk on a randomwalk areexamplesof transportin
disorderedsystemswherethe temporaldevelopmentof the stochasticprocessis knownexactly,andcan
be combinedwith the probability distribution of the spatial disorder in order to obtain the complete
time-dependentprobability distributions.If an effective, averagedmediumwould be introducedbefore
the random-walkaverageis done, the specific resultsdue to disorderwould be missed.

8.3. Diffusion in lattices with inaccessiblesites

In this sectiondiffusion of aparticleis discussedon lattices wheresomesitesarenot accessibleto the
particle. Seefig. 8.4 for a pictorial representation.The randomwalk on the accessible(or ‘open’) sites
is the sameas on a regular lattice. It is assumedthat the densityof the blocking sites is so low that
long-rangediffusion is possible,i.e., that an infinite clusterof accessiblesitesexists.As said above,the
behaviornearthepercolationthresholdwheretheinfinite clusterceasesto exist will not be considered.
The motion of particles in finite clusters in two and higher dimensionswill be ignored. In one-
dimensional chains only finite clusters exist at arbitrarily small concentrationsof blocked sites.
However, the one-dimensionalcaseis very similar to the one-dimensionalmodel with brokenbonds
which hasbeentreatedin section6.3. Hencethis casewill be completelydisregarded.Thereareseveral
physical examplesof the model studiedhere, notably exciton transportin isotopicallymixed crystals.
One speciesof moleculessupports the transport of excitons (‘guest’ or ‘trap’ sites), whereasthe



362 J.W. Hausand K.W. Kehr, Diffusion in regular and disorderedlattices

r

Fig. 8.4. A lattice wheresome sites are blocked (shownwith solid circles) in a randommanner.A particle(small solid circle) performsa random
walk on this incompletelattice.

isotopically substitutedspeciescannotparticipatein the transport(‘host’ sites).The problemdiscussed
in this sectionis identical to the one addressedby Klafter and Silbey in [177].However,Kiafter and
Silbey outlined only the generalsolution of the problemandno explicit expressionswere given.

The main quantitiesof interest are the diffusion coefficient and, more generally, the averaged
probability of finding the particle at site n at time t. The simplestdescriptionof diffusion in a partially
blocked lattice is provided by a mean-fieldtheory wherethe transition rate F is replacedby (1 — c)F
where 1 — c is the meannumber of accessiblesites with c the concentrationof blocked sites. The
diffusion coefficient is given in this mean-fielddescriptionby

DMF = D
0(1 — c), (8.25)

whereD~1is the diffusion coefficient in the latticewithout blockedsites. Evidentlyeq. (8.25) disregards
the backward correlationswhich are presentin the randomwalk of the particle. Namely, when a
particle attemptsto jump to a blocked site, it cannot perform this transition; this is equivalentto an
immediatereturn to the original site.

An expressionfor the diffusion coefficient beyondthe mean-fieldexpressioneq. (8.25) can be taken
from the theory of NakazatoandKitahara[98]for tracerdiffusion in a latticegaswherethe tracerhasa
different transition rate than the other (background)particles,cf. also [197,198]. It is convenientto
introducea correlationfactor by defining

D = DMF fR(c). (8.26)

This correlationfactor is obtainedfrom [98]by letting the transitionrateof the backgroundparticlesgo
to zero,

~NK1~ — [1 (1 —f)c
JR t~c)—[1~ 1—c .

Heref is the correlationfactorfor diffusion of a taggedparticle with equaltransitionratein alatticegas
with concentrationc—* 1. The expressioneq. (8.27) vanishesfor c—~1, henceit doesnot predictthe
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percolationconcentrationsin real lattices. Nevertheless,it is an improvement over the mean-field
theory andit compareswell with numericalsimulationsat lower concentrations,see fig. 8.5.

An effective-mediumdescriptionof particle diffusion in a latticewith partially inaccessiblesiteswas
given by Kaski et al. [199],usingmultiple-scatteringmethods.Theyderivedthe diffusion coefficientand
the incoherentdynamical structurefunction ~ w). The diffusion coefficient was found to depend
linearly on the particleconcentrationabovethe percolation thresholdof the vacantsites,

D ~Fa2(1—clc~), ~ 828KTE ~0, c>c~ ( . )

wherethe percolationthresholdis given by

c~=(1—2Iz). (8.29)

For small c there is a similarity between this expressionand the one provided by Nakazatoand
Kitahara,sincein a mean-fieldtheory of the correlationfactorf= 1 — 21z. Theagreementof eq. (8.30)
with numerical simulations is similar to a result of Tahir-Kheli describedbelow. To obtain ~ w)
Kaski etal. had to determinea function ~~(w)self-consistently,S

1~~(k,w) is a functional of i~(w)andno
more a Lorentzian.The first four frequencymomentsof the spectraldensityare exactlygiven by this
effective-mediumtheory for the SC and BCC lattices.

A differentapproachto the problemof diffusion in a latticewith blockedsitesis the mode-coupling
theory of Keyes and Lyklema [200].They obtainan integralequationfor a diffusion kernel and their
expressioncontainsa percolationthreshold.They haveto solve the integral equationnumerically to
obtain the diffusion coefficient for arbitrary c. The results have the desiredqualitative features,
although a quantitativeverification is lacking.

RecentlyLoring et al. [201]performeda diagrammaticanalysisof this problem.Their work is an
extensionof the work by Gochanouret al. [202]on transportbetweencompletelyrandomlylocated
‘guest’ molecules; this work in turn was basedon Haan and Zwanzig [203]. They representedthe
self-energy for the conditional probability G5(t) of still finding the particle (excitation in their

__1.0

Concentration
Fig. 8.5. The correlationfactorfor diffusionon alattice with inaccessiblesitesascalculatedby NakazatoandKitahara(dashedline) andTahir-Kheli
(solid line). The data is from Monte-Carlo simulationsof the model on an FCC lattice. The vertical dashedline indicatesthe percolation
concentration.
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terminology) at the starting site at time t in termsof diagramsand performa partial summation.An
approximateconditional probability can be deducedfrom this partial sum; also here an implicit
equationhasto be solved numerically. The results for the diffusion coefficient obtainedfrom those
solutionsappearreasonable.With the assumptionof only nearest-neighbortransferrates percolation
thresholdsare obtainedas a function of vacancy(‘guest’) concentrations,which comparewell with the
known valuesin simple cubic,FCCandBCC lattices.For long-rangetransferratesof the Foerstertype
no percolationthresholdis obtained,in agreementwith the expectations.

The most advancedtheoreticaldescriptionof randomwalk of a particle on a latticewith blocked
siteshasbeendevelopedrecentlyby Tahir-Kheli [204].His theory decribesdiffusion of taggedatomsin
a multicomponentalloy consisting of several speciesof atoms with different transition rates, and
vacancies. Tahir-Kheli investigated the hierarchy of masterequationsobeyedby this problem and
neglectsthird-orderfluctuations,as in [198].He then improvestwo rate parametersof this theory by
self-consistenttreatment.The caseof one immobile specieswith concentrationc, one mobile tagged
particle,and the rest vacanciesis obtainedas a specialcase in his theory. The following correlation
factor is obtained

fTK~1C(lf) c~f. (8.30)

The expressioneq. (8.30) is very similar to the result of Kaski et al. in eq. (8.28) and it hasthe
appearanceof an expansionof the resultof Nakazatoand Kitaharaeq. (8.27).However, it predictsa
percolationconcentrationfor vacancy percolation,expressedin terms of the particle concentration
cp = f. For example, in the simple cubic lattice f = 0.653. . . whereasthe critical concentrationfor
vacancypercolation,expressedas particle concentration,is cp = 0.689. . . [205]. The resultof Tahir-
Kheli agreeswell with the computersimulations[206]over the full concentrationrange, cf. fig. 8.5.

8.4. Randomwalks on fractals

A way of breakingtranslationalinvariance,but retainingscale invariance is to model the transport
propertieson fractal lattices.A two-dimensionalexampleof these lattices,called the Sierpinskigasket,
is shownin fig. 8.6 [207].In fig. 8.6athebasicbuilding blockof this fractal lattice is shown(think of this
as an organism under a microscopewith a small field of view). When the field of view is widened, as
shownin fig. 8.6b, the shapeof the object looks similar to the first view; however,a holeappearsin the
center. Wideningthe field of view by anotherfactor of two revealsa largerholecut into the lattice(fig.
8.6c). Each time the field of view is widened a hole twice the size of the previouslargest hole is
observed.Thus, on eachscalethe magnification couldbe set suchthatthe structurelooks just like the
structurethat was previouslyobserved.This is called scale invariance.

Thereare many interestingphenomenawhich have the property of scaleinvarianceand a detailed
discussioncan be found in Mandelbrot’s book [207]. Of special interest to the readermay be its
application to disorderedsolids [208], non-linear dynamical systems [209] and random walks on
percolatingclustersalreadymentionedin section6.5 [210—212].

From the reader’sown experienceand from the abovediscussionit is obviousthat below some
magnification, the fractal structuredisappearsfor physical objects.Certainly a plastic or a piece of
glass, observedwith the naked eye, appearsto be homogeneousand the fractal structure is not
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/O\ (a)

Si~,~1Z2T2 (b)

S
3 r3 S2

____________________ (c)

Fig. 8.6. (a) The basicbuilding block of theSierpinskigasket,(b) threebasicbuilding blocksareusedto form themagnifiedview of the lattice and
(c) theview is magnified again by using threecompositebuilding blocksfrom (b).

revealed. It is important to analyzein each physical situation wherethe regime with specialfractal
properties can appear.

A discussionof fractals cannot be completewithout defining some important dimensions.One
obviousdimensionis the Euclideandimensionin which the fractal lattice is embedded.For fig. 8.6 the
Euclideandimensionis d = 2. There are two furtherdimensionswhich can be definedandtheyarenot
necessarilyintegers(or rationalnumbers).Oneis the Hausdorff (or fractal) dimension[207],which is
denotedin thisreview asd; andthe secondnew dimensionis called thespectral(or fracton) dimension,
which is denotedby d5.

The fractal dimensionfor fig. 8.6 can beintroducedas follows. The numberof pointson thelattice of
size L is proportionalto L raisedto the Hausdorffdimension -

NL = SaLd, (8.31)

where Sd is a shapefactor for the volume.
In fig. 8.6a,the lengthscaleis set by the baselengthL1 = b = 2 segments.The numberof latticesites

is N2 = 6. In fig. 8.6b thelengthis doubledL2 = 22 andthetotal numberof sitesis N4 = 3 . 6 — 3. Finally
in fig. 8.6c L3 = 2~and N23 = 3(3 . 6 — 3) — 3. This processcan be continuedand in general

L~~1= 2~~1 and N2(~+i)= 3”~[6— 3(1 — (~)“)I2] . (8.32)

Insertingtheseexpressionsinto eq. (8.31) andtaking the limit n —* ~, the Hausdorffdimensionfor the
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d = 2 Sierpinski gasketwith base b = 2 is:

d = ln 3/ln 2 1.585. (8.33)

Gefenet al. [210]noted that this valueis quiteclose to the Hausdorffdimensioncomputedfor the
backbonecluster in a percolating lattice in d = 2. The backbonecluster is the infinite cluster at the
percolationconcentrationwith the dead-endbranchesremoved.Gefenet al. comparedthe Hausdorff
dimensionsin eachEuclideandimensionwith the fractal dimensionof the backbonecluster. Further-
more, they calculatedthe asymptoticpropertiesof the conductivity (herethe diffusion coefficient) on
the fractal lattice and comparedtheseto the correspondingresultsfor the percolatingcluster. They
found the numericalvalueswere close for 1 ~ d <4. This led them to the conclusionthat the fractal
lattice may alreadyinclude the predominantfeaturesof the percolationproblem.

In d dimensionsandfor generalbaselengthb of the elementarybuilding blocks,Hilfer andBlumen
[213] havecalculatedthe Hausdorffdimensionfor the Sierpinskigaskets:

d=ln(t)Ilnb, (8.34)

where(~) = N!/M!(N—M)! is the binomial coefficient.
The spectraldimension,as the namesuggests,is intimatelyconnectedwith the dynamicalproperties

of the model [208,214—215]. As in the calculationof the Hausdorffdimension,the spectraldimensionis
calculatedusing scalingarguments.Oneword of warning, the argumentsgiven below are modified to
the diffusion problem,wherethe relation betweenfrequencyandwavenumberis w k2. In the quoted
literaturethe derivationsaregiven for elasticvibrationswherefrequencyandwavenumberare related
by o~k.

One definition of the spectral dimension (see Rammal and Toulouse [215] for this and another
relation for d

5) is given by the asymptoticexpressionfor the probability of the particleto returnto the
origin:

P(O, tb, 0) -~-t~’
2. (8.35)

This is a naturalgeneralizationof the asymptoticpropertiesof P(O, t 0, 0) on a Euclideanlatticewhere
d

5 = d. The Laplacetransformof eq. (8.35) can be relatedby eq. (6.9) to the spectrumof eigenvalues.
The asymptoticdependenceis

P(O,sbO)~s~
2t. (8.36)

For s = —iw, the densityof statesis:

d /2—1p(w) — w . (8.37)

Fromeq. (8.31), when the lattice size is scaledby b, then the numberof sites scalesas:

NL = bdNL/b. (8.38)

Similarly, since the densityof statesis relatedto the length scaleby:
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PL(W) dw cc k~’dk, (8.39)

thenthe scaling L —~Lib implies k—~bk. Hence,the densityof statesscalesas

PL(W) = bdpL,b(wF); (8.40)

w’ is the frequencyat the lattice scaleLib. The frequencieson two different lattice scalesare also
relatedto one anotherby a scaling relationship:

w~baw, (8.41)

wherethe exponenta must be calculatedfor eachspecific model. With this assumption,the densityof
statesare relatedon eachscaleby

, dw , a —a , a 42
PL/b(W),PL(W1b )=b PL(~Th ).

Choosethe scaleso that the argumentof the density of stateson the right-handside is a constant,
b = Wt~1. Replacethis result in eq. (8.40) to find

,i/a— 1
PL@’~))W PL(i). (8.43)

The exponentin eq. (8.43) can be relatedto the spectraldimensiondefinedin eq. (8.37):

d5 = 2dIa. (8.44)

The exponenta can becalculatedfor specificfractal lattices.ConsideragaintheSierpinski gasket,in
particularfig. 8.6b. The calculationfollows Rammaland Toulouse[215].The methodof calculatingthe
exponenta is similar to the renormalizationgroupprocedureof Guyer[172]. In the figure a clusterof
sitesis eliminatedfrom the lattice,e.g. { r1, r2, r3 }. The topologyof this latticedoesnot introduceany
transitionsto further neighbor sites on the renormalizedlattice; for instance,S1 is coupledonly to its
four nearestneighborson the new lattice {S2, S3,T1, T2}. The new lattice resemblesfig. 8.6a.

The Laplacetransformof the masterequationsfor the clustersof sites which areto be eliminated
(only homogeneousequationshere)are:

(s + 4) P(r1,s) = P(S,, s) + P(Sk,s) + P(r1, s)+ P(rk, s), (8.45)

where (i, j, k) are cyclic permutationsof the triple (1,2, 3). The analysisfocuseson site S~,but it
shouldbe clearby the symmetry of the lattice (z = 4 for all sites),that the sameresultsarederivedfor
all remaininglattice sites. The equationgoverningthe evolution of P(S1,s) is:

(s + 4) P(S1,s)= P(r1, s) + P(r2, s) + P(Z1, s) + P(Z3,s). (8.46)

Equations(8.45) can be directly solved for P(r1, s) + P(r2, s) with the result:
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[(s + 4)(s + 3)— 2] (P(r~,s) + P(r2,s)) = 2(s + 4) P(S1,s) + (s+ 6) [P(S2,s) + P(S3,s)]. (8.47)

This resultanda similar result for P(Z~,s) + P(Z3, s) can be substitutedinto eq. (8.46). After factoring
the quadraticpolynomial, the result is:

(s + 4) (s + 1) (s + 6) P(S1,s)= (s+ 6) {P(S2,s)+ F(S3, s) + P(T1, s) + P(T2,s)}. (8.48)

This equationhasthe sameform as eq. (8.45) with a scalingof the frequencyscale:

s’=s(s+S). (8.49)

In the asymptoticlimit s —~0, this correspondsto (recall s =

= 2’~ = Sw

the exponenta is:

a=1n5/ln2. (8.50)

This is substitutedinto eq. (8,44) to obtain the spectraldimension.A moredetailedcalculationfor d
dimensions(but b = 2) [215]gives:

d~= 21n(d+ 1)Iln(d + 3). (8.51)

Resultsfor b = 3 can be found in ref. [213].
The fractal propertiesof the underlying latticecan also be expectedto be manifestin the particle’s

mobility. Since the particle is forced to move in a reducedvolume on the fractal lattices, a slower
growth rate for the mean-squaredisplacementcan be expected:

(r
2~(t)~t2~. (8.52)

For ordinary Euclideanlattices, the exponent i-’ = ~. This exponentis related to the Hausdorffand
spectraldimensionsby the following heuristicarguments.The volume that the particlecoversin time
is:

V(t) (r2~2. (8.53)

The particle alsoescapesfrom the initial site inverselyproportionalto the volume that the particlehas
covered:

P(0,tb0,0)—V(t)~. (8.54)

Using eq. (8.35) andeqs. (8.52-8.54)the exponentv is:

pd
5i2d. (8.55)
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Thus, the diffusion propertiescontain both topological anddynamicalpropertiesof the model. Guyer
has used renormalization group calculations on various fractal lattices [216] to obtain the spectral
dimension for these lattices. Another complication can be added by using master equations with
memory kernels. This has been discussed by Blumen et al. [217];they use a WTD with the asymptotic
time dependence,

~(t) tt ~, (8.56)

andfind that the mean-squaredisplacementbehavesas:

(r2 ) (t) t~. (8.57)

Finally, Derrida et al. [218] have evaluatedthe density of states for the d-dimensionalbond
percolationmodel usingthe effective mediumapproximationas in section6.5. Their resultsshow that
the densityof statesexhibitsa crossoverfrom a low-frequencyregime,whereresultsareconsistentwith
Euclideandimensionality, to a high-frequencyregime,where fractal behavior is found. The crossover
frequencyis shifted to lower frequenciesas the percolationconcentrationis approached.They have
usedthis crossoverbehaviorto explainanomalousconductivityobservedin experimentson amorphous
materials[219].However, this interpretationis controversialand morework needsto be done.

9. First-passagetime problems

In this chapterproblemsare describedwherethe probability of the first transitionof a particleto a
specifiedlattice site (or group of sites) is required. Numerousphysical applicationsof theseproblems
exist, notably captureof particles that perform randomwalks on latticeswith traps. The first-passage
problemon a discreteline is closely relatedto the correspondingproblemof diffusion on a continuous
line. See,e.g., [220] for somepertinentreferences.

9.1. First passageto a site on a linear chain

This problem has already been consideredin chapter5, where traps with internal stateswere
modelledaslinear chainsandthe waiting-timedistributionwasderivedfor first passageto afinal site on
this chainthat representedthe transitionto a differentsite in the lattice. Herethe first-passageproblem
on a linear chain is consideredin a more generalmanner.For instance,infinite chainsare admitted.

In section5.3 the probability densityof a first passageto a site i at time t whenthe particlearrivedat
site i — 1 at t = 0 was derivedby settingup a recursionrelationwhich relatesthis probability densityto
the probability density for first passagefrom site i — 2 to site i — 1. If the linear chain is finite, the
repeatedapplicationof the recursionrelation terminatesand one obtains the expressionsstudiedin
section 5.3. It is useful for many applicationsto treat the infinite uniform linear chain in the same
manner.

A particle performs Poissonianrandomwalk on an infinite linear chain, with transitionratesF
between nearest-neighborsites and it is assumedthat the particle arrived at site i at t = 0. The
probability density is requiredfor the first passageto site i + 1, x~÷

1,1(t).Similar to section 5.3, an
infinite seriesfor the Laplacetransform£+1~(s)is setup and resummed,resulting in



370 lW. Hans and K.W. Kehr, Diffusion in regular and disorderedlattices

- F

Xi+t(5)5+2F_F~(s) (9.1)
If ~ = 1, then also £.+~~(0)= 1. Now, in the infinite uniform chain £-+1(s) dependson the
differencebetweeni + 1 and i only, and is identicalto ~ Hence

- F
= ~ + 2F — Fx10(s)’ (9.2)

The solution of this equationis

~ + 1 -\i~ +2), (9.3)

where ~= s/2F. Only the negative sign of the root is admissible, to ensurethe correct short-time
behavior.In the time domain ,~10(s)is a modified Besselfunction [221]

Xt,o(t) = 11(2Ft) exp(—2Ft). (9.4)

By expandingeq. (9.3) for small s it is seen that the first moment of xto(s) diverges,i.e., the mean
first-passagetime to a neighborsite divergesin the infinite chain.

The abovederivationof the first-passagetime distributionis ratherdirect. Thereareothermethods
that deducethe quantity from the conditionalprobability of finding the particleat a given siteat time t.
The generalrelation betweenbothquantitieswill be discussedin the nextsection.In this section the
methodof imageswill be reviewedfor onedimension.It is describedin detail in [15]for oneabsorbing
site anddiscreteRW andin [7] alsofor two absorbingsites. HeretheCTRW formulationwill begiven.

Consideran absorbingsite, say i, in a linear chain. When only nearest-neighbortransitionsare
considered,and when the particlestarts at a site k < i, the first transitionto the trappingsite occurs
from site i — 1. Hence the conditionalprobability P(i — 1, t i) of finding the particle at this neighbor
site is required,underthe conditionthat i was not visited until time t. The transitionto site i thentakes
place with rate F. The methodof images constructstheseconditionalprobabilitiesin sucha way that
the boundarycondition of vanishingprobability at the absorbingsites is satisfied. If i is the only
trapping site in the uniform chain, the method of images is applied as follows. The paths of
continuous-timerandomwalk on the uniform chainaredivided into allowedpathswhich do not reachi,
andforbiddenpaths,cf. fig. 9.1. The contributionof the forbiddenpathsaresubtractedin form of their
mirror images,in an unrestrictedRW thesewould occur with equalprobabilities.One has

P(j,tli)=P(j, t)- P(2i-j,t), (j~i). (9.5)

The initial conditionof start at say k = 0 hasnot beennotedexplicitly. The probability densityof first
passageto site i is then given by (setj = i — 1)

X1.0(t) = F[P(i — 1, t) — P(i + 1, t)] . (9.6)

The conditionalprobability P(i ±1, t) is expressedby modified Besselfunctions,asin eq. (8.1),andthe
recurrencerelation [194]is applied,
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Fig. 9.1. The method of images applied to the trapping site i. Pathsthat go through i areforbidden. Thesecontributionsaresubtractedby using
their mirror images.

I~~1(2Ft)— I~+1(2Ft)= ~ I~(2Ft). (9.7)

The final result for i = 1 is eq. (9.4).
Onecould arguethat the probability densityof first passageto the trappingsite i shouldfollow from

the convolution of the probability P(i — 1, t’ i) of finding the particle at site i — 1 at time t’, andthe
waiting-time distributionfor a transition to site i, F exp[—2F(t — t’)]. This reasoningleadsto a wrong
result. The derivationis rectified by usingthe probability density Q(i — 1, t’ i) of a transitionto site

— 1 at time t’, and by convoluting this probability densitywith the waiting-time distributionfor the
direct transitionfrom i — ito i. P(i — 1, t~i) is relatedto Q(i — 1, t’ i) by the probability of sojournat
site i — 1, as discussedin section3.2, cf. eq. (3.12). If this relationis takeninto account,eq. (9.4) is
regained.Continuous-timerandomwalk requiressometimescarefulanalysis!

Themethodof imagescan bereadily extendedto two absorbingsitesat, say, —k (k >0) and i; this is
alreadythe generalcasein d = 1. The particle is assumedto start at site 0 at t = 0, the boundary
condition of vanishingprobability at the two absorbingsites. By this methodthe following relation is
used

P(j, tJ —k,i) = P(j, t~—k, 2i+ k) — P(2i —j, tb —k,2i+ k).

This is iteratedto obtain

P(j, tb -k, 1) = ~ {P(j + 2l(i + k), tb -k) - P(2i -j + 21(i + k), tb -~)}.

Again by the methodof images,
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P(j,tb-k)= P( j,t)-P(j+2k,t),

and using symmetrythe sum can be written as:

P(j, t~-k, i) = ~ {P(j + 21(i + k), t) - P(2i -j + 21(i + k), t)}. (9.8)

This equationmay serveas a startingpoint for the trappingproblemin d = 1. The infinite sum eq. (9.8)
can be reducedto a finite sum (as many terms as the numberof free sites betweenthe traps); these
manipulationsare describedin [7] for discreteRW, but theyare the samefor CTRW.

In this section the individual transitionswereassumedto form a Poissonprocess.First-passagetime
probability densitieswith moregeneralWTD wereconsidered,e.g.,by BalakrishnanandKhanta[222].

9.2. Relation betweenfirst-passagetimedistribution and conditional probability and applications

There exists a fundamentalrelation betweenthe first-passagetime distribution to a site and the
conditionalprobability of finding the particleat this site at time t. The relationexpressesessentiallythe
fact that for a Markov processthe probability of occurrenceof an eventat step i.’ is composedof the
probability of the first occurrenceat step t~’, and of the probability of first occurrenceat step v’ < t,

timesthe probability that the eventagainoccursafter the remaining i-’ — ~“ steps.Schroedinger[223]
applied this reasoningto the first-passagetime problem on a line. As in the previoussection,the
relation will be formulatedfrom the outset in continuoustime. Since the Laplacetransform of the
continuous-timeproblemis equivalentto the generatingfunction of the discrete-timedescription[24],
both formulationsareequivalent.

A uniform latticeof arbitrary dimensionalityis considered.Let F(n, t) be the probability densityof
first arrival at site n at time t; the particle startsat site n = 0 at t = 0. The start is not countedas an
arrival event, henceF(n = 0, 0) = 0. In otherwords, for t > 0 F(0, t) describesthe first return to the
origin. P(n, t) is the conditionalprobability of finding the particleat site n at time t with P(n, 0) = ~

Then the following relation holds

P(n, t) = ~‘(t) ~ + dt’ F(n, t’) P(0, t — t’). (9.9)

For lattices with non-uniform transition rates, the start and end sites must be notedexplicitly in the
derivations.Laplacetransformationof eq. (9.9) yields

— P(n, s) — ~‘(s)6
F(n s) = — “° . (9.10)

P(0, s)

Theusefulnessof the relationrelieson two facts:i) The conditionalprobabilityis morereadily available
than the first-passagetime distribution, especially in higher dimensions,and ii) the conditional
probability can be calculatedwithout consideringthe point under question as a special one. To
demonstratethe useof this relation eq. (9.3) will be rederived,taking n = 1,

x1.0(s)= P(i, s)IP(0, s). (9.11)
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The quantitiesP(i, s) and P(0,s) can be takenfrom eq. (2.33). Their quotient is identicalwith eq.
(9.3).

One consequencewhich can be drawn from eq. (9.10) is the well-known dependenceof the
probability of return to the origin on dimensionality.It is given by the time integralof the waiting-time
distribution for return; hence in continuous time the question arises whether this waiting-time
distributionis normalizedor not. Fromeq. (9.10) follows

F(0,0)=i-t/P(0,0). (9.12)

Here I is the meanresidencetime of the particle at a lattice site. The last term containsthe inverseof
the time integralover the probability of finding the particle at theorigin; after dividing theintegral by t

the meannumberof visits at the origin is obtained.The_calculationof this quantity is discussedin detail
in the two reviews[7, 8]; only the result is quoted.t~ P(0,0) is infinite for d = 1, 2 andfinite for d � 3.

Hence the waiting-time distributionfor return to the origin is normalizedin d = 1, 2, or theprobability
of return is unity. In d � 3 the probability of return is less than unity and the particle can escapeto
infinity without furtherreturns. Explicit numbersfor the return probabilitiesin various 3-dimensional
lattices arefound in the literature [86].

The meantime until trappingat a given point or returnto the origin can alsobe discussedstarting
from eq. (9.10). First the meantime of return to theorigin in d = 1 and2 is considered.It follows from
the waiting time distribution for the first return,

JdttF(0, t)= _~~,s)L=~.. (9.13)

For n = 0, eq. (9.10) reads

F(0, s) = 1 — 1P(s)1P(0,s) . (9.14)

For Poissonianrandomwalk in d = 1

= (s+ 2F)~,

and

P(0,s) = [s(s+ 4F)}”
2.

Hence the small-s expansionreads

F(0, s) = 1 — (s/F)tt2 +..., (9.15)

andno first momentof F(0, t) exists. Consequentlythe meantime until returnto the origin is infinite,
as alreadydeducedin section9.1. A similar resultholds in d = 2, wherefor the squarelattice
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and P(0,s) is given as an elliptic integral [24]. Its expansionfor small s is

1 (32F~

P(0,s)—~~—T,ln~--——). (9.16)

Hence

F(0, s)~ 1— l(3~F/) (9.17)

and the first momentof F(0, t) diverges.
In threedimensionsthe samemethodcan be used to derive the meantime until return at leastfor

the latticeswherethe latticeGreenfunctionsP(0, s) areexplicitly known, including their expansionsfor
smalls. This derivationwould yield the meantime until trappingundertheconditionthatthe particleis
actuallytrapped.The particleescapesto infinity with finite probability; hencethe completemeantime
until return to the origin should diverge. Montroll and Weiss [24] performed a calculation which
exhibitstheseeffectsby consideringfinite, largelattices.They calculatedthe meantime until trapping
at a generalpoint n and evaluatedthe leading term which they foundproportionalto the numberof
latticesitesN in d = 3. If eachsite is a trappingsite with finite probabilityc, ameantrappingratecan be
deduced.Theresult is identicalto the resultof the Rosenstockapproximationwhichwill be discussedin
the nextsection.Thereforeno explicit expressionsare presentedhere. A very careful investigationof
the averagenumber of stepsuntil trappingfor severalclassesof RW’s and arbitrary dimensionswas
maderecently by den Hollander[224].

Next the meannumber of distinct sites visited until time t is consideredin a random walk on a
d-dimensionaluniform lattice. This importantquantity follows quite easilyfrom the probability density
of first return to a site, F(n, t). As before,the calculationsareperformedin continuoustime with the
hope that this variant of the usual descriptionmay be useful in some cases.The derivation is an
adaptationof the procedureof Montroll [225] to continuoustime.

One defines

zi(t) = ~ F(n, t). (9.18)
n~iO

After normalizationwith the numberN of sitesthis is the probability densityof arrival at time t at an
arbitrarynot yet visited site. Hence il(t) dt is the averageincreaseof newly visitedsitesin the interval
[t, t + dt). The meannumberof distinct pointsvisited until time t is relatedto z~~(t),

=1+ J dt’ ~(t’). (9.19)

or in the Laplacedomain

(S(s))= [1 + ~(s)]/s. (9.20)

In this relation eq. (9.18) and the expressioneq. (9.10) for F(n, s) is introduced.The sum ~~P(n,s)
gives 1/s becauseof normalization.Hence
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KS(s)) = 1/[s2 P(0, s)]. (9.21)

It is quite easyto deducethe knownasymptoticresultsin d = 1 and3 from (9.21). For instance,in
d= 1

P(0, s)—> (4Fs)”2. (9.22)

Hence

1/2 —3/2
KS(s))—~(4F) s , (9.23)

and

/ 16F ~1/2
(9.24)

t—*~ \ ~- /

Identifying 2Ft with the number of stepsn the usual result in discrete time [7] is recovered.The
asymptoticresult in d = 2 is lessreadily obtainedsincethe inverseLaplacetransforminvolvesVolterra
type functionswhoseasymptotic propertiesare not easilyaccessible.

The approximateasymptoticbehaviorof ~(S(t))in d = 2 can be conjecturedfrom the corresponding
asymptotic behavior of (St) for discrete RW which is now known as a series [226]. The leading
asymptoticterm of (S(t)) can be obtainedfrom the leading term of that seriesby the substitution
n = t/t, cf. also [24]. For the squarelattice

(S(t))~ Iln~tt/Iy (9.25)

A morecompletederivationof (S(t)) including_morethan the asymptoticterm in CTRW is desirable.
The dimensionality 3 is simple again,since P(0, s) approachesa constantvalue in the limit s —>0.

Hence

KS(s))—>1/[s2P(0,0)], (9.26)

or

KS(t)) —-> t/[P(0, 0)]. (9.27)

The result will be rewritten as

(S(t)) ~> (1 Pr)t~

where eq. (9.12) was usedandPr is an abbreviationfor the return probability F(0,0).
It is easyto extendthe resultspresentedin this chapteron first-passagetime distributionsto random

walks with internal states, in the sensediscussedin chapter 3. The basic relation between the
first-passagetime distributionandthe conditionalprobability holdsirrespectiveof the internalstructure
of the randomwalk. P(n, s) must be interpretedas the summaryprobability of finding the particle at
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site n, after the internal stateshavebeensummedover. Of course,the quantitativebehaviorof P(0, s)
dependson the natureof the randomwalk under consideration.

This point will be illustratedfor the correlatedrandomwalk in d = 1 discussedin section4.2. It can
be derivedfrom the expressionP(k, s), eq. (4.6) that P(0, s) is given by

F(0 s)= ~ + Ff)[s2 + 2s(~+ 1~)+ 4FbF~+ (Ff - J~)Q(s)
2F(s+f~+1~)Q(s)

— (9.28)

Q(s) = [s(s+ 2f~)(s+ 2Ff)(s + 2T~+ 2f)]12.

In the limit s—>0 this quantity behavesas

- / F \1/2 F--F
P(0,s)—*~ h + I h (9.29)

.s-” 2F~(F~+ F1)s 2Ff(f~+ Fb)

This behaviorcan now be used to deducefrom eq. (9.21) the meannumberof distinct sitesvisited by
the correlatedrandomwalk. The result is

(S(t)) —> [8(T~ + ~)ft/ir]
12 + 1-f +~‘, (9.30)

wheref is the correlationfactor,

f=Ft./Fb. (9.31)

The asymptoticresultfor correlatedwalk is obtainedby rescalingthe time in (9.24)with the correlation
factorf. This resultwas obtainedby Keller [227]. The correctionto the asymptoticbehaviorwas derived
by Kehr andArgyrakis for discreteRW [228]; it doesnot obeyscaling.Numericalsimulationsverify the
correctionterm, cf. fig. 9.2.

The meannumberof sites visited by correlatedwalk in higher dimensionswas also investigatedin
ref. [228]. The model with restrictedreversalsandthe forwardsteppingmodelwerestudiedfor discrete
RW in d = 2 and 3. Asymptotic expressionscould be analytically derivedfor the model of restricted
reversals.The leading term in d = 2 can be obtainedby scaling the stepnumberwith f; again there
appearcorrectionsthat do not fulfil scaling. In d = 3 the form obtainedby scaling and the correction
term are of the sameorder.

9.3. Survivalprobability ofparticles diffusing in the presenceof traps

In this section the survival probability of a particleis examinedthat is put randomlyon a latticewith
a randomdistribution of traps and then performs a random walk. The waiting-time distribution is
requestedfor first arrival at a trap wherethe particle is assumedto be annihilatedor permanently
trapped.This waiting-time distributionmay be expressedin discretetime, ~ or in continuoustime,
çli(t). The survival probability ~P,,after n stepsor ~I’(t) after time t is related to t~t,or ~i(t) by

~ ~, (9.32)
in =0
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Fig. 9.2. The mean number of sites visited by a correlated random walk on a linear chain versus time. The solid circles are Monte Carlo simulations.
The solid lines representthe asymptoticexpressionwith theterm 1—fin eq. (9.30), whereasthe dashedcurvesneglectthis term.

or

~(t) = i-J dt’ ~(t’). (3.1)

The waiting-time distributions~/i~ or tfi(t) includea doubleaverageover the random-trapdistributions
and over the different possible random walks. The combination of the two averagesled to some
surprisingresults,which foundmuch attentionrecently.

The permanenttrapsareassumedto be randomlydistributedover an infinite lattice,with probability
c of finding a trap at any site, and no correlationsbetweendifferent sites. Let S,, be the numberof
distinct sites visited in an n-steprandomwalk. The survival probability after n stepsis evidentlygiven
by

= ((1- c)~’). (9.33)

In this expressiononly an averageover different randomwalks must be taken;the averageover the
random-trapdistribution hasalreadybeenperformedin the expressiongiven above.Stanleyet al. [229]
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verified eq. (9.33) by performing explicitly the averageover different trap configurations;they also
elaboratedthe role of the weight factor p = I — c.

To perform the averageeq. (9.33) it suffices to know the probability distribution p,,(S) of the
numberS of distinct sites visited by an n-step RW. It is also convenientto define

p = (I — c) = exp(—A) . (9.34)

The survival probability is thus given by the average

= ~ p,,(S)e~5= (e~), (9.35)

i.e., each walk is counted in the averagewith a weight factor exp(—AS).The case n =0 where
pQ(S)= ~ and II~~= I — c is included.

The samereasoningas abovecan be madein continuoustime. Thus,whenthe survival probabilityis
requestedin continuoustime, the following averagemust be studied

~P(t)= K(1 — c)~°~), (9.36)

whereS(t) is the numberof distinct sitesvisited up to time t. Also this averagecan be understoodasan
averageover the probability distribution p

1(S) of the number of distinct sites visited up to time t.
Applications of the previousexpressionswere mainly madefor discreteRW.

An approximateevaluationof the survival probability will be given now in continuoustime. The
approximation,done in continuoustime, consistsin replacingS(t) in eq. (9.36) by its averagevalue

~R(t) = (1 — ~ (937)

This approximationis due to Rosenstock[230]who calculatedessentiallya waiting-timedistributionfor
luminescenceusingthisapproximation.Laterwork by him andStraley[231,232] wasmainly concerned
with the meantime until trapping,which can be derivedfrom the survival probability. The asymptotic
behaviorof the meannumberof distinct sites (S(t)) visited up to time t was reviewedin the preceding
section.Using theseexpressions,the asymptoticbehaviorof the survival probability is obtainedin the
Rosenstockapproximation,in continuoustime

exp[—A(8t/~i)’~
2], - d=1,

IPR(t) = exp{—(Airt)/[t ln(8t/t)]} , d = 2, (9.38)

exp[—A(1 — Pr)t/t] , d � 3

The result for d = 2 is valid for the square lattice. In the Rosenstockapproximation,the survival
probability decaysexponentiallywith time in 3 andmoredimensions,and a time-independentcapture
rate can be identified from eq. (9.38). It is given by

1=A(1-p)/t. (9.39)

For small c the capturerate is proportional to c, as expected.The result eq. (9.39) representsthe
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captureratefor diffusion-limited trappingwhere the diffusion occurson a discretelattice. For small c, it
is identical to the resultin eq. (7.35) of the averageT-matrix approximationfor the randomtrap model.

Onemay ask whetherthe Rosenstockapproximationmade in continuoustime is equivalentto the
analogousapproximationin discretetime, when the stepnumberis identified with n = t/t. When the
CTRW is Poissonianthe equivalencecan be justified by the argumentsgiven in section2.3. The simple
transcription of the discrete into the continuous-timeresult may no longer be possible when the
elementaryjump processis describedby a more complicatedwaiting-time distribution. For instance,
non-exponentialwaiting-time distributions may occur as a result of multipolar long-rangetransfer, as
consideredin ref. [233].

The survival probability can be derived beyond the Rosenstockapproximation by employing
cumulantexpansiontechniques[233,234]. In fact, the averageeq. (9.35) can be expressedin the form

~ =exp[~ ~~(—A)’ ~], (9.40)

wherethe K
1,, arethe cumulantsof orderj of the distributionp,,(S). Restrictionto the first cumulantis

identical to the Rosenstockapproximation.Zumofen and Blumen [234] havenumerically determined
somecumulantsfrom simulationsof p,,(S). Figure 9.3 showstheir resultsfor the survival probability
(normalizedto one) derivedfrom the numericalcumulants,in d = 1. Thereis good agreementbetween
an exactexpression(see below) and the direct simulationsof the survival probability. The successive
inclusion of higher cumulantsyields survival probabilities that approximatesuccessivelybetter the
correct ~ but the expansionalways breaks down for larger steps numbers. These results also
demonstratethat Rosenstock’sapproximationis very poor in d = 1. d = 1 is the leastfavorablecase;in
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Fig. 9.3. The survival probability, ~, in one dimension as a function of step number, n, calculated using Monte-Carlo data (solid circles) and
numerically determiningsuccessivecumulantsof order]= 1,2,3 and 4 (from Zumofen and Blumen [234~.
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d = 2 alreadythe inclusion of 2 cumulantsgives good resultsfor intermediatestepnumbers,while in
d = 3 already the Rosenstockapproximationgives a useful descriptionof the decay laws [234]. A

relatedwork is the article of Weiss [235] in which he derived II’, in d = 3 from the distributionp,,(S)of
distinct sites visited. In accordancewith resultsof Jam and Pruitt [236]a Gaussianform of p,,(S)was
used,with specifiedmeanandstandarddeviation.Hence thisprocedureis equivalentto a second-order
cumulantexpansion.

It becameclear in recent years that the survival probability does not behave asymptotically as
predictedby the Rosenstockapproximationor its extensions.The correctasymptoticbehaviorof ~1’(t)
in continuoustime andfor a continuousdiffusion for smalltrap concentrationsc ~ 1 andlong timeswas
found by BalagurovandVaks [237].They found

8(~~) exp[_~23(c2t/I)I/3], d = 1,

‘W(t) —= exp[—v’~Ls
0(ct/I)’

2], d = 2 , (9.41)

~ ~ d = 3,

wherep~is the first zeroof the Besselfunction J
0(z). BalagurovandVaks solvedin d = 1 the diffusion

equationfor a particleon a finite segmentof a line, boundedby traps,with the boundaryconditionof
vanishingprobabilitiesat the traps.The solutionof the diffusion equationwas thenaveragedover the
distribution of the lengthsof thesesegments.While the survival probability decaysexponentiallyin a
given, fixed, segmentthe averageover the distributionof the lengthsleadsto the anomalousbehavior.
There are large trap-freesegments,although with small probabilities,and the particlesmay survive
abnormally long in thosesegments.Similar considerationsweremadein higher dimensions.Thereis a
closeanalogyof the trappingproblemto theproblemof the densityof statesof an electronin a medium
with randomimpurities; this problemwas extensivelydiscussedby Lifshitz [2381.

The work of Balagurovand Vaks [237] did not reach generalattention. Some time thereafter
DonskerandVaradhan[239,240] provedrigorouslythat the survival probability behavesasymptotically
in a way consistentwith eq. (9.41). They gave their prooffirst for continuousdiffusion in continuous
time [239]and they extendedit later to randomwalk in discretetime [240].For the randomwalk the
theoremrequiresno bias of the walk and a finite secondmoment. It reads,specializedto nearest-
neighborjumps, and for A > 0,

~ lnKexp(-AS)) = -k(A, d), (9.42)

where

k(A, d) = A

21(d+2) d + 2 (2P~)d/(d~2)

and lid is the smallesteigenvalueof the Laplace operator~/2 in d dimensionson a unit spherewith
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Dirichlet boundaryconditions.For instance,in one dimensionli = ~.2/2 and

11’~ =exp[—A)2t3n’t3]. (9.43)

A = c for small c andone recognizesthe asymptoticequivalencewith (9.41). Also the rigorousproofof
DonskerandVaradhanremainedlargely unnoticedup until recently [241].

The trappingproblemobtainedgeneralattentionthrough the work of Grassbergerand Procaccia
[242]. They consideredBrownianmotion in continuoustime and a randomdistribution of traps. They
startedfrom the physicalconsiderationof fluctuationsof the trap densitiesandwereable to derive the
asymptoticbehavior

111(t) ~exp(—at d+2)) ‘ (9.44)

from the contributionsof the trap-freeregionsof differentsize.Below anadaptationof their argument
to randomwalk in discretetime will be given. The derivationof Grassbergerand Procacciagives a
lower bound to 111(t); an upper bound for 111(t) was establishedby Kayser and Hubbard [243] for
Brownian motion in continuoustime in the presenceof random spherical traps. It was found that
asymptoticallyboth boundswere identical.

The following qualitative derivation can be given [244] for the non-integerexponent of the
asymptoticbehaviorof the survival probability. Considerstartof the particlein a trap-freeregionwith
S sites. The probability to find sucha region is p~= exp(—AS)with A definedin eq. (9.34). The linear
extensionof a (compact)region is up to numerical factorsR =

51/d (lattice constantis unity). This
quantity is a measurefor the distanceto be traversedby a random walk until capture.The mean
numberof stepsnecessaryfor traversalby a randomwalk is thus givenby K n) = R

2 = 52/il For afixed
configurationof traps an exponentialdecayof the survival probability is obtained,with f,, exp(—n/
(n)). The configuration-averagedsurvival probability is

11’,,=>~exp(—AS)exp(—n/Kn)); (9.45)

or, after replacingthe sum by an integral and inserting Kn)

—1 dSexp[g(S)], (9.46)

where

g(S)=—AS—nS2~’.

The maximum of g(S) is at

Sm= (2n/dA)~~2~, (9.47)

andsaddle-pointintegrationyields
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d 2 2 d;(d-.-2)

~ ~exp[_ A2/2)(~) ]. (9.48)

Apart from a numericalfactor this estimateis equivalentto the result of DonskerandVaradhan.
Explicit expressionsare to be expectedin d = I whererandom-walkproblemscan be solvedexactly

to a largeextent.Movagharet al. [246]derivedthe solution of the random-walkproblembetweentwo
absorbingtraps by scatteringmethodsand averagedit over the trap distributions.To obtain a closed
expressionthey introducedan approximationvalid for small c only; their result is identical to the one
derivedby Balagurovand Vaks in d = 1, cf. (9.41).

Anlauf pointedout in his work [244,245] that the asymptoticbehaviorof the survival probability can
be deducedfrom the publishedasymptotic representationsof p,(S).Two different forms havebeen
given in the literature [7] in the form of infinite sums. It is important to realizethat the weight factor
exp(—AS)in eq. (9.35) favors the small S values.In fact, p,(S) has a maximum at Socn’2 while the
combinedquantity p,(S) exp(—AS)hasits maximum at S ~ n’3, cf. fig. 9.4. Hence that representation
of p,,(S)shouldbe usedwhich convergesmost rapidly for smallSvalues.Only a few (one or two) terms
are necessaryto obtain an excellent approximationfor p,,(S) for S values left of the maximum, cf.
howeverthe discussionbelow. Anlauf deducedtheleadingasymptoticbehaviorandthe correctionsto it
from the first term of p,(S).The following scaling variable can be introduced

x[7rA]23n’3. (9.49)

where A is defined in eq. (9.34). The survival probability was derived including correctionsup to
relativeorder x4. It is given by

8 / 2 \‘ ~ a a~ a., a
4

~—(~J ~~ 3T\
31r/ L x x~ x x

where
17 7 Ni to7

~ a
2=—~, a3—~ and ~

The leading term coincideswith the one given above. The numericalsimulationsagreewell with eq.
(9.50) for concentrationsup to 0.5, cf. fig. 9.5; for detailsseerefs. [244,245]. Also the scaling property
eq. (9.49) could be verified by the simulations.

Number of distinef sites visIted

Fig. 9.4. Illustration of the distribution of distinct sites visited p(s) and theexponentialfactor appearingin eq. (9.35).
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Fig. 9.5. Numericalsimulation of thesurvival probability in d = I versusscaledstepnumberfor severalconcentrations.The dashedcurveshows
Rosenstock’sfirst cumulantapproximation;thesolid curve is eq. (9.50). Figure from J.K. Anlauf [245].

Thus far resultswere consideredfollowing from the asymptoticexpansionof p,,(S). At very large
trap concentrationswherethe survival probability becomessmall for small stepnumbers,yet another
type of correctionsmust be takeninto account.These correctionsarise from the differencebetween
asymptotic and exact expressionsfor pa(S). Exact representationsfor p,,(S) can be obtainedby the
transfermatrix method,the results are equivalentto those following from the method of images.
Evaluationof the exactexpressionsin the asymptoticlimit (i.e. for largex) leadsto a modification of
the result eq. (9.50) by the factor [A = —ln(1 — c)]:

C = (1- c)[-b(1 - c)]2~ (9.51)

and correction terms in the coefficientsof at,a
2 For example,the coefficient a., is modified to

r 2 2117 ~r ln(I—c)12 (9.52)

The higher-ordercoefficients are modified in a similar manner.The c-dependentadditional factor C
deviatesfrom 1 in the limit c —>0 as

C=1+~+O(c~); (9.53)

henceit is nearto onefor small and intermediatec. Evenat c = 0.5 a deviationof only 4% hasto be
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considered.Exact numerical enumerationtechniquesconfirm [244] the correction terms discussed
above in the caseof large trap concentrations.

Presentlynot muchwork hasbeendoneon thetrappingproblem in higher dimensions.Accordingto
Zumofen and Blumen [234] in d = 3 the Rosenstockapproximationand its improvementby the next
cumulantseemsto representwell the survival probability for moderatestepnumbers.Lubensky[247]
studiedthe trappingproblemby path-integralmethods.Using an instantontechnique,he could derivea
general form of the survival probability in arbitrarydimensions.The exponentcontainsa series in
powersof nd~2),n~_~2) Of course,the coefficient of the first term must coincidewith the
result of Donskerand Varadhan.The following coefficient can only be calculatedapproximatelyfor
d> 1. The form of the survival probability obtainedin d = 1, cf. eq. (9.50), agreeswith the general
resultfound by Lubensky[247].RecentlyHavlin et al. [248]did numericalwork by exactenumeration
techniqueson the survival probability of particles in 2 and 3-dimensionallattices with moderateand
large trap concentrations.They showedthat their data scaledas the asymptoticbehaviorof Donsker
andVaradhanfor stepnumberswherealready ~ ~ ill’3. It is not knownhow in d = 3 the changeover
from the exponentialdecay at smaller step number to the asymptotic decay xexp(—an3~)occurs
quantitatively.Investigationof the changeoveras a functionof trap concentrationis a pressingproblem.
Since in many instancessimple exponentialWTDs for trappingand the accompanyingconceptof a
time-independenttrappingrate hasbeen used in d = 3, the rangeof validity of theseideasmust be
critically examined.

9.4. Reemissionand recapture

In the last sectionthe waiting-time distributionwas studiedfor the first captureof a particlewhich
performsa randomwalk in the presenceof randomlydistributedtraps. In manyapplicationsreemission
processesof trappedparticlesmustbe takeninto account,in particularparticlesmay escapefrom the
trapsby thermalexcitation. Typically this processis an activatedtransitionprocessover a barrier. It
maybe describedby a waiting-time distribution for escapelIIr(t). In the simplestcasethis waiting-time
distributionis exponential,

uI’~(t)= Yr exp(~yrt), (9.54)

whereYr is the escaperate.Some discretestochasticmodelsfor derivingmorecomplicatedwaiting-time
distributions were consideredin section 5.3. After the particle escapedfrom the trap, it may be
recapturedby the same, or by another,randomly located trap. One should note that the two-state
model of section5.1 assumesthat the waiting-time distribution for recaptureis exponential,

~/i,(t)= y, exp(—y
1t), (9.55)

whereY, is a rate for (re)capture.Almost no explicit determinationsof the preciseaveragewaiting-time
distributionfor recapturehavebeenmade.Anlauf [244]pointedout how the waiting-time distributions
for captureat the sametrap and for captureat the othertrapscan be calculatedby the sameformalism
as used for deriving the waiting-time distribution for random implantation. This formalism leadsin
principle to waiting-time distributionswith the sameleadingasymptoticbehavioras the previousones.
Intuitively oneexpectsa strongtendencyfor recaptureatthe sametrap aftera few stepsandabehavior
similar to the waiting-time distributionfor randomimplantationafter a long time.
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Den Hollanderand Kasteleyn [249] haveprovided a theory that effectively relatesthe summary
waiting-time distributionfor first recaptureat an arbitrarytrap to the waiting-timedistributionfor first
captureafterrandomimplantation.This theory is formulatedin discretetime. It will be reviewedhere
with suitablesimplifications for the presentpurpose.

Den HollanderandKasteleynconsidera regular latticewith two kindsof points(‘white’ and‘black’
points). The colorsof the pointsshall be randomlydistributedover the lattice,with c the probability of
finding ablack point. The randomwalk of a testparticleon the lattice is assumedto be independentof
the color of the points, i.e., one hasrandom walk on a regular lattice. Two different processesare
considered,(0) the particlestartsat anarbitrary site, and(1) the particlestartsat ablacksite. Consider
first process(0) andintroduceP~,, ,, as the joint probability that the particleis at a blackpointafter
stepn andthat it again is at a black point after n1 steps,after n2 steps,etc. andthe ith time after n1
steps. Similarly, F,,,, ,, is the joint probability of first reachinga black point after n steps and
performing i returnsto black pointswith the stepnumbersn,, . . . n,. Process(1) is characterizedby
F0,,, ,,. since the particle startsat a black point. Den Hollanderand Kasteleyndeducefrom the
translationinvarianceof the probability distribution of black points that

- -,, = P0,,, - .,,, . (9.56)

In particular

P,,=F0=c. (9.57)

The following relationbetweenP and F can be established

n, = F,,,,~ ‘~I + ~ ~n—m.m,n1,. . .,,. (9.58)
m=1

The argumentleading to eq. (9.58) is similar to the one used for eq. (9.9) in section9.2, i.e., the
particlearrivesat a black point either first at step n, or it was alreadyon a black point at a prior step.
Hereno producttermsarenecessarybecausethe definitionof thequantitiesP,,,,, ,, includesrepeated
vlslts at black sites before step n, in the first index. Equation (9.56) is used to sir~nplifythe relation
betweenF and P,

F,,,,, = ~ü.n,... . — ~ ~ü.m.n,.. . . (9.59)

Now F,, is the discreteanalogof the waiting-time distribution for a first visit to a blackpoint, or first
arrival at a trap, if black points areidentified with temporarytraps. Hence (P0= c)

F,, = c — ~ P~. (9.60)
i11=~

Settingn = 0 and i = 1, n1 = m in eq. (9.59) one obtains

Füm= P0w; (9.61)
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andthus

F,, = c — ~ ~ (9.62)

The quantity F,,,.,, can beinterpretedas thewaiting-time distributionfor first recaptureat a blackpoint,
given that the particlestartedat a blackpoint at step0, multiplied by the probability of startat a black
point, P0 = c. Hence eq. (9.62)gives the relationbetweenthediscretewaiting-timedistributionsfor the
first capturein a randomsituationandfor recaptureafter release.Note that F0,, includesthe return to
the sameblack point and arrival at otherblack points.

Relationeq. (9.62) is given in discretetime. Transcriptionof this relationto continuoustime would
give

~(t) = c[1 - f dt’ ~R(t)], (9.63)

where ~/i(t) is the waiting-time distribution for first captureafter randomimplantationand ~JIR(t)is the
waiting-time distribution for return to any trap after release.However,in eq. (9.63) retardationeffects
are neglected,resulting from longer stays in the traps. If one would considerdifferent waiting-time
distributionsfor steps originating on white points or on the black points one should correct for this
difference in the derivation of eq. (9.63). This appearsto be simple for exponentialwaiting-time
distributions.

Den HollanderandKasteleyn[249] havediscussedhow the momentsof process(0) (randomstart)
andprocess(1) (startat ablackpoint) arerelated.Generallythe momentsof process(1) are relatedto
the momentsof (0) of one order less. Analogousderivationscan be madein continuous-timerandom
walk. For instance,eq. (9.63) showsthat the meantime until recaptureat a blackpoint is given by the
zerothmomentof the left-handside,which is onebecauseof normalization.Hencethe meantime until
recaptureis proportional to the inverseconcentrationof the black points. Of course, this argument
must be modified if the escape from the black points is governedby a different waiting-time
distribution.

In summary, the behaviorof the WTD for captureof a particle by random traps after random
implantationappearsto be closely relatedto the behaviorof the WTD for recaptureafter releasefrom
the traps. If no anomaloustime dependenciesare brought in by the WTD for release,the WTD
consideredaboveshould exhibit similar asymptotictime dependencies.

10. Biased random walks

10.1. Introduction

During a biasedrandom walk the particle drifts in a preferentialdirection.The field causingthe
biaseddrift maybe local, i.e. restrictedto a few lattice sites, or it may be global, extendingover the
whole lattice. An appliedstaticelectric field or astaticelasticdeformationof thesamplecan be usedto
inducea drift in a preferentialdirection on the whole lattice.Whereas,local chargecentersor defectsin
the latticecan causea local drift into a region of lower potentialenergy.



1W. Hansand K.W. Kehr, Diffusion in regular and disorderedlattices 387

Theserandomwalks can be importantin understandingsignificant physical propertiesof materials.
For example,static electric fields in microelectroniccircuitry result in large electric fields in gate
connectionsand welds; as smaller gate sizesare sought and higher densitiesof gates on chips are
achieved,thereis a correspondinglargercurrentdensityin thewiresandsolderconnections.The atoms
in the solders are mobile and they can be swept from the contact region by a processcalled
electromigration[250—2521.Internalstructures,suchas atomic impurities,dislocationsor vacanciescan
locallydistort the latticeover severallatticesites.Evidencefor this internalelasticdeformationis found
in Huang scatteringexperimentsand Zwischenreflex scattering [253,254]. The extendedinternal
structurescausea local drift as the particle falls into andagainclimbs out of the distortedregions.The
understandingof the interrelationshipbetweenboth of thesetypesof biasmechanismscould very well
advancethe stability and lifetime of the microchips.

Bias appearsquite naturally when generalmodelswith disorderedtransitionrates areconsidered,
i.e. when the restrictionsof symmetry of transitionsbetweensites (chapter 6) or of the transitions
originatingat the site (chapter7) arerelaxed.The transitionratesF,,,,. betweennearest-neighborsites
are thus consideredas independentrandom numbers.A one-dimensionalpotential leading to such
transition rates is depictedin fig. 10.1. One recognizesregionswith local drift; also global drift is
presentin the general situation.

The simplestversion of a biasedrandomwalk is a single-stateCTRW with constanttransitionrates
on a d-dimensionalhypercubiclattice. This example servesto illustrate the biased random walks.
Supposethat the static field is applied alongthe positiveaxis in the d direction.The transitionratesin
the masterequationfor the directions v = 1,2, . . . d — 1 are set equalto F. For the t’ = d axis the
transition rate is F = Fb ‘, when the transition is to a neighbor in the negative direction and it is

= Fb, when the jump is in the positive direction. The factors b~1= exp(±j3E)are due to the
relative changesin the potentialbarrier as seenfrom the centralsite and E is the static applied field
with unit distancebetweenneighboringsites.

The conditionalprobability in the Fourier—Laplacerepresentationis:

P(k,s~0)= {s + ~[1 —p(k)]}’, (10.1)

wherethe structurefunction of the biasedrandomwalk is

p(k)=[EcoskP+(exp(—ikd)b+exp(ikd)b’)/2]/[d—1+(b+b’)/21 (10.2)

and Y is the summarytransitionrate,

YF[2(d1)+(b+b)1 (10.3)

Fig. 10.1. Schematic representation of a model with random transition rates. A portion of a one-dimensional potential on a lattice is shown where
both the maxima and minima are random.
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The first moment is non-zeroonly in the direction of the applied field andit is alongthe positiveaxis:

Kxd)(t)=F(b—b’)t. (10.4)

This is the first new property of biasedrandomwalks. It is a first-ordereffect, i.e. linear in the field at
small field values. It is easyto calculatethe diffusion tensor from the expressionfor the conditional
probability, andthe secondnew propertyof biasedrandomwalksis the field-inducedasymmetryof the
diffusion tensor:

IF, t’=l 2 . . . d—1D~=tF(b+b~1)/2 vd. ‘ (10.5)

This is a second-ordereffect in the applied field, i.e. quadraticin the field at small fields. The
mean-squredisplacementhas the following behavior:

Kr2~(t)= yt + F2(b — b’)2t2. (10.6)

The first term expressesthe field-dependentdiffusion andthe last term is the squareof the drift caused
by the applicationof the field. The expressioneq. (10.1) can be transformedback to the space-time
coordinates(n = n,e

1 + .

P(n, t~0,0) = exp(—yt)l,,,(2Ft)l,,~(2Ft).. . l(2Ft)b”a, (10.7)

wherel,,(z) is a modified Besselfunction [194].The occupationof the initial site asymptoticallyfalls off
as an exponentialfunction of time, ratherthan as an algebraicpowerof the time. This model is so
simple thatno frequencydependencecould be expectedfor the diffusion coefficient; it is interestingto
speculateas to whetherthis situationis alteredif the waiting-time distributions are not exponential,
evenwhen the first jump is treatedas an equilibrium renewalprocess.This questionis takenup and
answeredin the following section.

10.2. BiasedCTRW models

Considernow the problemof biasusingthe CTRW descriptionwhenthe waiting-time distributions
are not exponential. Here it is assumedthat the system is in a steady state. This is possible by

consideringa finite latticeof N siteswith periodic boundaryconditions.In this situation,if eachsite is
equivalenton the lattice, then theyhaveequaloccupationprobabilities,evenin a field. All translation
invariant models satisfy this criterion; in particular, two models which satisfy the criterion of equal
occupationprobabilities on eachsite arethe trappingmodelsin chapter5. As in the previoussection,
transitionprobabilities to nearest-neighborsites are alteredby the factorsbk’. It is assumedthat the
spatial effect of the bias on the RW is incorporatedin the structurefunction in eq. (10.2). The WTD
h(t) and ~1i(t)describethe temporalbehaviorof the first, and all othertransitionsto neighboringsites,
respectively.The derivationsin chapter3 can then be utilized without anymodification; in particular,
the conditionalprobability P(k,sf0) is representedby eq. (3.15) wherep(k) is given by eq. (10.2).
From that equationthe averagedisplacementalong the ath axis is:

ih(s) c9p(k)
uik k=O (10.8)
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The mean-squaredisplacementis:

2 —h(s) a2p(k) 2 cu(s) h(s) (uip(k) ~2 10 9

~ ~(s)= s(1 - i(s)) ak~ k0 - s(1 - ~())2 uika k=O) ( .)

In eqs. (10.8) and (10.9) the first-jump waiting-time distributionappearsexplicitly. For an equilibrium
renewal processh(s) = [1— ~i(s)]1st. In this casethe momentequationssimplify to:

~ ~k=O (10.10)

and

2 1 /12p(k) 2 ~fr(s) (ilp(k) ~2
KX,,)(5) = - ~ ok~ k0 - s2(1 - ~(s)) I ~ ok,, k=O) (10.11)

Fromeq. (10.10) it is evidentthat the meandisplacementis a linear function of time in the direction of
the appliedfield. The result is the sameas for a CTRW with PoissonianWTD, eq. (10.6),with y = t~’.
The first term in eq. (10.11) containsthe diffusion tensorin the presenceof a field; again, with the
identificationof y with the inverseof the meanstaytime this termis equivalentto eq. (10.4). The last
term in eq. (10,11) contains two contributions; one is the drift contribution to the mean-square
displacementand this is proportionalto t2. This contributioncan be subtractedby using the Laplace
transform of the squareof the meandisplacement.The remaining portion provides a frequency
dependenceto the diffusion tensor.The componentsof the tensorarefrequencyindependentin the
directionsorthogonalto the field. In the direction of the field the diffusion coefficient is:

ñ (s) b+b’ ~ ( b-b~’ ~2( ~(s) I~ (1012)dd 2[2(d-1)+b+b’Jt t\2(d-1)+b+b~’!\1--ç~(s) J~

In linear responsethere is no frequencydependenceof the diffusion coefficient and the field-
dependentdiffusion coefficient eq. (10.12) is unchangedby a reversalof the field. It is of interestto
note that if h(s) = i,Li(s), as is appropriatefor transientexperiments,then the meandisplacementis no
longer a linear function of time. The linear time dependenceis appropriatefor the steadystate.

The results of this sectionhavebeendevelopedby Tunaley [255].Nelkin and Harrison [256] used
theseresultsas a basisfor the discussionof the origin of 1/f noise [257,258].In particular,they have
takenthe multiple trappingmodels (chapter5) as a particular realization of single-stateCTRW. A
quantity of interestto experimentalistsstudying1/f noiseis the currentnoisespectraldensitygivenby
[255]:

2ne2Aw2 C 2P(f) = — / j dt K(xd(t)— xd(0)) ~ cos(wt) , (10.13)

wheref= w12i?-, A is the samplescross-sectionalarea,e is the carriercharge,n is the carrierdensity,
andI is the length of the medium in the direction of the field.
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For the stationarystatethe noise spectraldensity is expressedas (x<1(0) = 0):

2ne
2Aw2 2

P(f) = — ,, Re{~x~
1)(s= iw)} . (10.14)

Equation(10.14) showsthe simple connectionbetweenthe mean-squaredisplacementin eq. (10.11)
and the quantity P(f). Within the framework of thesemodels, the appearanceof 1/f noise can be
achievedby appropriatelymodelling trappingstatesand determiningthe correspondingwaiting-time
distribution [256].The first term in eq. (10.11) is relatedto the backgroundcurrentfluctuationsandis
equivalentto the Nyquist theorem[2551.The origin of 1/f noise in thesemodelsis attributedto the
excessnoisefollowing from the last term of eq. (10.11) or equivalently,the secondterm in eq. (10.12).

It was noted in chapter2 that the diffusion coefficient is constantfor an unbiasedCTRW with h(t)

chosenfrom an equilibrium renewalprocess;nevertheless,the fourth moment of the displacement
(superBurnettcoefficient)hasacomplicatedtime andfrequencydependence.This was usedby Stanton
and Nelkin [2591to studythe band-limitednoisepower, as suggestedby Voss and Clarke [2601.This
quantity is relatedto a fourth moment of the displacementand the modelling of 1/f noise is again
reduced,using thesemodels, to a calculationof the WTD for a distributionof traps.

As previously mentioned,it is possiblethat the trap andreleaseratesare also affectedby the bias
field. Such modelswere consideredby Boettgerand Bryksin [261] (in a different formalism) and by
Barma and Dhar [262]. The physical motivation for this generalizationby Barma and Dhar was the
percolation problem introduced in the previous chapters. The backbone (i.e. infinite) cluster is

simplified to a one-dimensionallattice. There are many brancheson the backbonewhich can be
assumedto be finite for the moment; thesebranchesresemblethe trappingsites on the ladder trap
model, but the trappingratesareaffectedby the biasfield as theymay lie partially in thefield direction.

The two-state model in one dimension is sufficient to demonstratethe salient featureswhich
bias-dependenttrappingandreleaserateshason the results.In thesemodelsthe trap rate is increased
by y~= by1, andthe releaseratefrom the trap is reducedby y~= yr/b. Usingthe resultsof chapter5,
the WTD for this model is (eq. (5.22)):

cut(s) = )‘ (10.15)
y + s[1 + y,b/(s+ Yr13’)l

andthe first-jump WTD is:

h(s)= Y[1+YibI(5+Yrb)1 (10.16)
{y + s[1 + y,b/(s+ Yr~

1)]}(1+ Yib2/Yr)

wherey is the unbiasedsummarytransition rate to nearest-neighborsites, see fig. 5.1. The average
waiting time is given by the expression:

I=(yr+Y,b2)IYYr. (10.17)

It is a straightforwardmatter to calculate the averagesteady-statedrift velocity for this two-state

model. The result is:

1 b — b’ (10.18)
b+b’



J.W. Hans and K.W. Kehr, Diffusion in regular and disorderedlattices 391

The velocity increasesfor small applied fields, but it vanishesas 1/b for sufficiently large field
amplitudes.The reasonfor this behavioris the increasedsteady-stateoccupationof the trapsin very
high fields. The diffusion coefficient is frequencydependent.In the Laplacedomain

(10.19)

As b —> ~ the diffusion coefficient also vanishes.
The aboveresultsprovidequalitativeexplanationsof field-inducedtrappingtreatedby otherauthors

(White and Barma [263], Barma and Dhar [262],Boettgerand Bryksin [261], Pandey[264]). The
generalizationto a randomnumberof trappingstatesat eachsite has beentreatedby White andDhar
[263]. They found that, whenthe maximumnumberof trappingstateson a site was allowedto become
infinite, the averagevelocity identically vanishesabovea thresholdvalueof the appliedfield. Precisely,
how the diffusion coefficient vanishesin high fields for thesemodelsremainsan open problem. It is
worth reminding the readerthat the diffusion coefficient would be obtainedfrom the coefficient for
linear growth in time of the mean-squaredisplacementat long times. Clearly though, thesemodels
warrant further investigationin higher dimensions.

10.3. Randomlattices with a constantbias

The previoussection hasdemonstratedthat an applied field can causea frequency-independent
diffusion coefficient to becomefrequencydependentevenwithout introducinga statisticaltreatmentof
the randomness.Now, it is appropriateto return to the previouslyconsideredmodelsof randommedia
and investigatethe changesin the dynamicalpropertieswhen a field is applied.

Most of the resultsdevelopedwith bias and randomnessapply to the randombarriermodel in one
dimension[265,266]. However, someresultsin higher dimensionshavebeenreportedandthe lattices
with randomtraps havealso beentreated[267—269].

The model for theone-dimensionalinfinite random-barrierproblemdiscussedin section6.3 hasbeen
extendedto include an applied field by Khantha and Balakrishnan [270].They use the stationary
solution of the N-site chain with reflecting boundaryconditionsat the end of eachsegmentwhich is
given as:

psi() = b
2m~t(i— b2)/(1 — b2N) , (10.20)

for 1 ~ m ~ N. The diagonalizationof the tridiagonalmatrix is performedanalytically and the results
for the N-site chain diffusion coefficient DN(iw) are presented.Two special limits of interestare the
high-frequencylimit:

DN)
2fl_~[2(N_2)(bi)_l]~~

2 1 /b — b’ \
211F(b+ b’) ~2

L9~b+b’) ]L 2iw j ~ (10.21)

and the low-frequencylimit:
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[N2 N (1+b2) (1+b2v) (1+10b2+b4)1

DN(1w) = lwL~— 4 (1 — b2) (1— b2N) + 12(1— b2)2 ] + O(w2), (10.22)

where b has beendefinedaboveeq. (10.1). The calculationof the diffusion coefficient, after properly
weighting and summingthe coefficientsDN(iw) is discussedin their article. In the strong-field regime
simple analyticalresultsare given; otherwise,the expressionsare suitablefor numericalsummation.

The nextstepin consideringmodelswith a bias is the solutionof the random-barriermodelandthe
random-trapmodel. For thesemodelsanalyticresultsarealso available.Considerthe masterequation
with arbitrary jump rates:

dP(n, t) = [~.,,±, P(n + 1, t) — f~.,,, P(n, t)] + [~,,, P(n —1, t) — ~,,, P(n, t)]; (10.23)

define the probability currentover the barrierbetweensite n and site n + 1 as:

j,,(t) = T~,,, P(n, t) — [,,,4~ P(n + 1, t) . (10.24)

The masterequationcan now be written in the shortenedform:

dP(n, t)/dt =j,,_,(t) —j,,(t) . (10.25)

In the steadystatedP(n, t)/dt = 0, the time independenceof the solutionsrequiresthat the current

over eachbarrier be a constantindependentof the position on the lattice:

j,, = v , (10.26)

wherev is identified as the averagevalue of the current.Insteadof a lattice with an infinite numberof
sites, a lattice is consideredwhich is restrictedto N sites andperiodic boundaryconditions. Otherwise
sourceand sink termsmay be addedat the ends.The limit of an infinite lattice is takenafter the
calculationsare performed.A recursivesolution of eq. (10.24) is:

pSt(~) = F V + ~n+t pS~(~+ 1); (10.27)
,,+t.,, n+,,,,

continuingthe recursionrelation and usingthe periodic boundarycondition, the solution is:

P~(n)= [ V + v ~ 1 ~ ‘‘~~~‘]/[i — H ~ (10.28)
1=1 1~+1+j,n+j i=1 ,,+j.,,+i—1 j=1 j+1.j

The constantv can, underrestrictedcircumstancesto be discussedbelow, be explicitly calculated.
To calculatethe averagevelocity in the biasedrandom-barriermodel [2661,set

= b’~ and ~ = b1. (10.29)
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The stationarysolution eq. (10.28) is:

N_lb
2J ~

psi(fl) = Vb ~ 7—/(1 — b2N). (10.30)
jO n+j

In this caseit is assumedthat b < 1; however,if b> 1, thenit is a simple matterto rewrite the seriesto
obtainan expressionin powersof b2. Summingeq. (10.30)overn anddividing by N, theleft-handside
is set equalto unity. Finally, taking the limit N—>oo, the averagevelocity can be determined:

(10.31)

This expressionhasthe sameform as the averagevelocity calculatedfrom the CTRW model in eq.
(10.4).

For the biasedrandom-trapmodel the ratesare:

= bF,, and f~,,= b1F,,. (10.32)

The result for the averagevelocity is the sameas in eq. (10.31). Short-timedynamicalpropertiesare
calculatedby usingthe solution of the masterequationin powersof the time:

P(n,t)P(n,0)+t[FP(O)1,,+ ~ [F.F.P(0)],,+.”, (10.33)

and for the initial condition P(n, 0), the steady-statesolution is used.For the random-barriermodel,
the distribution whenthe particle is initially at n = 0 is (b < 1):

1—b2 °° b2~
P(n, )~n,o I1/F\ L F (10.34)

\1 / p0 —(1+p)

The diffusion coefficient calculatedfor short times is [266]:

n(s) = b(t) + + ~ {2b2 (F)2 - b (b + b1) (F2) + b (b~’- b) (F)(1/FY’} +....

(10.35)

The next term in the expansioncan be foundin Biller’s article [266].It is interestingto noteherethat
the diffusion coefficient at short times has termswith (F), as well as (1/F), the latter dependence
occursbecauseof the complicatedsteady-stateoccupationprobabilities given in eq. (10.34).

This method can also be extendedto calculatethe dynamicalpropertiesat low frequencies;the
equationof motion usedby Biller [266]is:

dw(n,t)/dt = —j,,(t) + V (10.36)

wherein is the probability current and v is the averagevelocity. The set of functions {w(n, t)} are
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related to the conditionalprobabilities by

P(n, t) = w(n, t) — w(n — 1, t) . . (10.37)

Thefunctionsw(n, t) are summaryprobabilitiesfor the particleto be in the range {—x, n}. The initial
condition is P(0,0) 0(n), whereP(0, 0) is given in eq. (10.34) and 0(n) is the Heavysidefunction.

The equationsof motion in eq. (10.36) are solved by using Laplace transformsand the average
Greenfunction for the system.Assumingthe particle is initially on site m, the averageunperturbed
Greenfunction satisfiesthe equation(F= (1/F)’):

- ~ (G~+i~(5)- G~m(5))- ~ (ö~(s)- G~tm(5))] = s,,,,,. (10.38)

Thesolutionsof thesecoupledequationsarecalculatedin a manneridenticalto the developmentof eq.
(2.33):

1 A~_m), n�m,
G~m(S)= (A — A) A(nm) n ~ m, (10.39)

where

= ~[(s/F) + b + b’ ±{(s/F)2 + 2(b + b~)(s/F)+ (b —

This solution is found, as in section2.2, cf. eq. (2.33), by simplecontourintegration.The perturbation
series,now in real space,is similar to the calculationsin section6.2, andthe diffusion coefficient for
small s is:

n(s) = (~)/[b +2b ((~- ~ +...]. (10.40)

The frequencybehaviorof the diffusion coefficient dependson the field strength.At high fields, i.e.
(s/F) ~ (b — bt)2/2(b+ b_t), the expansionof D(s) has integral powers of s. Whereas,there are
intermediatefrequencies(or correspondinglysmall field strengths),wherethe half-integralpowersof ~
are approximatelyrecovered.

Similar resultswere discussedin the weak disorderexpansionby Derrida andOrbach[265].Their
method hasbeen generalizedto higher dimensionsby Derrida andLuck [2711.They use a weak
disorder expansionof the masterequationwith the orderedstate being the zerothorder result. The
averagevelocity V

0 and the diffusion coefficient D0 of the unperturbed system are used in the
expansion.The disorderis measuredby the secondmomentsof the transitionrate fluctuations(~F,,~.):

C = ~ ( - ft)2 [(SF
2) - (~ ~ (10.41)

They find the disorderedsystemspossessan uppercritical dimensiond~= 2. Above this dimension,the
averagevelocity vanisheslinearly as V

0~—>0:
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V=Vo(1+KdC+~). (10.42)

However, at d = 2 andbelow anomalousbehaviorof the velocity is observed.The disorderis important
evenif it is weak.Their averagevelocity for d = 2 is:

V=1~)(1—~+3fl
2+...), (10.43)

where~= Cln(D~/V~)/4irD~.For i<d<2 the averagevelocity is:

V= Vg[1 — KdCV~2”~], (10.44)

and the averagevelocity for d = 1 is:

— sgn(V
0)[C/2D0 + .]. (10.45)

A field-theoreticalrenormalizationgroupapproach[272] gives the averagevelocity in d = 2 as:

V~ 2 (10.46)
Cln(K2/V0)

Comparisonwith eq. (10.43) showsthat the parameter~ now appearsin the denominator,indicating
importanceof the higher-ordertermsin the seriesin eq. (10.42) as d—> 2.

Theseresultsshow the importanceof the disorderis qualitatively differentin dimensionshigherthan
2. The effect of strongdisorder,i.e., transition-ratedistributions with diverging inversemoments,anda
more detailedanalysisof thesesystemsremain as open problems.

Resultsfor the biasedrandom-trapmodelhavequite recentlyappeared[190,267, 268]. The diffusion
coefficient andthe superBurnett coefficient havebeencalculatedin d dimensions.Nieuwenhuizenand
Ernst [268] have studied distributionswhere all momentsof the transition rates exist and also the
strong-disordercase.In the first casewhereall the inversemomentsof the transitionratesexist, they
calculate the dynamicalpropertiesusing the response-functionmethoddescribedin chapter7. The
strong-disorderc~asewas treatedusing an effective mediumtheory, the occupationprobabilitiesof the
initial sites was, of course,not the equilibrium stationarystate.This model has1/f noise when the
distributionfunction for the transitionrateshasa non-zerovalue for very deeptraps, i.e., f ~‘

10.4. Models with a random bias

Models which havenot been consideredin this review so far are thosecontaining a randombias
[273—278]. Models of this typehavebeenformulatedto analyzereplicationof polymerchains[273],and
the diffusion of vacanciesin alloys [274,275]. The results have mostly been obtainedfor one-
dimensionalsystems(seeKalikow for resultsin higher dimensions[276]).

As an exampleof this class of systems,considerthe stationaryprobability distribution eq. (10.28)
and takethe transition ratesto be

I~~1,,=b,,F and F,,,,~1=b~’F. (10.47)
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The bias fields b,, are assumedto be independentlydistributed.The stationaryprobability density is:

N—iJ’ N

psi(fl) = [~ + ~ ~ ~ ]/(i - ~ bJ~). (10.48)

The model is restrictedto the case, (ln(b7’)) <0; this requirementinsures that the denominator
convergesto unity in the limit N-> x. This can be seenas writing the productasa sum over ln b1 in an
exponentialfunction. Summing the result and using the normalization of the stationaryprobability
distribution the result is:

1 = ~ ~. (10.49)

When it is assumedthat the series,i.e., (b
2) <1, the averagevelocity is then:

V = F(1 ~(i/b2)) (10.50)

If the average(b2) is greaterthanunity, theinversemoment (b2) may be lessthanunity andthe
seriesanalogousto eq. (10.48) can againbe summed.However, it is easyto createdistributionswhere
both of thesemomentsare greaterthanunity; in this casethe velocity vanishes[277]. The long-time
asymptoticbehaviorof the meandisplacementhasbeenanalyzedby Sinai [279],DerridaandPomeau
[280], Derrida [281] and Bernasconiand Schneider[282].Their modelsand methodologydiffer from
that presentedhere;only the resultswill be discussed.

Derrida [281]hascalculatedthe velocity anddiffusion for the modelwherethe transitionrateshave
the distribution:

p(~÷
1~,,,~,,,+,) = (1—c)~ — F<) ~ — F) + c ~ — F) ~ — F~).

(10.51)

This distributionhasregimeswherethe velocity is finite andwherethe velocity is zero. As long asthe
condition:

or (I~,,+,/f~+~,,)<1 (lO.52)

is satisfied,the velocity is non-zero andits expressionis (assumingthe first inequality holds):

V = (1/f~~+~)’[1 — (I~+,,,,/f~,,,+,)i’, (lO.53)

eq. (10.52) is violatedfor concentrationsc:

~<c<F/(F+F<)=c~, (10.54)

whereF< <F.



1W. Hansand K.W. Kehr, Diffusion in regular and disorderedlattices 397

The diffusion coefficient for this model is given by the expression:

(1- ~ [/ 1 \/ ~+,,,, \ 1 / 1 \ / /F~~1,,

D = (1- ((F,/F1)
2)) * [\~.,,+

1/\F~,,~1/ + ~ \~/ ~1- ___
(10.55)

This holds as long as the condition:

If ir \2\ 1

\~ ,,+i.n

11 ,,,,,+t) / < ~

is satisfied.Otherwisethe diffusion coefficient diverges.The concentrationintervalwhereeq. (10.56) is
violated is:

~ c~ F2/(F2 + F<2) = c
2. (10.57)

This concentrationinterval is different from that for the vanishingof the velocity, seefig. 10.2. It is to
be expectedthat higher momentshaveanomalousbehaviorat otherconcentrations,as well.

Bernasconiand Schneiderhaveconsidereda diode model [282]; thesemodelsare a variantof the
usualrandombarriermodel. They havethe property that the particlecan jump acrosscertainbarriers
only in onedirection; the reversedirection actslike an infinite barrier.Thereis an anomalousregimein
this model andthe particle’saveragepositiongrows with a non-integralpowerof time, t~,wherer’ < 1
(seealso Solomon[277]).Also, the asymptotictime dependenceof the averageposition is modulated
by a function of ln(t).

D=~i
II II

II

1/2 c1 c2 1

Fig. 10.2. The diffusion coefficient and the velocity in the model of Derrida versusconcentrationof right-biasedtransition rates.The diffusion
coefficient (dashedlines)divergesand the velocity (solid lines) vanishesat different concentrations. Figure adapted from Derrida [2811.
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The discrete-timemodelsof Solomon[277],Kestin [278]andDerrida andPomeau[280] havea bias
in the right transitions,p,,, andthe left transitions,q,,, from the site n. The distributionof values of
p,1 = 1 — q,, is:

p(p~)=c8(p,,—p)+(1—c)6(p,,—(1—p)). (10.58)

Figure 10.1 is representativeof this model; the barriers fluctuate according to a random walk
displacementwith a global bias when c ~ ~. For ~<c <p, the averagedisplacementis [278,280]

(x)(t) ~ t~, (10.59)

where i-’ = ln{c/(1 — c)} /ln{p/(1 — p)}. The velocity in the long-time regimevanisheseven though a
global bias has been imposedon the particle.This specialfeatureoccursbecausethe typical barrier
height is not representativeof the highest barriers. As fig. 6.2 illustrates, the averagevelocity of a
particleis limited by the highestobstaclesand not by the averagebarrier heights.

In the specialcaseof no global bias c = ~ Sinai [279] showedthat the displacementdivided by the
squareof ln t:

y = x/(ln t)
2, (10.60)

hasa limit distribution.
The casewithout global biasresemblesa randomwalk on a random-walksetby the potentialon the

lattice and the result in eq. (10.60) can be heuristically explainedas follows. The averagepotential
difference.~Ufrom one point on the lattice to anotherpoint separatedby a distanceL is

z~U=KVL, (10.61)

where K is constant.The time requiredto diffuse the distance L on the lattice is

t—exp(f3~U)=exp(f3\/iK). (10.62)

SinceL is takento be the averagedistancecoveredby the particlein time t, the solutionof eq. (10.62)
for L(t) hasthe dependencefound in eq. (10.60).Marinari etal. [283]showedthat thepower spectrum
definedby:

P(f)=Lirn~ 1dte~x(t)~, (10.63)

by the same heuristic argumentsused above, has approximately a 1/f behavior as f—p 0. This
dependenceis modified by logarithmsof the frequency:

P(f) (ln~ f) /f. (10.64)

They further studieda randombias model in two dimensionsby Monte-Carlosimulation andfound a
behaviorwhich was consistentwith the one-dimensionalmodel.
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The review endshere, but it is hopedthat this presentationhaswhettedthe reader’sappetitefor
theseproblemsand she/hewill penetratedeeperinto the subject.The emphasisof the review was
necessarilyrestrictedin order to keep the presentationreasonablycoherentand pedagogical.This
restrictionhas meantthat omissionswere made; for instance,field theoretic renormalizationgroup
methodshavenot been discussedin detail, althoughtherearepublicationsin this area[272,284—286].
Furthermorequantum-mechanicallattice models also have a large literature [44], but very little
progresshasbeenmadeon thesemodelswith disorderedtransitionrates.The theoreticalproblemsare
many in this field, so be bold and take up the challenge!
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Notes added in proof

The flow of publications on the subject of the reviewdoesnot diminish, althoughthe emphasison
particular topics is shifting. Below somereferenceson developmentswill be given which we found
interesting.Of course,we could not be complete.Another reviewwith emphasison complementary
topics, e.g., percolation, many diffusing particles, etc., is in preparation [287]. Applications of
stochastichopping modelsto the calculationof correlationfunctionsare describedin the book [288].

More complicatedjump models for two-dimensionaldiffusion were consideredin [2891and the
diffusion coefficient for modelswith multiple transitionrateswas derivedin [290].

The fact that multistate CTRW does exhibit a frequency-dependentdiffusion coefficient was
demonstratedin a quasi-one-dimensionalmodel [291].A modelequivalentto non-PoissonianWTD was
treatedin [292]andcorrelated-jumpmodelswith generalWTD wereconsideredin [293].An interesting
extensionof multistate random walk to networks where partial summationson internal statesare
performedis given in [294].New results for correlatedrandomwalks that arecontinuousin spaceand
discretein time are found in [295].

Experimentson photoconductivityin amorphousmaterialsover many decadesin time showeda
transitionfrom dispersiveto nondispersivetransport[296].This is consistentwith modelsdiscussedin
chapter5 if a finite maximal trap depth is assumed.The two-statemodel was used in the analysisof
quasielasticneutron-Scatteringexperimentson hydrogendiffusion in a metglass[297].

A simplified treatmentof the low-frequency conductivity of the one-dimensionalrandom-barrier
modelwas given in [298].An anomalouslong-timebehaviorof the diffusionprocessof the broken-bond
model was found in [299],after averagingover the distribution of the segmentlengths.The random-
resistor network,correspondingto two different transition rates,was studiedin a systematicdensity
expansionin [300].Quasi-one-dimensionalmodelswith a power-law distribution of the conductivities
were consideredin [301]. An interestingextensionis the casewhere one transition rate becomes
infinite; this gives the ‘termite models’. Theywerestudied,e.g., in [302]whenthe othertransitionrate
is zero,andin [303]when this rate is a randomquantity. The frequencydependenceof the diffusion
coefficient of such modelswas studiedin the frame of the EMA in [304].

It was recently asserted[305] that there are oversights in the proof [182] of the strictly linear
behaviorof the mean-squaredisplacementin the random-trapmodel. Reference[182]establishesthis
behaviorfor infinite lattices, including the case of periodic boundaryconditions. It is obvious that
correctionsappearfor reflecting boundaryconditionsandtheyare derivedin [305].A previousarticle is
concernedwith nonstationaryinitial conditions [306].

The modelof randomwalk on a randomwalk was applied to diffusion in channelsin [307].A model
of diffusion of hierarchicallattices was studiedin [308].The problem of diffusion in the model with
randomlyblockedsitesandbondswas treatedexactlyin a low-densityexpansionby the Utrechtgroup
[309,310]. A subjectmatterof recentlygrowing interestis randomwalk in ultrametricspaces,herethe
readeris referredto [311—314]as examples.

First-passagetime propertiessuch asprobability of return to theorigin andmeannumberof distinct
sites visited were investigatedin [315] for multistate random walk. The application to correlated
randomwalk was madein [316].The exponentialdecayof the survival probabilityin a finite lattice with
a single trap was establishedin [317,318]; thesereferencescontain also otheruseful exactresults.The
survival probability of a particle diffusing by correlatedwalk in the presenceof traps was derivedin
[319].An importantnumericaltechniquefor studyingthe trappingproblemin higher dimensionswas
devisedin [320].The survival probability andtrappingprobabilityon a site werecalculatedfor partially
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absorbingtraps in [321].The survival probability of aparticlediffusing in mediumwith connectedtraps
was consideredin [322].Also the influenceof bias on the survival probability of a particleon a linear
chain hasbeendiscussed,cf., e.g., ref. [3231.

The frequency-dependentconductivityin a modelwith randombarriers,randomsitesenergies,anda
static bias field was investigatedin [324].A Monte-Carlostudy of similar modelswas undertakenin
[325].Diffusion in one-dimensionalmodelswith attachedrandomladdersand a ‘topological bias’ were
consideredin [326,327]. ‘Anomalous ballistic diffusion’ was found in a superconductinglinear chain
model with randomly insertedresistors [328]. We reiterate that thesereferencesrepresentonly a
selectionof somerecentdevelopmentsin this field.
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